Геоинформационная система
Системы спутниковой навигации, их разновидности. Географические информационные системы и компьютерная картографиия: отличительные черты. Изменение порядка отображения тем (на примере Arc View). Использование ГИС при мониторинге чрезвычайных ситуаций.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 09.01.2014 |
Размер файла | 23,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Какие системы спутниковой навигации вы знаете?
Спутниковая система навигации -- комплексная электронно-техническая система, состоящая из совокупности наземного и космического оборудования, предназначенная для определения местоположения (географических координат и высоты) и точного времени, а также параметров движения (скорости и направления движения и т. д.) для наземных, водных и воздушных объектов
В настоящее время работают или готовятся к развёртыванию следующие системы спутниковой навигации:
GPS
Принадлежит министерству обороны США. Этот факт, по мнению некоторых государств, является её главным недостатком. Устройства поддерживающие навигацию по GPS являются самыми распространёнными в мире. Также известна под более ранним названием NAVSTAR.
GPS (англ. Global Positioning System -- система глобального позиционирования, читается Джи Пи Эс) -- спутниковая система навигации, обеспечивающая измерение расстояния, времени и определяющая местоположениe. Позволяет в любом месте Земли (не включая приполярные области), почти при любой погоде, а также в космическом пространстве вблизи планеты определить местоположение и скорость объектов. Система разработана, реализована и эксплуатируется Министерством обороны США.
Основной принцип использования системы -- определение местоположения путём измерения моментов времени приема синхронизированного сигнала от навигационных спутников до потребителя. Расстояние вычисляется по времени задержки распространения сигнала от посылки его спутником до приёма антенной GPS-приёмника
ГЛОНАСС
Принадлежит министерству обороны России. Система, по заявлениям разработчиков наземного оборудования, будет обладать некоторыми техническими преимуществами по сравнению с GPS. После 1996 года спутниковая группировка сокращалась и к 2002 году практически полностью пришла в упадок. Была полностью восстановлена только в конце 2011 года. Отмечается малая распространенность клиентского оборудования. К 2025 году предполагается глубокая модернизация системы.
Основой системы должны являться 24 спутника, движущихся над поверхностью Земли в трёх орбитальных плоскостях с наклоном орбитальных плоскостей 64,8° и высотой 19 100 км. Принцип измерения аналогичен американской системе навигации NAVSTAR GPS. Основное отличие от системы GPS в том, что спутники ГЛОНАСС в своем орбитальном движении не имеют резонанса (синхронности) с вращением Земли, что обеспечивает им бомльшую стабильность. Таким образом, группировка КА ГЛОНАСС не требует дополнительных корректировок в течение всего срока активного существования. Тем не менее, срок службы спутников ГЛОНАСС заметно короче.
Galileo
Европейская система, находящаяся на этапе создания спутниковой группировки. Планируется полностью развернуть спутниковую группировку к 2020 году.
IRNSS
Индийская навигационная спутниковая система, в состоянии разработки. Предполагается для использования только в этой стране. Первый спутник был запущен в 2008 году.
QZSS
Первоначально японская QZSS была задумана в 2002 г. как коммерческая система с набором услуг для подвижной связи, вещания и широкого использования для навигации в Японии и соседних районах Юго-Восточной Азии. Первый запуск спутника для QZSS был запланирован на 2008 г. В марте 2006 японское правительство объявило, что первый спутник не будет предназначен для коммерческого использования и будет запущен целиком на бюджетные средства для отработки принятых решений в интересах обеспечения решения навигационных задач. Только после удачного завершения испытаний первого спутника начнётся второй этап и следующие спутники будут в полной мере обеспечивать запланированный ранее объём услуг.
Какова разница между ГИС и компьютерной картографией?
Географические информационные системы (ГИС) позволяют проводить сбор, хранение, анализ и картирование любых данных об объектах и явлениях на основе их пространственного положения.
