Теория систем массового обслуживания
Цели, задачи, параметры СМО (систем массового обслуживания). Анализ многоканальных систем с ожиданием, отказом и смешанного типа. Важные свойства простейшего потока согласно закона распределения Пуассона. Главные особенности обслуживающих устройств.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 17.12.2013 |
Размер файла | 13,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Введение
Во многих областях практической деятельности человека мы сталкиваемся с необходимостью пребывания в состоянии ожидания. Подобные ситуации возникают в очередях в билетных кассах, в крупных аэропортах, при ожидании обслуживающим персоналом самолетов разрешения на взлет или посадку, на телефонных станциях в ожидании освобождения линии абонента, в ремонтных цехах в ожидании ремонта станков и оборудования, на складах снабженческо-сбытовых организаций в ожидании разгрузки или погрузки транспортных средств. Во всех перечисленных случаях имеем дело с массовостью и обслуживанием. Изучением таких ситуаций занимается теория массового обслуживания. В теории систем массового обслуживания (в дальнейшем просто CMО) обслуживаемый объект называют требованием.
В общем случае под требованием обычно понимают запрос на удовлетворение некоторой потребности, например, разговор с абонентом, посадка самолета, покупка билета, получение материалов на складе. Средства, обслуживающие требования, называются обслуживающими устройствами или каналами обслуживания. Например, к ним относятся каналы телефонной связи, посадочные полосы, мастера-ремонтники, билетные кассиры, погрузочно-разгрузочные точки на базах и складах. Совокупность однотипных обслуживающих устройств называется обслуживающими устройствами. Такими системами могут быть телефонные станции, аэродромы, билетные кассы, ремонтные мастерские, склады и базы снабженческо-сбытовых организаций и т.д.
В теории СМО рассматриваются такие случаи, когда поступление требований происходит через случайные промежутки времени, а продолжительность обслуживания требований не является постоянной, т.е. носит случайный характер. В силу этих причин одним из основных методов математического описания СМО является аппарат теории случайных процессов.
Основной задачей теории СМО является изучение режима функционирования обслуживающей системы и исследование явлений, возникающих в процессе обслуживания. Так, одной из характеристик обслуживающей системы является время пребывания требования в очереди. Очевидно, что это время можно сократить за счет увеличения количества обслуживающих устройств. Однако каждое дополнительное устройство требует определенных материальных затрат, при этом увеличивается время бездействия обслуживающего устройства из-за отсутствия требований на обслуживание, что также является негативным явлением. Следовательно, в теории СМО возникают задачи оптимизации: каким образом достичь определенного уровня обслуживания (максимального сокращения очереди или потерь требований) при минимальных затратах, связанных с простоем обслуживающих устройств.
массовый обслуживание пуассон
1. Классификация СМО и их основные элементы СМО
Классифицируются на разные группы в зависимости от состава и от времени пребывания в очереди до начала обслуживания, и от дисциплины обслуживания требований.
По составу СМО бывают одноканальные (с одним обслуживающим устройством) и многоканальными (с большим числом обслуживающих устройств).
Многоканальные системы могут состоять из обслуживающих устройств как одинаковой, так и разной производительности. По времени пребывания требований в очереди до начала обслуживания системы делятся на три группы:
1) с неограниченным временем ожидания (с ожиданием),
2) с отказами;
3) смешанного типа.
В СМО с неограниченным временем ожидания очередное требование, застав все устройства занятыми, становится в очередь и ожидает обслуживания до тех пор, пока одно из устройств не освободится. В системах с отказами поступившее требование, застав все устройства занятыми, покидает систему. Классическим примером системы с отказами может служить работа автоматической телефонной станции. В системах смешанного типа поступившее требование, застав все устройства занятыми, становятся в очередь и ожидают обслуживания в течение ограниченного времени. Не дождавшись обслуживания в установленное время, требование покидает систему. В системах с определенной дисциплиной обслуживания поступившее требование, застав все устройства занятыми, в зависимости от своего приоритета, либо обслуживается вне очереди, либо становится в очередь.
Основными элементами СМО являются: входящий поток требований, очередь требований, обслуживающие устройства, (каналы) и выходящий поток требований. Изучение СМО начинается с анализа входящего потока требований.
Входящий поток требований представляет собой совокупность требований, которые поступают в систему и нуждаются в обслуживании. Входящий поток требований изучается с целью установления закономерностей этого потока и дальнейшего улучшения качества обслуживания. В большинстве случаев входящий поток неуправляем и зависит от ряда случайных факторов.
