Формирование и обработка сканируемых изображений
Особенности процесса сканирования. Методы построения и обработки изображений. Вычитание постоянного наклона. Устранение искажений, связанных с неидеальностью сканера. Методы восстановления поверхности изображений по сканирующей зондовой микроскопии.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 25.12.2013 |
Размер файла | 974,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
«Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева»
Кафедра технической физики
Реферат
Тема: Формирование и обработка сканируемых изображений
Выполнила: студентка гр. БФ11-01
Силантьева.В.А
Проверил: преподаватель
Александрова Г.А.
Красноярск 2013
Содержание
сканируемый изображение зондовый
1. Процесс сканирования
2. Методы построения и обработки изображений
3. Вычитание постоянного наклона
4. Устранение искажений, связанных с неидеальностью сканера
5. Фильтрация СЗМ изображений
6. Медианная фильтрация
7. Методы восстановления поверхности по ее СЗМ изображению
Литература
1. Процесс сканирования
Процесс сканирования поверхности в сканирующем зондовом микроскопе имеет сходство с движением электронного луча по экрану в электроннолучевой трубке телевизора. Зонд движется вдоль линии (строки) сначала в прямом, а потом в обратном направлении (строчная развертка), а затем переходит на следующую строку (кадровая развертка) (рис. 1). Движение зонда осуществляется с помощью сканера небольшими шагами под действием пилообразных напряжений, формируемых цифрjаналоговыми преобразователями. Регистрация информации о рельефе поверхности производится, как правило, на прямом проходе.
Рис. 1. Схематическое изображение процесса сканирования.
Информация, полученная с помощью сканирующего зондового микроскопа, хранится в виде СЗМ кадра - двумерного массива целых чисел a (матрицы). Физический смысл данных чисел определяется той величиной, которая оцифровывалась в процессе сканирования. Каждому значению пары индексов ij соответствует определенная точка поверхности в пределах поля сканирования. Координаты точек поверхности вычисляются с помощью простого умножения соответствующего индекса на величину расстояния между точками, в которых производилась запись информации.
Как правило, СЗМ кадры представляют собой квадратные матрицы, имеющие размер 2 в n (в основном 256х256 и 512х512 элементов). Визуализация СЗМ кадров производится средствами компьютерной графики, в основном, в виде трехмерных (3D) и двумерных яркостных (2D) изображений. При 3D визуализации изображение поверхности строится в аксонометрической перспективе с помощью пикселей или линий. В дополнение к этому используются различные способы подсвечивания пикселей, соответствующих различной высоте рельефа поверхности. Наиболее эффективным способом раскраски 3D изображений является моделирование условий подсветки поверхности точечным источником, расположенным в некоторой точке пространства над поверхностью (рис. 2). При этом удается подчеркнуть мелкомасштабные неровности рельефа. Также средствами компьютерной обработки и графики реализуются масштабирование и вращение 3D СЗМ изображений. При 2D визуализации каждой точки поверхности ставится в соответствие цвет. Наиболее широко используются градиентные палитры, в которых раскраска изображения производится тоном определенного цвета в соответствии с высотой точки поверхности.
Рис. 2. 3D визуализация рельефа поверхности с подсветкой по высоте (а) и боковой подсветкой (б)
Локальные СЗМ измерения, как правило, сопряжены с регистрацией зависимостей исследуемых величин от различных параметров. Например, это зависимости величины электрического тока через контакт зонд-поверхность от приложенного напряжения, зависимости различных параметров силового взаимодействия зонда и поверхности от расстояния зонд-образец и др. Данная информация хранится в виде векторных массивов или в виде матриц 2 х N. Для их визуализации в программном обеспечении микроскопов предусматривается набор стандартных средств изображения графиков функций.
СЗМ изображения, наряду с полезной информацией, содержат также много побочной информации, искажающей данные о морфологии и свойствах поверхности. На рис. 3 схематически представлены возможные искажения в СЗМ изображениях поверхности, обусловленные неидеальностью аппаратуры и внешними паразитными воздействиями .