В наиболее общем смысле, геоинформационные системы это инструменты для обработки пространственной информации, обычно явно привязанной к некоторой части земной поверхности и используемые для управления ею. Это рабочее определение не является ни полным, ни точным. Как и в случае с географией, термин трудноопределим и представляет собой объединение многих предметных областей. В результате, нет общепринятого определения ГИС.
Отсутствие общепринятого определения привело к значительному недопониманию того, что такое ГИС, каковы их возможности и для чего такие системы могут применяться. Это привело к тому, что некоторые пользователи полагают, например, что нет разницы между компьютерной картографией, компьютерным черчением и собственно ГИС. Поскольку графические интерфейсы всех трех систем могут выглядеть одинаково как для случайного, так и для опытного наблюдателя, легко предположить, что эти системы, при небольших различиях, в принципе, - одно и то же. Но любой, кто попытается анализировать карты, скоро поймет, что системы компьютерной картографии, придуманные для создания карт из графических примитивов (геометрических фигур) в сочетании с описательными атрибутами, прекрасно подходят для отображения карт, но обычно не содержат аналитических возможностей ГИС.
Аналогично, для чисто картографических целей желательно использовать именно систему компьютерной картографии, разработанную специально для ввода, организации и вывода картографических данных, нежели продираться через мириады аналитических функций мощной профессиональной ГИС всего лишь для создания простой карты. Системы компьютерного черчения, специально разработанные для создания графических изображений, не привязанных к внешним описательным данным - прекрасный инструмент для архитектора, ускоряющий производство архитектурных чертежей и упрощающий их редактирование. Эти системы никаких картографических задач не решают.
Карта - лишь часть ГИС обеспечивающая визуализацию данных.
Что такое расстояние неразличности точек?
В одном понятии неразличимости точек пространства объединяются и условие их индивидуализации и условие их тождества.
Какие возможности предоставляет использование ГИС?
1.Делать пространственные запросы и проводить анализ.
Способность ГИС проводить поиск в базах данных и осуществлять пространственные запросы позволила многим компаниям сэкономить миллионы долларов. ГИС помогает сократить время получения ответов на запросы клиентов; выявлять территории, подходящие для требуемых мероприятий; выявлять взаимосвязи между различными параметрами.
2. Улучшить интеграцию внутри организации.
Многие применяющие ГИС организации обнаружили, что одно из основных ее преимуществ заключается в новых возможностях улучшения управления собственной организацией и ее ресурсами на основе географического объединения имеющихся данных и возможности их совместного использования и согласованной модификации разными подразделениями. Возможность совместного использования и постоянно наращиваемая и исправляемая разными структурными подразделениями база данных позволяет повысить эффективность работы как каждого подразделения, так и организации в целом.
3. Принятие более обоснованных решений.
ГИС, как и другие информационные технологии, подтверждает известную поговорку о том, что лучшая информированность помогает принять лучшее решение. Однако, ГИС -- это не инструмент для выдачи решений, а средство, помогающее ускорить и повысить эффективность процедуры принятия решений, обеспечивающее ответы на запросы и функции анализа пространственных данных, представления результатов анализа в наглядном и удобном для восприятия виде. Г
4. Создание карт.
Картам в ГИС отведено особое место. Процесс создания карт в ГИС намного более прост и гибок, чем в традиционных методах ручного или автоматического картографирования. Он начинается с создания базы данных. В качестве источника получения исходных данных можно пользоваться и оцифровкой обычных бумажных карт. Основанные на ГИС картографические базы данных могут быть непрерывными (без деления на отдельные листы и регионы) и не связанными с конкретным масштабом. На основе таких баз данных можно создавать карты (в электронном виде или как твердые копии) на любую территорию, любого масштаба, с нужной нагрузкой, с ее выделением и отображением требуемыми символами. В любое время база данных может пополняться новыми данными (например, из других баз данных), а имеющиеся в ней данные можно корректировать по мере необходимости.
Каким образом можно изменить порядок отображения тем (на примере Arc View)?
При добавлении темы в Вид, Arc View не сразу отображает ее в нем. Это дает возможность сначала провести редактирование легенды темы, изменять очередность отображения, если имеются несколько тем, и т.д. Чтобы отобразить добавленную тему необходимо щелкнуть на флажке-переключателе рядом с именем темы в таблице содержания вида.