Число требований, поступающих в единицу времени, случайная величина. Случайной величиной является также интервал времени между соседними поступающими требованиями. Однако среднее количество требований, поступивших в единицу времени, и средний интервал времени между соседними поступающими требованиями предполагаются заданными. Среднее число требований, поступающих в систему обслуживания за единицу времени, называется интенсивностью поступления требований.
Для многих реальных процессов поток требований достаточно хорошо описывается законом распределения Пуассона. Такой поток называется простейшим. Простейший поток обладает такими важными свойствами:
1) Свойством стационарности, которое выражает неизменность вероятностного режима потока по времени. Это значит, что число требований, поступающих в систему в равные промежутки времени, в среднем должно быть постоянным. Например, число вагонов, поступающих под погрузку в среднем в сутки должно быть одинаковым для различных периодов времени, к примеру, в начале и в конце декады.
2) Отсутствия последействия, которое обуславливает взаимную независимость поступления того или иного числа требований на обслуживание в непересекающиеся промежутки времени. Это значит, что число требований, поступающих в данный отрезок времени, не зависит от числа требований, обслуженных в предыдущем промежутке времени. Например, число автомобилей, прибывших за материалами в десятый день месяца, не зависит от числа автомобилей, обслуженных в четвертый или любой другой предыдущий день данного месяца.
3) Свойством ординарности, которое выражает практическую невозможность одновременного поступления двух или более требований (вероятность такого события неизмеримо мала по отношению к рассматриваемому промежутку времени, когда последний устремляют к нулю). При простейшем потоке требований распределение требований, поступающих в систему, подчиняются закону распределения Пуассона.
На практике условия простейшего потока не всегда строго выполняются. Часто имеет место не стационарность процесса (в различные часы дня и различные дни месяца поток требований может меняться, он может быть интенсивнее утром или в последние дни месяца).
Существует также наличие последействия, когда количество требований на отпуск товаров в конце месяца зависит от их удовлетворения в начале месяца. Наблюдается и явление неоднородности, когда несколько клиентов одновременно пребывают на склад за материалами. Однако в целом пуассоновский закон распределения с достаточно высоким приближением отражает многие процессы массового обслуживания.
Почему такое предположение в ряде важных случаев оказывается верным, дает ответ общая теорема А.Я. Хинчина, которая представляет исключительную теоретическую и практическую ценность. Эта теорема имеет место в случае, когда входящий поток можно представить в виде суммы большого числа независимых потоков, ни один из которых не является сравнимым по интенсивности со всем суммарным потоком.
Приведем “не строгую” формулировку этой теоремы. Если входящий поток представляет собой сумму большого числа независимых между собой стационарных и ординарных потоков, каждый из которых вносит малый вклад в общую сумму, то при одном дополнительном условии аналитического характера (которое обычно выполняется на практике) поток близок к простейшему. Применение этой теоремы на практике можно продемонстрировать, на следующем примере: поток судов дальнего плавания в данный грузовой порт, связанный со многими портами мира, можно считать близким к простейшему. Это дает нам право считать поток прибытия судов в порт распределенным, согласно процесса Пуассона. Кроме того, наличие пуассоновского потока требований можно определить статистической обработкой данных о поступлении требований на обслуживание. Одним из признаков закона распределения Пуассона является равенство математического ожидания случайной величины и дисперсии этой же величины.
Одной из важнейших характеристик обслуживающих устройств, которая определяет пропускную способность всей системы, является время обслуживания. Время обслуживания одного требования - случайная величина, которая может изменяться в большом диапазоне. Она зависит от стабильности работы самих обслуживающих устройств, так и от различных параметров, поступающих в систему, требований (к примеру, различной грузоподъемности транспортных средств, поступающих под погрузку или выгрузку). Случайная величина полностью характеризуется законом распределения, который определяется на основе статистических испытаний. На практике чаще всего принимают гипотезу о показательном законе распределения времени обслуживания. Показательный закон распределения времени обслуживания имеет место тогда, когда плотность распределения резко убывает с возрастанием времени. Например, когда основная масса требований обслуживается быстро, а продолжительное обслуживание встречается редко. Наличие показательного закона распределения времени обслуживания устанавливается на основе статистических наблюдений. Следует заметить, что если закон распределения времени обслуживания показательный, то при наличии нескольких обслуживающих устройств одинаковой мощности закон распределения времени обслуживания несколькими устройствами будет также показательным.
Важным параметром СМО является коэффициент загрузки, который определяется как отношение интенсивности поступления требований к интенсивности обслуживания.