Рис. 3. Возможные искажения в СЗМ изображениях
2. Методы построения и обработки изображений
При изучении свойств объектов методами сканирующей зондовой микроскопии основным результатом научного поиска являются, как правило, трехмерные изображения поверхности этих объектов. Адекватность интерпретации изображений зависит от квалификации специалиста. Вместе с тем, при обработке и построении изображений используется ряд традиционных приемов, о которых следует знать при анализе изображений. Сканирующий зондовый микроскоп появился в момент интенсивного развития компьютерной техники. Поэтому при записи трехмерных изображений в нем были использованы цифровые методы хранения информации, разработанные для компьютеров. Это привело к значительному удобству при анализе и обработке изображений, однако пришлось пожертвовать фотографическим качеством, присущим методам электронной микроскопии. Информация, полученная с помощью зондового микроскопа, в компьютере представляется в виде двумерной матрицы целых чисел. Каждое число в этой матрице, в зависимости от режима сканирования, может являться значением туннельного тока, или значением отклонения или значением какой-то более сложной функции. Если показать человеку эту матрицу, то никакого связного представления об исследуемой поверхности он получить не сможет. Итак, первая проблема - это преобразовать числа в вид, удобный для восприятия. Делается это следующим образом. Числа в исходной матрице лежат в некотором диапазоне, есть минимальное и максимальное значения. Этому диапазону целых чисел ставится в соответствие цветовая палитра. Таким образом, каждое значение матрицы отображается в точку определенного цвета на прямоугольном изображении. Строка и столбец, в которых находится это значение, становятся координатами точки. В результате мы получаем картину, на которой, например, высота поверхности передается цветом - как на географической карте. Но на карте обычно используются лишь десятки цветов, а на нашей картине их сотни и тысячи. Для удобства восприятия точки, близкие по высоте, должны передаваться сходными цветами. Может оказаться, и, как правило, так всегда и бывает, что диапазон исходных значений больше, чем число возможных цветов. В этом случае происходит потеря информации, и увеличение количества цветов не является выходом из положения, так как возможности человеческого глаза ограничены. Требуется дополнительная обработка информации, причем в зависимости от задач обработка должна быть разной. Кому-то необходимо увидеть всю картину целиком, а кто-то хочет рассмотреть детали. Для этого используются разнообразные методы .
3. Вычитание постоянного наклона
Изображения поверхности, получаемые с помощью зондовых микроскопов, как правило, имеют общий наклон. Это может быть обусловлено несколькими причинами. Во-первых, наклон может появляться вследствие неточной установки образца относительно зонда; во-вторых, он может быть связан с температурным дрейфом, который приводит к смещению зонда относительно образца; в-третьих, он может быть обусловлен нелинейностью перемещений пьезосканера. На отображение наклона тратится большой объем полезного пространства в СЗМ кадре, так что становятся не видны мелкие детали изображения. Для устранения данного недостатка производят операцию вычитания постоянного наклона. Для этого на первом этапе методом наименьших квадратов находится аппроксимирующая плоскость Р(х,y), имеющая минимальные отклонения от рельефа поверхности Z = f(x,y) (рис. 4). затем производится вычитание данной плоскости из СЗМ изображения. Вычитание целесообразно выполнять различными способами в зависимости от природы наклона.
Рис.4. Вычитание постоянного наклона из СЗМ изображения поверхности
Если наклон в СЗМ изображении обусловлен наклоном образца относительно образца зонда, то целесообразно произвести поворот плоскости на угол, соответствующий углу между нормалью к плоскости и осью Z; при этом координаты поверхности Z = f(x,y) преобразуются в соответствии с преобразованиями пространственного поворота. Однако при данном преобразовании возможно получение изображения поверхности в виде многозначной функции Z = f(x,y). Если наклон обусловлен термодрейфом, то процедура вычитания наклона сводится к вычитанию Z - координат плоскости из Z - координат СЗМ изображения:
Z' = Z - P
Это позволяет сохранить правильные геометрические соотношения в плоскости X, Y между объектами в СЗМ изображении.В результате получается массив с меньшим диапазоном значений, и мелкие детали изображения будут отражаться большим количеством цветов, становясь более заметными .