Редактирование легенды темы осуществляется в окне «Редактор легенды» (рис.
Можно изменить цветовое отображение объектов темы, значение, по которому будет проведена сортировка объектов и подписи объектов.
При установке свойств темы можно управлять такими характеристиками, как название темы, какие объекты из исходных данных будут отображаться в теме, в каком масштабе будет изображаться тема.
Кроме того, можно менять порядок отображения тем, передвигая их в таблице содержания, а также проводить масштабирование их изображения в окне отображения карт.
Порядок прорисовки тем показан в таблице содержания. Т.е. самая нижняя тема в таблице содержания будет прорисовываться первой затем та, которая выше и т.д. до самой верхней темы. Для смены порядка прорисовки тем укажите на интересующую вас тему и нажмите левую кнопку мыши, затем не отпуская ее переместите тему на необходимое вам место и отпустите кнопку мыши. Вид обновится в соответствии с текущим расположением тем в таблице содержания.
Как сделать тему активной?
Чтобы сделать тему активной щелкните на названии темы или на легенде в Таблице содержания.
Примечание: Многие операции, которые Вы можете совершать в Виде, работают только с активной темой (ами). Перед выбором этих операций не забудьте сделайт тему(ы) активной!
Как сделать активными несколько тем?
Нажав и не отпуская клавишу SHIFT щелкните поочередно на нескольких темах в Таблице содержания .
Как сделать активную тему неактивной?
Сделайте одно из следующего: Щелкните на другой теме, чтобы сделать ее активной или
нажав и не отпуская клавишу SHIFT, щелкните на активной теме.
Совет: Сделать тему активной - это не то же самое, что включить ее или выключить. Чтобы сделать тему активной, вы щелкаете на ее имени или легенде в Таблице содержания. Чтобы включить или выключить тему, Вы щелкаете на флажке-переключателе слева от названия темы в Таблице содержания. Это управляет изображением темы в Виде. Посмотрите раздел справки Включение и выключение тем.
Каковы основные типы проекции по видам нормальной сетки?
Вспомогательными поверхностями при переходе от эллипсоида или шара к карте могут быть плоскость, цилиндр, конус, серия конусов и некоторые другие геометрические фигуры.
Цилиндрические проекции -- проектирование шара (эллипсоида) ведется на поверхность касательного или секущего цилиндра, а затем его боковая поверхность разворачивается в плоскость. Если ось цилиндра совпадает с осью вращения Земли, а его поверхность касается шара по экватору (или сечет его по параллелям), то проекция называется нормальной (прямой) цилиндрической. Тогда меридианы нормальной сетки предстают в виде равноотстоящих параллельных прямых, а параллели -- в виде прямых, перпендикулярных к ним. В таких проекциях меньше всего искажений в тропических и приэкваториальных областях.
Если ось цилиндра расположена в плоскости экватора, то это -- поперечная цилиндрическая проекция. Цилиндр касается шара по меридиану, искажения вдоль него отсутствуют, и следовательно, в такой проекции наиболее выгодно изображать территории, вытянутые с севера на юг. В тех случаях, когда ось вспомогательного цилиндра расположена под углом к плоскости экватора, проекция называется косой цилиндрической. Она удобна для вытянутых территорий, ориентированных на северо-запад или северо-восток.
Конические проекции -- поверхность шара (эллипсоида) проектируется на поверхность касательного или секущего конуса, после чего она как бы разрезается по образующей и разворачивается в плоскость. Как и в предыдущем случае, различают нормальную (прямую) коническую проекцию, когда ось конуса совпадает с осью вращения Земли, поперечную коническую -- ось конуса лежит в плоскости экватора и косую коническую -- ось конуса наклонена к плоскости экватора.
В нормальной конической проекции меридианы представляют собой прямые, расходящиеся из точки полюса, а параллели -- дуги концентрических окружностей. Воображаемый конус касается земного шара или сечет его в районе средних широт, поэтому в такой проекции удобнее всего картографировать территории России, Канады, США, вытянутые с запада на восток в средних широтах.