Учитывается, что интенсивность поступления требований в систему в единицу времени показывает количество требований, поступающих в систему обслуживания за среднее время обслуживания одного требования одним устройством. Для СМО с ожиданием количество обслуживаемых устройств должно быть строго больше коэффициента загрузки (требование установившегося или стационарного режима работы СМО). В противном случае число поступающих требований будет больше суммарной производительности всех обслуживающих устройств, и очередь будет неограниченно расти. Для СМО с отказами и смешанного типа это условие может быть ослаблено, для эффективной работы этих типов СМО достаточно потребовать, чтобы минимальное количество обслуживаемых устройств было не меньше коэффициента загрузки.
2. Обслуживание с ожиданием
Постановка задач СМО с ожиданием распространена наиболее широко. Их можно разбить на 2 большие группы - разомкнутые и замкнутые. Эти системы определяют так же, как системы с ограниченным входящим потоком.
К замкнутым относятся системы, в которых поступающий поток требований ограничен. Например, мастер, задачей которого является наладка станков в цехе, должен периодически их обслуживать. Каждый налаженный станок становится в будущем потенциальным источником требований на подналадку. В подобных системах общее число циркулирующих требований конечно и чаще всего постоянно. Если питающий источник обладает бесконечным числом требований, то системы называются разомкнутыми. Примерами подобных систем могут служить магазины, кассы вокзалов, портов и др. Для этих систем поступающий поток требований можно считать неограниченным. Мы рассмотрим здесь классическую задачу теории массового обслуживания в тех условиях, в каких она была рассмотрена и решена К. Эрлангом: на количество одинаковых приборов поступает простейший поток требований интенсивности. Если в момент поступления имеется хотя бы один свободный прибор, оно немедленно начинает обслуживаться. Если же все приборы заняты, то вновь прибывшее требование становится в очередь за всеми теми требованиями, которые поступили раньше и ещё не начали обслуживаться. Освободившийся прибор немедленно приступает к обслуживанию очередного требования, если только имеется очередь. Каждое требование обслуживается только одним прибором, и каждый прибор обслуживает в каждый момент времени не более одного требования. Длительность обслуживания представляет собой случайную величину с одним и тем же распределением вероятностей.
Реальных ситуаций, в которых возникают подобные вопросы, исключительно много. Эрланг решил эту задачу, имея в виду постановки вопросов, возникших к тому времени в телефонном деле. Выбор распределения для описания длительности обслуживания произведен не случайно. Дело в том, что в этом предположении задача допускает простое решение, которое с удовлетворительной для практики точностью описывает ход интересующего нас процесса. Распределение играет в теории массового обслуживания исключительную роль, которая в значительной мере вызвана следующим его свойством: При показательном распределении длительности обслуживания распределение длительности оставшейся части работы по обслуживанию не зависит от того, сколько оно уже продолжалось.
Несомненно, что в реальной обстановке показательное время обслуживания является, как правило, лишь грубым приближением к действительности. Так, нередко время обслуживания не может быть меньше, чем некоторая определенная величина. Предположение же приводит к тому, что значительная доля требований нуждается лишь в кратковременной операции, близкой к 0. Позднее перед нами возникает задача освобождения от излишнего ограничения, накладываемого предположением. Необходимость этого была ясна уже самому Эрлангу, и он в ряде работ делал усилия найти иные удачные распределения для длительности обслуживания. В частности, им было предложено так называемое распределение Эрланга. Распределение Эрланга представляет собой распределение суммы нескольких независимых слагаемых, каждое из которых имеет свое распределение.
Известно, что случайные процессы, для которых будущее развитие зависит только от достигнутого в данный момент состояния и не зависит от того, как происходило развитие в прошлом, называются процессами Маркова или же процессами без последействия. Итак, система с ожиданием в случае простейшего потока и показательного времени обслуживания представляет собой случайный процесс Маркова.
Поясним это на нескольких практических примерах, которые покажут, что обычные в практической деятельности подсчеты, основанные на чисто арифметических соображениях, при которых не учитывается специфика случайных колебаний в поступлении требований на обслуживание, приводят к серьезным просчетам. Пусть врач успевает удовлетворительно осмотреть больного и заполнить его историю болезни в среднем за 15 минут. Планирующие органы из этого обычно делают вывод: за четырёхчасовый рабочий день врач должен принимать 16 человек. Однако больные приходят в случайные моменты времени. В результате при таком подсчете пропускной способности врача к нему неизбежно скапливается очередь, так как при проведенном подсчете принимается равным 1. Те же заключения относятся и к расчету числа коек в больницах, числа работающих касс в магазинах, числа официантов в ресторанах и т. д. К сожалению, некоторые экономисты совершают такую же ошибку и при расчете погрузочных средств в карьерах, числе приемщиков на элеваторах, числе причалов в морских портах и пр.
