Изучение метода изготовления биполярных интегральных микросхем с диэлектрической изоляцией

Метод диэлектрической изоляции. Комбинированная изоляция элементов интегральной микросхемы. Последовательность операций технологического процесса производства биполярных полупроводниковых интегральной микросхемы с диэлектрической изоляцией элементов.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид лабораторная работа
Язык русский
Дата добавления 14.11.2013
Размер файла 659,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УО «МГВРК»

Отчет по лабораторной работе

по предмету: «Технология производства микроэлектронных устройств»

тема: «Изучение метода изготовления биполярных интегральных микросхем с диэлектрической изоляцией»

Выполнил:

учащийся гр. 02792

Шабан Я.А.

Проверил:

Мучак И. Ф.

Минск 2013

Метод диэлектрической изоляции

Элементы биполярной интегральной микросхемы должны быть изолированы друг от друга для исключения паразитного взаимодействия, предотвращения токов утечки, короткого замыкания в элементах, предотвращения пробоев. Диэлектрическая изоляция позволяет создавать ИМС с улучшенными характеристиками, а именно: существенно увеличить напряжение пробоя изолирующей области, значительно (примерно на шесть порядков) уменьшить токи утечки, уменьшить (примерно на два порядка) паразитные емкости и в результате увеличить рабочую частоту аналоговых и быстродействие цифровых ИМС, повысить их радиационную стойкость. Метод диэлектрической изоляции позволяет получить хорошую изоляцию как по постоянному, так и по переменному току, поскольку емкость, связанная с оксидным слоем, может быть очень малой (300 пФ/мм2 при слое диоксида толщиной 1 мкм). Пробивное напряжение для диэлектрической изоляции получается значительно большим по сравнению с пробивным напряжением для изоляции рn -переходом (выше 800 В). Качество такой изоляции значительно выше, так как токи утечки диэлектрика на много порядков меньше, чем рn- перехода при обратном напряжении. Удельная емкость диэлектрической изоляции меньше, поскольку диэлектрическая проницаемость диоксида кремния приблизительно в 3 раза ниже, чем кремния, а толщина диэлектрического слоя может быть выбрана больше толщины изолирующего рn- перехода.

диэлектрический изоляция интегральный микросхема

Последовательность операций технологического процесса производства биполярных полупроводниковых ИМС с диэлектрической изоляцией элементов

1 - структура со скрытым диффузионным слоем на подложке n-типа после операций механической обработки, химического полирования, окисления, фотолитографии, локальной диффузии примеси n-типа;

2 - фотолитография для вскрытия окон в окисле перед операцией локального травления кремния;

3 - травление кремния;

4 - снятие окисла;

5 - нанесение окисла, нитрида или карбида кремния;

6 - осаждение из парогазовой фазы слоя высокоомного поликристаллического кремния толщиной ~ 200 мкм;

7 - сошлифовывание монокристаллического кремния до получения изолированных диэлектриком карманов и получение рабочей поверхности высокого класса чистоты;

8 - окисление рабочей поверхности;

9 - фотолитография для вскрытия окон под базовую диффузию;

10 - формирование базового слоя;

11 - фотолитография для вскрытия окон под эмиттерную диффузию;

12 - формирование эмиттерного слоя;

13 - фотолитография для вскрытия контактных окон;

14 - напыление пленки алюминия;

15 - фотолитография для создания рисунка разводки и нанесение слоя защитного диэлектрика

Описание процесса

Диэлектрическая изоляция позволяет создавать ИМС с улучшенными характеристиками по сравнению со схемами, в которых применяется диодная изоляция, а именно: существенно увеличить напряжение пробоя изолирующей области, значительно (примерно на шесть порядков) уменьшить токи утечки, уменьшить (примерно на два порядка) паразитные емкости и в результате увеличить рабочую частоту аналоговых и быстродействие цифровых ИМС, повысить их радиационную стойкость. Один из технологических маршрутов формирования ИМС с диэлектрической изоляцией элементов представлен на рис.1