Азимутальные проекции -- поверхность земного шара (эллипсоида) переносится на касательную или секущую плоскость. Если плоскость перпендикулярна к оси вращения Земли, то получается нормальная (полярная) азимутальная проекция. Параллели в ней являются концентрическими окружностями, а меридианы -- радиусами этих окружностей. В этой проекции всегда картографируют полярные области нашей и других планет.
Если плоскость проекции перпендикулярна к плоскости экватора, то получается поперечная (экваториальная) азимутальная проекция. Она всегда используется для карт полушарий. А если проектирование выполнено на касательную или секущую вспомогательную плоскость, находящуюся под любым углом к плоскости экватора, то получается косая азимутальная проекция.
Можно показать, что азимутальные проекции являются предельным случаем конических, когда угол при вершине конуса принимается равным 180°.
Среди азимутальных проекций выделяют несколько их разновидностей, различающихся по положению точки, из которой ведется проектирование шара на плоскость.
Условные проекции -- проекции, для которых нельзя подобрать простых геометрических аналогов. Их строят, исходя из каких-либо заданных условий, например желательного вида географической сетки, того или иного распределения искажений на карте, заданного вида сетки и др. В частности, к условным принадлежат псевдоцилиндрические, псевдоконические, псевдоазимутиалъные и другие проекции, полученные путем преобразования одной или нескольких исходных проекций.
Псевдоцилиндрические проекции -- проекции, в которых параллели -- прямые линии (как и в нормальных цилиндрических проекциях), средний меридиан -- перпендикулярная им прямая, а остальные меридианы -- кривые, увеличивающие свою кривизну по мере удаления от среднего меридиана. Чаще всего эти проекции применяют для карт мира и Тихого океана.
Псевдоконические проекции -- такие, в которых все параллели изображаются дугами концентрических окружностей (как в нормальных конических), средний меридиан -- прямая линия, а остальные меридианы -- кривые, причем кривизна их возрастает с удалением от среднего меридиана. Применяются для карт России, Евразии, других материков.
Поликонические проекции -- проекции, получаемые в результате проектирования шара (эллипсоида) на множество конусов. В нормальных поликонических проекциях параллели представлены дугами эксцентрических окружностей, а меридианы -- кривые, симметричные относительно прямого среднего меридиана. Чаще всего эти проекции применяются для карт мира.
Псевдоазимутальные проекции -- видоизмененные азимутальные проекции. В полярных псевдоазимутальных проекциях параллели представляют собой концентрические окружности, а меридианы -- кривые линии, симметричные относительно одного или двух прямых меридианов. Поперечные и косые псевдоазимутальные проекции имеют общую овальную форму и обычно применяются для карт Атлантического океана или Атлантического океана вместе с Северным Ледовитым.
Многогранные проекции -- проекции, получаемые путем проектирования шара (эллипсоида) на поверхность касательного или секущего многогранника. Чаще всего каждая грань представляет собой равнобочную трапецию, хотя возможны и иные варианты (например, шестиугольник, квадрат, ромб). Разновидностью многогранных являются многополосные проекции, причем полосы могут «нарезаться» и по меридианам, и по параллелям. Такие проекции выгодны тем, что искажения в пределах каждой грани или полосы совсем невелики, поэтому их всегда используют для многолистных карт. Рамка каждого листа, составленного в многогранной проекции, представляет собой трапецию, образованную линиями меридианов и параллелей. За это приходится «расплачиваться» -- блок листов карт нельзя совместить по общим рамкам без разрывов.
Надо отметить, что в наши дни для получения картографических проекций не пользуются вспомогательными поверхностями. Никто не помещает шар в цилиндр и не надевает на него конус. Это всего лишь геометрические аналогии, позволяющие понять геометрическую суть проекции. Изыскание проекций выполняют аналитически. Компьютерное моделирование позволяет достаточно быстро рассчитать любую проекцию с заданными параметрами, автоматические графопостроители легко вычерчивают соответствующую сетку меридианов и параллелей, а при необходимости -- и карту изокол.