4. Устранение искажений, связанных с неидеальностью сканера
Неидеальность свойств сканера приводит к тому, что СЗМ изображение содержит ряд специфических искажений. Частично неидеальности сканера, такие как неравноправность прямого и обратного хода сканера (гистерезис), крип и нелинейность пьезокерамики компенсируются аппаратными средствами и выбором оптимальных режимов сканирования. Однако, несмотря на это, СЗМ изображения содержат искажения, которые трудно устранить на аппаратном уровне. В частности, поскольку движение сканера в плоскости образца влияет на положение зонда над поверхностью, СЗМ изображения представляют собой суперпозицию реального рельефа и некоторой поверхности второго (а часто и более высокого) порядка (рис. 5).
Рис. 5. Вычитание поверхности второго порядка из СЗМ изображения поверхности
Для устранения искажения такого рода методом наименьших квадратов находится аппроксимирующая поверхность второго порядка Р(x,y), имеющая минимальные отклонения от исходной функции Z = f(x,y), и затем данная поверхность вычитается из исходного СЗМ изображения:
Z' = Z - P
Еще один тип искажений связан с нелинейностью и неортогональностью перемещений сканера в плоскости X, Y. Это приводит к искажению геометрических пропорций в различных частях СЗМ изображения поверхности. Для устранения таких искажений производят процедуру коррекции СЗМ изображений с помощью файла коэффициентов коррекции, который создается при сканировании конкретным сканером тестовых структур с хорошо известным рельефом .
5. Фильтрация СЗМ изображений
Шумы аппаратуры (в основном, это шумы высокочувствительных входных усилителей), нестабильности контакта зонд-образец при сканировании, внешние акустические шумы и вибрации приводят к тому, что СЗМ изображения, наряду с полезной информацией, имеют шумовую составляющую. Частично шумы СЗМ изображений могут быть удалены программными средствами .
6. Медианная фильтрация
Хорошие результаты при удалении высокочастотных случайных помех в СЗМ кадрах дает медианная фильтрация. Это нелинейный метод обработки изображений, суть которого можно пояснить следующим образом. Выбирается рабочее окно фильтра, состоящее из n x n точек (для определенности возьмем окно 3 х 3, т.е. содержащее 9 точек (рис. 6).
Рис. 6. Принцип работы медианного фильтра с окном 3 х 3. (а) - смещение окна в процессе фильтрации массива; (б) - расположение элементов в неотсортированном массиве; (в) - расположение элементов в отсортированном массиве.
В процессе фильтрации это окно перемещается по кадру от точки к точке, и производится следующая процедура. Значения амплитуды СЗМ изображения в точках данного окна выстраиваются по возрастанию, и значение, стоящее в центре отсортированного ряда, заносится в центральную точку окна. Затем окно сдвигается в следующую точку, и процедура сортировки повторяется. Таким образом, мощные случайные выбросы и провалы при такой сортировке всегда оказываются на краю сортируемого массива и не войдут в итоговое (отфильтрованное) изображение. При такой обработке по краям кадра остаются нефильтрованные области, которые отбрасываются в конечном изображении .
7. Методы восстановления поверхности по ее СЗМ изображению
Одним из недостатков, присущих всем методам сканирующей зондовой микроскопии, является конечный размер рабочей части используемых зондов. Это приводит к существенному ухудшению пространственного разрешения микроскопов и значительным искажениям в СЗМ изображениях при сканировании поверхностей с неровностями рельефа, сравнимыми с характерными размерами рабочей части зонда.
Фактически получаемое в СЗМ изображение является «сверткой» зонда и исследуемой поверхности. Процесс «свертки» формы зонда с рельефом поверхности проиллюстрирован в одномерном случае на рис. 7.
Рис. 7. Схематическое изображение процесса получения изображения в СЗМ (а) и процесса частичного восстановления рельефа с учетом конечных размеров и формы зонда (б).
Частично данную проблему позволяют решить развитые в последнее время методы восстановления СЗМ изображений, основанные на компьютерной обработке СЗМ данных с учетом конкретной формы зондов. Наиболее эффективным методом восстановления поверхности является метод численной деконволюции, использующий форму зонда, получаемую экспериментально при сканировании тестовых (с хорошо известным рельефом поверхности) структур .