Изоляция обеспечивается слоем окисла, нитрида или карбида кремния (Si) либо их сочетаниями (позиция 5 и последующие). Поликристаллический кремний, удельное сопротивление которого составляет менее 0,01 Ом·см, выполняет роль механического основания ИМС. Основные трудности реализации этого способа заключаются в проведении прецизионного шлифования с исключительно малыми отклонениями толщины сошлифованного слоя и высокой дефектности монокристаллических карманов после механической обработки их рабочей поверхности. Поликристаллический кремний можно заменить диэлектриком, например ситаллом, керамикой (керамическая изоляция), но ввиду несогласованности КТР кремния и керамики этот вариант не обеспечивает требуемой плоскостности пластин после процессов термической обработки и отличается низким выходом годных изделий. В ИМС с диэлектрической изоляцией затруднен теплоотвод от полупроводниковых областей; кроме того, площадь, занимаемая элементами ИМС, сравнительно большая, т. е. степень интеграции ИМС невысока.

Комбинированная изоляция. Комбинированная изоляция элементов ИМС является компромиссным вариантом, сочетающим технологичность изоляции р-п-переходом и высокие качества изоляции диэлектриком. Количество способов этой изоляции очень велико. Здесь элементы ИМС со стороны подложки изолированы обратно смещенным р-п-переходом, а с боковых сторон - диэлектриком (окислом, стеклом, керамикой).

Таким образом, изоляция p-n-переходом заменяется изоляцией диэлектриком в наиболее уязвимом приповерхностном слое и с боковых сторон. Наибольшее распространение на сегодняшний день получили такие способы комбинированной изоляции, как локальное окисление (изопланарная технология) и вертикальное анизотропное травление (полипланарная технология).

В основе этих технологий лежит локальное сквозное окисление или протравливание тонкого (2-3 мкм) эпитаксиального слоя кремния n-типа, в результате чего этот слой оказывается разделенным на островки, в которых можно формировать элементы ИМС.

Достоинства:

*Хорошие диэлектрические свойства

*Высокая рад стойкость

*Приемлемый размер изоляции

Недостатки:

*Очень дорогой

*Сложный

Размещено на Allbest.ru

...

Подобные документы

  • Устройство и принцип действия биполярных транзисторов. Структура и технология изготовления полупроводниковых интегральных микросхем на основе биполярного транзистора с помощью метода диэлектрической изоляции; подготовка полупроводниковой подложки.

    контрольная работа [710,2 K], добавлен 10.06.2013

  • Маршрут изготовления биполярных интегральных микросхем. Разработка интегральной микросхемы методом вертикального анизотропного травления с изоляцией диэлектриком и воздушной прослойкой. Комплекс химической обработки "Кубок", устройство и принцип работы.

    курсовая работа [1,2 M], добавлен 18.04.2016

  • Конструктивные и технологические ограничения, которые учитываются при разработке топологии интегральной микросхемы на биполярных транзисторах, схемотехнические параметры. Порядок расчета полупроводниковых резисторов, общие сведения об их изготовлении.

    курсовая работа [1,8 M], добавлен 26.05.2010

  • Основные принципы построения АМ-ЧМ приемников. Анализ схемы электрической принципиальной ИМС TA2003. Разработка физической структуры кристалла, технологического маршрута изготовления и топологии интегральной микросхемы. Компоновка элементов и блоков.

    дипломная работа [2,0 M], добавлен 01.11.2010

  • Анализ исходных данных и выбор конструкции. Разработка коммутационной схемы. Расчет параметров элементов. Тепловой расчет микросхемы в корпусе. Расчет паразитных емкостей и параметров надежности микросхемы. Разработка технологии изготовления микросхем.

    курсовая работа [150,4 K], добавлен 12.06.2010

  • Описание и анализ конструкции диффузионного резистора. Оптимизация его конструкции с учетом критерия минимальной площади. Последовательность операций планарно-эпитаксиальной технологии производства биполярных полупроводниковых интегральных микросхем.

    курсовая работа [1,2 M], добавлен 20.11.2013

  • Разработка конструкции, топологии и технологического процесса интегральной микросхемы по заданной электрической схеме. Топологический расчет транзистора и полупроводникового кристалла. Расчет геометрических размеров резисторов и конденсаторов.