Для задачи с ожиданием основной характеристикой качества обслуживания является длительность ожидания требованием начала обслуживания. Длительность ожидания представляет собой случайную величину.
3. Пример использования СМО с ожиданием
В городе имеется транспортное агентство для обслуживания населения. Число заявок на обслуживание случайно и представлено выборкой 1. Время перевозок (включая время возвращения в гараж), так же случайно и представлено выборкой 2.
Выборка 1 - число заявок на перевозку за день равна:
8; 5; 8; 4; 21; 0; 9; 3; 8; 5; 1; 4; 12; 0; 10; 1; 0; 7; 2; 21; 1; 3; 4; 6; 0; 8; 2; 22; 1; 2; 8; 4; 5; 6; 2; 6; 3; 6; 16; 7; 2; 2; 2; 13; 5; 5; 21; 2; 4.
Выборка 2 - время обслуживания одной заявки в часах:
25, 52, 22, 7, 15, 55, 43, 11, 25, 24, 23, 24, 13, 15, 11, 38, 8, 18, 14, 73, 8, 48, 22, 4, 30, 6, 17, 12, 23, 112, 10, 45, 4, 32, 123, 39, 59, 19, 5, 12, 5, 7, 74, 57, 10, 35, 12, 28, 11, 16.
Прежде чем рассматривать транспортное агентство как СМО, необходимо доказать, что мы имеем на это право. Действительно, наше транспортное агентство обладает всеми присущими СМО элементами. Входящий поток - заявки на перевозку, есть очередь неограниченной длины, обслуживающими приборами являются автомашины, обслуженные заявки составляют входящий поток. Обоснуем наши утверждения и поясним. Входящий поток, как уже отмечалось, являются заявки на обслуживание населения. Для дальнейшей работы необходимо убедиться в том, что входящий поток является простейшим (пуассоновским). Докажем это на сознательном уровне. Ординарность вытекает из следующих соображений: две или более заявок вряд ли успеют в секунду прибыть к транспортному агентству, какая то одна все равно будет первой, а остальные будут вынуждены стать в очередь, к тому же одна машина одновременно не станет заниматься двумя или более заявками. Отсутствие после действия обуславливается тем, что заказчик машины (на обслуживание) вряд ли знает, сколько поступило заявок на обслуживание до него и сколько ему придется ждать обслуживания, т.е. заявки поступают, не зависимо друг от друга. Стационарность обслуживается тем, что число заявок на транспортировку за один час в среднем постоянно. Таким образом, можно сделать вывод, что входящий поток требований имеет Пуассоновское распределение.
Выводы
Раскрыты понятия, приводящие к системе массового обслуживания, а именно: обслуживание, обслуживает прибор система обслуживания, система массового обслуживания. Также описаны типичные элементы, из которых состоят системы массового обслуживания (входящий поток, его описание и основные особенности, очередь и ее дисциплина, обслуживающие приборы и особенности механизма обслуживания, входящий поток). Что касается практического задания, то рассмотренное транспортное агентство является СМО с ожиданием. Поступающий поток заявок на обслуживание является простейшим (Пуассоновским), а время обслуживания соответствует показательному закону распределения.
Размещено на Allbest.ru
...Подобные документы
Системы цифровой радиосвязи: базовые методы и характеристики. Классификация систем массового обслуживания. Модели систем массового обслуживания. Математическое введение в теорию цепей Маркова. Системы и сети передачи информации. Стационарный режим.
реферат [176,8 K], добавлен 22.11.2008Цепь Маркова и Марковские процессы. Сеть массового обслуживания. Мультипликативность стационарного распределения в открытых сетях с многорежимными стратегиями обслуживания. Анализ изолированного узла. Стационарное распределение сети. Обслуживание заявок.
курсовая работа [200,1 K], добавлен 08.01.2014Аналитическое исследование сетей массового обслуживания с помощью стационарного (инвариантного) распределения вероятностей состояний, его зависимость от вида функций распределения времени обслуживания. Постановка задачи, составление уравнения уравновесия.
курсовая работа [165,0 K], добавлен 18.09.2009Устройство и принцип действия открытых систем сети массового обслуживания с простейшим входящим потоком. Понятие квазиобратимости. Сети с переключением режимов при определенном количестве заявок в узле. Примеры открытых сетей с переключением режимов.