Использование геоинформационных систем при мониторинге чрезвычайных ситуаций
спутниковый навигация геоинформационный
ГИС - программное средство, включающее картографические и атрибутивные базы данных, модели для прогнозирования ЧС и их последствий, сценарии реагирования при землетрясениях, природных пожарах, наводнениях, техногенных катастрофах. ГИС работает в двух режимах - исследовательском и оперативном. Первый предназначен для решения научно-практических задач по заблаговременной оценке рисков; изучения различных факторов, влияющих на уровень риска; оценки эффективности мероприятий по его снижению и управлению им. Оперативный режим служит для определения эффективных мероприятий по немедленному реагированию на ЧС.
В базах данных ГИС хранится как постоянная, так и периодически обновляемая информация, которая группируется в несколько информационных массивов. Эти модели позволяют получить:
распределение интенсивностей землетрясений, значения максимальных ускорений колебаний грунта и их повторяемость;
поля поражающих факторов в случае аварий на опасных объектах;
законы разрушения зданий различных типов, характерных для рассматриваемого региона;
законы поражения людей, учитывающие специфику территории;
оценки последствий землетрясений, вторичных природных и техногенных процессов;
оценки последствий на пожаро- и взрывоопасных, радиационно- и химически опасных объектах;
оценки индивидуальных сейсмических рисков, инженерных, экономических и комплексных рисков.
К преимуществам использования ГИС можно отнести обзорность, регулярность получения данных (несколько раз в день), точность привязки на местности, независимость предоставляемой информации, легкость использования пользователей сети Интернет, доступ к склейкам исходных снимков на многие территории в удобном синтезе каналов.
Возможности применения ГИС-технологий по месту работы студента.
Городской пассажирский транспорт
- планирование и анализ маршрутной сети
- диспетчеризация
- слежение за подвижным составом
- увязка расписаний с другими видами транспорта
- описи оборудования на остановках и конечных пунктах
- поддержка эксплуатации систем энергоснабжения, сигнализации и связи
- составление и анализ отчетов по ДТП
- демографический анализ и реструктурирование маршрутов.
Размещено на Allbest.ru
...Подобные документы
Распределение европейского рынка спутниковой системы навигации в 2000-2010 гг. Требования к спутниковым системам навигации. Определение координат наземным комплексом управления. Точность местоопределения и стабильность функционирования навигации.
презентация [2,4 M], добавлен 18.04.2013Изучение истории появления спутниковой навигации. Исследование принципов работы GPS в околоземном пространстве. Анализ особенностей технической реализации и применения системы. Наземные станции контроля космического сегмента. GPS приемники и навигаторы.
презентация [2,2 M], добавлен 08.06.2016История создания и основное назначение системы глобального позиционирования как спутниковой системы навигации, обеспечивающей измерение расстояния, времени и определяющей местоположение объектов. Транслирующие элементы системы GPS и сфера её применения.
презентация [1,2 M], добавлен 29.03.2014Преимущества спутниковой навигационной системы. Развитие радионавигации в США, России. Опробование основной идеи GPS. Сегодняшнее состояние NAVSTAR GPS. Навигационные задачи и методы их решения. Система глобального позиционирования NAVSTAR и ГЛОНАСС.
реферат [619,3 K], добавлен 18.04.2013История создания спутниковой навигации. Общая характеристика GPS-навигации. Принципы работы GPS. Особенности GPS-навигатора и его базовые приемы использования. Координаты точек, снятых с местности. Как выбрать GPS-приемник. Альтернативные системы GPS.
реферат [27,2 K], добавлен 29.04.2011Развитие спутниковой навигации. Структура навигационных радиосигналов системы GPS. Состав навигационных сообщений спутников системы GPS. Алгоритмы приема и измерения параметров спутниковых радионавигационных сигналов. Определение координат потребителя.