Следует отметить, что полное восстановление поверхности образца возможно лишь при соблюдении двух условий: зонд в процессе сканирования коснулся всех точек поверхности, и в каждый момент зонд касался только одной точки поверхности. Если же зонд в процессе сканирования не может достигнуть некоторых участков поверхности (например, если образец имеет нависающие участки рельефа), то происходит лишь частичное восстановление рельефа. Причем, чем большего числа точек поверхности касался зонд при сканировании, тем достовернее можно реконструировать поверхность.
На практике СЗМ изображение и экспериментально определенная форма зонда представляет собой двумерные массивы дискретных значений, для которых производная является плохо определенной величиной. Поэтому вместо вычисления производной дискретных функций на практике при численной деконволюции СЗМ изображений используется условие минимальности расстояния между зондом и 8ерхности в данной точке можно принять минимальное расстояние между точкой зонда и соответствующей точкой поверхности для данного положения зонда относительно поверхности. По своему физическому смыслу данное условие эквивалентно условию равенства производных, однако оно позволяет проводить поиск точек касания зонда с поверхностью более адекватным методом, что существенно сокращает время реконструирования рельефа.
Для калибровки и определения формы рабочей части зондов используются специальные тестовые структуры с известными параметрами рельефа поверхности. Виды наиболее распространенных тестовых структур и их характерниые изображения, полученные с помощью атомно-силового микроскопа представлены на риc .8 и 9.
Рис. 8. Калибровочная решетка в виде острых шипов и ее АСМ изображение с помощью зонда пирамидальной формы
Рис.9. Прямоугольная калибровочная решетка и ее АСМ изображение
Калибровочная решетка в виде острых шипов позволяет хорошо прописывать кончик зонда, в то время как прямоугольная решетка помогает восстановить форму боковой поверхности. Комбинируя результаты сканирования данных решеток, можно полностью восстанавливать форму рабочей части зондов .
Литература
1. Миронов В.Л. Основы сканирующей зондовой микроскопии. 2004. Мир.
2. Володин А.П. Сканирующая микроскопия / А. П. Володин, - М.: Наука, 1998, - 114 с.
Размещено на Allbest.ru
...Подобные документы
Геометрическая, радиометрическая, атмосферная коррекция спутниковых изображений. Улучшение изображений путем изменения контраста. Линейная пространственно-инвариантная фильтрация изображений. Нелинейные градиентные фильтры и кепстральная обработка.
курсовая работа [5,7 M], добавлен 14.02.2012Вейвлетная компрессия в современных алгоритмах компрессии изображений. Алгоритм фрактального сжатия изображения. Применение алгоритма SPIHT для оптимальной прогрессирующей передачи изображений и их сжатия. Основные черты алгоритма и структура его данных.
реферат [78,4 K], добавлен 28.03.2011Сравнительные характеристики световых и электронных микроскопов. Растровая электронная микроскопия. Преимущества и недостатки сканирующей зондовой микроскопии по отношению к другим методам диагностики поверхности. Применение атомно-силового микроскопа.
курсовая работа [1,2 M], добавлен 10.01.2014Исследование методов обработки информации в системах технического зрения роботов. Описания искусственных нейронных сетей и их использования при идентификации изображений. Определение порогового уровня изображений, техники обработки визуальной информации.
магистерская работа [2,2 M], добавлен 08.03.2012Основные понятия оптики. Построение изображений с помощью интегральных линз Френеля. Защита интеллектуальной собственности, водяные знаки. Методика расчета кремниевых фотодиодов. Обработка и реконструкция изображений. Камеры и приборы с зарядовой связью.
реферат [554,3 K], добавлен 19.07.2010Модель обработки радиоголографических изображений. Изображение объекта, находящегося за препятствием. Фильтр для практической реализации метода. Исследование эффективности метода пространственной фильтрации при малом поглощении и преломлении в стене.