курсовая работа [286,6 K], добавлен 21.02.2010Определение нагрузки, поступающей на станцию системы массового обслуживания. Определение необходимого числа каналов для полнодоступной системы при требуемом уровне потерь. Моделирование в среде GPSS World СМО с потерями от требуемого числа каналов.
курсовая работа [972,3 K], добавлен 15.02.2016Обслуживание потоков сообщений. Модель с явными потерями. Характеристики качества обслуживания и пропускная способность системы. Простейшая модель обслуживания и модель потока требований. Свойства пуассоновского потока запросов. Нестационарный поток.
реферат [241,8 K], добавлен 30.11.2008Характеристика замкнутых сетей массового обслуживания с экспоненциальным обслуживанием в узлах и марковской маршрутизацией. Примеры замкнутых сетей с переключением режимов. Условия мультипликативности стационарного распределения состояний замкнутой сети.
курсовая работа [199,4 K], добавлен 21.02.2010Классификация систем синхронизации, расчет параметров с добавлением и вычитанием импульсов. Построение кодера и декодера циклического кода, диаграммы систем с обратной связью и ожиданием для неидеального обратного канала, вычисление вероятности ошибок.
курсовая работа [611,4 K], добавлен 13.04.2012Теория телетрафика как научное направление: основные задачи, историческое развитие, математические модели систем распределения информации. Общие методы решения прикладных задач, примеры. Расчет величины возникающей на цифровой АТС нагрузки от абонентов.
курсовая работа [69,5 K], добавлен 15.11.2013Случайные процессы с нормальным законом распределения, которые определяются математическим ожиданием и корреляционной функцией. Определение статистических характеристик случайных процессов в линейных системах. Эквивалентная шумовая полоса следящих систем.
реферат [207,5 K], добавлен 21.01.2009Методика построения программной модели. Обобщенная структурная схема ВС. Моделирование работы абонента и работы буферной памяти. Разработка программы сбора статистики и управляющей программы имитационной модели. Методика реализации событийной модели.
курс лекций [190,1 K], добавлен 24.06.2009Теория массового обслуживания. Нахождение коэффициента использования сервера. Экспоненциальный закон распределения времени между соседними вызовами. Вероятность отказа в обслуживании. Среднее время ожидания и пребывания в системе. Расчет объема буфера.
контрольная работа [775,6 K], добавлен 13.02.2015Описание структуры и изучение устройства элементов аналоговых и IP-систем видеонаблюдения. Параметры камер видеонаблюдения и анализ форматов видеозаписи. Характеристика устройств обработки видеосигналов и обзор программного обеспечения видеонаблюдения.
курсовая работа [1,2 M], добавлен 29.09.2013Условия разрешимости синтеза на примере линейных и нелинейных систем. Методы синтеза линейных систем. Метод разделения движений и область их применения. Особенности синтеза систем с вектором скорости в управлении. Свойства систем со скользящими режимами.
шпаргалка [1,7 M], добавлен 25.05.2012Законы распределения случайной величины. Потоки вызовов. Телефонная нагрузка и ее параметры. Распределение нагрузки по направлениям. Расчет однозвенных полнодоступных коммутационных схем при обслуживании простейшего потока вызовов в системе с потерями.
контрольная работа [435,6 K], добавлен 21.03.2009Параметры многолучевых приборов. Конструкция и параметры резонаторных систем. Достоинства и недостатки многоканальных и кольцевых резонаторов. Однозазорные тороидальные клистронные резонаторы с упаковкой пролетных каналов в единой пролетной трубе.
контрольная работа [3,3 M], добавлен 28.05.2012Определение вероятности поступления определенного количества вызовов на коммутационную систему за заданный промежуток времени. Расчет параметров простейшего потока распределением Пуассона. Построение распределения вероятностей по заданным данным.
контрольная работа [190,3 K], добавлен 22.10.2011Алгоритм функционирования систем сотовой связи. Инициализация и установление связи. Процедуры аутентификации и идентификации. Сущность и основные виды роуминга. Передача обслуживания при маршрутизации. Особенности обслуживания вызовов в стандарте GSM.
реферат [35,8 K], добавлен 20.10.2011Устройство и параметры фидерных трактов антенных систем. Понятие о режимах работы ФЛ. Назначение и требования, предъявляемые к фидерным трактам антенных систем. Режимы работы и характеристики фидерных линий. Применение направляющих систем различных типов.
презентация [277,5 K], добавлен 08.03.2011Назначение и область применения систем радиолокации, их классификация и особенности развития. Сигналы и методы измерения координат целей, фазовый детектор, смеситель. Радиолокационные станции следящего типа. Примеры современных систем радиолокации.
курсовая работа [1,0 M], добавлен 01.07.2009