реферат [254,9 K], добавлен 21.06.2011Основные элементы спутниковой системы навигации. Оценка влияния инструментальных погрешностей первичных датчиков информации (акселерометра и гироскопа) и начальной выставки координаты на точность однокомпонентной инерциальной навигационной системы.
контрольная работа [119,7 K], добавлен 15.01.2015Изучение назначения спутниковой системы навигации. Расчет координат навигационных спутников в геоцентрической фиксированной системе координат. Определение координат Глонасс-приемника. Измеренное расстояние между навигационным спутником и потребителем.
контрольная работа [323,6 K], добавлен 17.03.2015Принцип построения спутниковой радионавигационной системы, описание движения спутников. Глобальная система "НАВСТАР". Структура: космический сегмент, управление и потребители. Принцип дифференциального режима. Погрешности местоопределения и их анализ.
дипломная работа [1,3 M], добавлен 21.11.2010Разработка программной модели управления антенной для спутников, находящихся на геостационарной орбите, с помощью языка UML. Система управления спутниковой антенной. Состав и содержание работ по подготовке объекта автоматизации к вводу системы в действие.
курсовая работа [3,2 M], добавлен 20.05.2012Спутниковая система навигации как комплексная электронно-техническая система, ее структура и содержание, назначение и функциональные особенности. Состав аппаратуры пользователя и правила ее применения. Принцип действия GPS и степень точности сигнала.
курсовая работа [2,4 M], добавлен 16.11.2010Обмен радиовещательных и телевизионных программ. Размещение наземных ретрансляторов. Идея размещения ретранслятора на космическом аппарате. Особенности системы спутниковой связи (ССС), ее преимущества и ограничения. Космический и наземный сегменты.
реферат [29,1 K], добавлен 29.12.2010Классификация навигационных систем; телевизионная, оптическая, индукционная и радиационная системы измерения угловых координат. Системы измерения дальности и скорости, поиска и обнаружения. Разработка и реализация системы навигации мобильного робота.
дипломная работа [457,8 K], добавлен 10.06.2010Состояние внедрения ATN в практику воздушного движения. Спутниковые информационные технологии в системах CNS/ATM. Спутниковые радионавигационные системы. Координаты, время, движение навигационных спутников. Формирование информационного сигнала в GPS.
учебное пособие [7,4 M], добавлен 23.09.2013Передача цифровых данных по спутниковому каналу связи. Принципы построения спутниковых систем связи. Применение спутниковой ретрансляции для телевизионного вещания. Обзор системы множественного доступа. Схема цифрового тракта преобразования ТВ сигнала.
реферат [2,7 M], добавлен 23.10.2013Системы спутниковой навигации GPS и ГЛОНАСС, их сравнение. Проектирование и особенности совмещенного приемника. Предварительные результаты тестирования. Электрические характеристики и конструктив. Работоспособность GPS модуля в закрытом помещении.
курсовая работа [4,1 M], добавлен 06.01.2014Принципы построения территориальной системы связи. Анализ способов организации спутниковой связи. Основные требования к абонентскому терминалу спутниковой связи. Определение технических характеристик модулятора. Основные виды манипулированных сигналов.
дипломная работа [3,1 M], добавлен 28.09.2012Инерциальные системы навигации и существующие пути их реализации. Описание архитектуры приложения для сбора и разметки данных, структура и взаимосвязь компонентов. Основные функции анализатора данных. Искусственные нейронные сети и их назначение.
курсовая работа [1,1 M], добавлен 04.09.2016Оптимизация управления в различных сферах человеческой деятельности. Классификация автоматизированных информационных систем управления. Методы проектирования и этапы разработки. Структурная схема, объем памяти, аппаратура вывода и отображения информации.
контрольная работа [111,4 K], добавлен 25.02.2010Методы определения пространственной ориентации вектора-базы. Разработка и исследование динамического алгоритма определения угловой ориентации вращающегося объекта на основе систем спутниковой навигации ГЛОНАСС (GPS). Моделирование алгоритма в MathCad.
дипломная работа [2,0 M], добавлен 11.03.2012