дипломная работа [4,1 M], добавлен 19.06.2013Кодирование длин участков (или повторений) один из элементов известного алгоритма сжатия изображений JPEG. Широко используется для сжатия изображений и звуковых сигналов метод неразрушающего кодирования, им является метод дифференциального кодирования.
реферат [26,0 K], добавлен 11.02.2009Новый подход оценки значений утраченных пикселей, основанный на минимизации энтропии коэффициентов дискретного косинусного преобразования (ДКП) блока изображения. Задача устранения импульсного шума и реконструкции утерянных участков изображений.
контрольная работа [8,8 M], добавлен 29.03.2011Регистрация микроскопических изображений в УФ лучах производится двумя способами. В плоскости формирования изображения в УФ лучах помещают флюоресцирующий экран, люминофор которого при поглощении УФ лучей испускает световые лучи видимого диапазона.
реферат [462,0 K], добавлен 24.12.2008Недостатки цифровых систем: сложность, ограниченное быстродействие. Этапы цифровой обработки радиолокационных изображений: первичная и вторичная, объединение информации. Особенности процесса двоичного квантования. Анализ схем логических обнаружителей.
дипломная работа [3,5 M], добавлен 09.04.2012Изучение линейных систем перевода сигнала. Сущность дискретного преобразования Фурье. Объяснения, демонстрации и эксперименты по восстановлению искаженных и смазанных изображений. Рассмотрение теории деконволюции и модели процесса искажения и шума.
дипломная работа [8,0 M], добавлен 04.06.2014Методы компрессии цифровых аудиоданных, кодирования речевых сообщений, алгоритмы кодирования изображений. Стандарты в области компьютерной видеоконференцсвязи. Сжатие с потерями и без потерь. Определение полосы частот для заданного качества сообщения.
презентация [876,4 K], добавлен 16.03.2014Сущность и классификация методов обработки поверхности. Методы сухой очистки. Процесс плазмохимического травления. Схема вакуумной камеры диодного типа для плазмохимического травления непосредственно в плазме. Очистка поверхности газовым травлением.
реферат [536,7 K], добавлен 15.01.2009Алгоритмы, учитывающие систему визуального восприятия человека. Мультиразмерная ошибка. Мера качества видео на основе дискретного косинусного преобразования. Модификация алгоритмов оценки качества изображения с применением предварительной обработки.
реферат [62,6 K], добавлен 19.11.2008Основы сканирующей зондовой микроскопии. История изобретения атомно-силового микроскопа. Основные технические сложности при создании микроскопа. Конструкция атомно-силового микроскопа, преимущества в сравнении с растровым электронным микроскопом.
курсовая работа [231,8 K], добавлен 09.01.2012Проблема совместимости видеопотока в цифровом виде с существующими аналоговыми форматами. Принципы построения цифрового телевидения. Стандарт шифрования данных Data Encryption Standard. Анализ методов и международных рекомендаций по сжатию изображений.
дипломная работа [1,2 M], добавлен 19.11.2013Принципы построения цифрового телевидения. Стандарт шифрования данных Data Encryption Standard. Анализ методов и международных рекомендаций по сжатию изображений. Энтропийное кодирование видеосигнала по методу Хаффмана. Кодирование звука в стандарте Mpeg.
дипломная работа [2,4 M], добавлен 18.11.2013История изобретения и развития фотоаппарата. Исследование основных функций, достоинств и недостатков встроенных, компактных и зеркальных цифровых камер. Обзор способов записи изображений на цифровой носитель. Характеристика процесса выбора режима съемки.
презентация [5,2 M], добавлен 18.10.2015Интроскопия - внутривидение, визуальное наблюдение объектов, явлений и процессов в оптически непрозрачных телах и средах, в условиях плохой видимости. Классификация методов диагностики. Общность методов и средств обработки иитроскопических изображений.
реферат [265,7 K], добавлен 01.02.2009Ознакомление с основными компонентами системы машинного зрения. Изучение процесса бинаризации изображений. Рассмотрение и характеристика функционирования машины по разварке кристаллов. Разработка структурной схемы программно–аппаратного комплекса.
дипломная работа [636,7 K], добавлен 03.05.2018