    курсовая работа [1,3 M], добавлен 18.02.2010

  • Топология и элементы МОП-транзистора с диодом Шоттки. Последовательность технологических операций его производства. Разработка технологического процесса изготовления полупроводниковых интегральных схем. Характеристика используемых материалов и реактивов.

    курсовая работа [666,0 K], добавлен 06.12.2012

  • Разработка усилителя слабых сигналов в виде интегральной микросхемы (ИМС) в корпусе. Выбор технологии изготовления. Расчет геометрических размеров и топологии элементов интегральной микросхемы. Выбор навесных компонентов, типоразмера платы и корпуса.

    курсовая работа [381,0 K], добавлен 29.10.2013

  • Разработка структурной, принципиальной и интегральной микросхем аналогового устройства на основе биполярных и полевых транзисторов. Выбор типов и структур биполярных и полевых транзисторов, навесных элементов и расчёт конфигурации плёночных элементов.

    курсовая работа [241,0 K], добавлен 29.08.2014

  • Электрические параметры интегральной микросхемы (ИМС). Расчет параметров модели полевого транзистора с управляющим p-n-переходом. Моделирование схемы включения истокового повторителя. Разработка топологии и технологического маршрута изготовления ИМС.

    дипломная работа [1,9 M], добавлен 29.09.2010

  • Использование параметрических феррорезонансных стабилизаторов напряжения. Конструктивно-технологическое исполнение интегральной микросхемы. Расчет интегрального транзистора и его характеристики. Разработка технических требований и топологии микросхемы.

    курсовая работа [140,6 K], добавлен 15.07.2012

  • Топологический расчет схемы принципиальной электрической для толстопленочной гибридной интегральной микросхемы (ГИС). Конструирование, технология толстопленочных ГИС. Расчет толстопленочных резисторов и конденсаторов. Выбор корпусов для микросхем.

    курсовая работа [260,5 K], добавлен 03.02.2010

  • Технология изготовления платы фильтра. Методы формирования конфигурации проводящего, резистивного и диэлектрического слоя. Выбор установки его напыления. Расчет точности пленочных элементов микросхем и режимов изготовления тонкопленочных резисторов.

    контрольная работа [359,2 K], добавлен 25.01.2013

  • Разработка конструкции и технологии изготовления полупроводниковой микросхемы выполненной в интегральном исполнении. Обоснование выбора технологии изготовления микросхемы, на основании которого разработан технологический процесс, топология кристалла.

    курсовая работа [708,7 K], добавлен 13.07.2008

  • Основные технические показатели электронного усилителя: коэффициент усиления, входное и выходное сопротивления, диапазон усиливаемых частот, динамический диапазон, нелинейные, частотные и фазовые искажения. Разработка гибридной интегральной микросхемы.

    курсовая работа [772,0 K], добавлен 08.04.2014

  • Анализ технологии изготовления плат полупроводниковых интегральных микросхем – такого рода микросхем, элементы которых выполнены в приповерхностном слое полупроводниковой подложки. Характеристика монокристаллического кремния. Выращивание монокристаллов.

    курсовая работа [2,0 M], добавлен 03.12.2010

  • Изучение современных тенденций в области проектирования интегральных микросхем и полупроводниковых приборов. Анализ алгоритма создания интегральных микросхем в среде Cadence Virtuoso. Реализация логических элементов с использованием NMOS-транзисторов.

    курсовая работа [1,4 M], добавлен 08.11.2013

  • Интегральные микросхемы, сигналы. Такт работы цифрового устройства. Маркировка цифровых микросхем российского производства. Базисы производства цифровых интегральных микросхем. Типы цифровых интегральных микросхем. Схемотехника центрального процессора.

    презентация [6,0 M], добавлен 24.04.2016

  • Конструкция интегральной микросхемы на транзисторах. Преобразование и обработка входного сигнала. Технические условия для интегральных микросхем р-канального полевого транзистора с изолированным затвором. Нанесение пленки алюминия и фотолитография.

    контрольная работа [1,8 M], добавлен 07.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.