Организация радиотехнического обеспечения полетов

Выбор наземных и бортовых РТС навигации. Маркерные радиомаяки. Плоскости курса и глиссады, задаваемые в РМСП. Радиомаячные системы посадки сантиметровых волн. Аэродромные ретрансляторы. Общий анализ угломерно-дальномерных радионавигационных систем.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 12.01.2014
Размер файла 6,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Селекция по частоте повторения импульсов используется для борьбы с несинхронными помехами, т. е. такими импульсными сигналами, частота повторения которых отличается от частоты повторения полезных сигналов. Схема селекции по частоте повторения, представляющая фильтр несинхронных помех, устанавливается между приемником и индикатором. В этом фильтре (рис.46,а) осуществляется задержка принимаемых сигналов точно на период следования и их сравнение с задержанными сигналами. Схема совпадения “И” вырабатывает сигнал на выходе, если поступающие на ее два входа импульсы совпадают во времени. Если принимаются сигналы, частота Fи которых равна частоте повторения зондирующих импульсов данной РЛС, то задержанные на время tз = Ти импульсы и незадержанные импульсы появляются в одно и то же время и со схемы “И” сигналы проходят на индикатор (рис.62,б). Таким образом, сигналы данной РЛС проходят через фильтр несинхронных помех. Когда РЛС принимает сигналы, период повторения которых Тп ? Tи, то задержанные на время tз = Ти импульсы уже не будут совпадать с незадержанными, и на выходе схемы “И” по этой причине никаких импульсов не будет (рис.62,в). Это значит, что несинхронная помеха не пропускается фильтром и не воздействует на индикатор.

Требования к основным характеристикам ПРЛС

ИКАО разработаны рекомендации на основные параметры различных видов обзорных РЛС (табл.11).

Таблица 11

Параметр

РЛС

Аэродромные

Трассовые

Дальность действия, км (по ВС с ЭПР 15 м2)

46

185

Максимальная высота зоны действия, м

3000

24000

Пределы зоны обзора по углу места, град.

0,5…30

0,2…30

Вероятность правильного обнаружения

-

0,9

Вероятность ложной тревоги

-

10-7

СКП измерения дальности (большая из величин)

3% r или 150 м

1% r

СКП измерения азимута на максимальной дальности

2

0,5

Разрешающая способность по дальности (большая из величин)

1% r или 230 м

-

Разрешающая способность по азимуту на максимальной дальности, град.

4

1,25

Время обзора, с

4

10

Время перехода на резерв, с

10

10

В таблице 12 приведены основные характеристики отечественных обзорных РЛС. Сравнение данных таблиц 11 и 12 позволяет сделать вывод, что характеристики реальных обзорных РЛС по некоторым позициям отличаются от рекомендуемых. В частности, дальность действия эксплуатируемых в России ПРЛС значительно превышают стандарты, принятые в ИКАО. Причина этого состоит в том, что ГА вынуждена использовать образцы ПРЛС, разработанные для целей обороны и отличающимися повышенными возможностями по сравнению с ПРЛС гражданского назначения.

Таблица 12

Характеристика

1РЛ-139

“Скала-М/МПР”

ДРЛС- 7см

ДРЛС-9

“Иртыш”

“Экран-85”

“Скала-МПА”

“Онега”

Максимальная дальность (по ВС с ЭПР 10 м2), км

280

400/350

80

140

160

100

200

150

Вероятность обнаружения

0,5

0,8

0,8

0,8

0,9

0,8

0,9

0,9

Минимальная дальность, км

15

12

4

3,5

3,5

0,8

1,5

0,9

Максимальная высота обнаружения, км

20

30

8

10

10

10

12

12

Пределы зоны обзора по углу места, град

0,7…30

0,7…45

1…20

0,5…35

0,5…36

0,3…35

0,3…45

0,3…45

Разрешающая способность:

по дальности, м

1000

1,…2% М

по азимуту, град

1,5

1,5/2

7

3,5

3,5

7

1,5

1,5

Темп обновления информации, с

10 и20

10

6

5

6

Длина волны, см

10

23

35

23

23

10

Наработка на отказ, ч

250

750

400

500

500

1000

750

3000

Средний ресурс, тыс.ч

-

-

25

25

60

60

80

80

СКП измерения:

дальности, м

1000

1…1,5% М

азимута, град

1

0,8/1

1,5

1,5

1

2

1

1

3.9.3 Вторичные радиолокационные системы (ВРЛС)

Вторичная радиолокационная система представляет собой совокупность ВРЛ, устанавливаемого на земле, и ответчиков, устанавливаемых на борту ВС

Рис. 63 . Структурная схема вторичной радиолокационной системы (ВРЛС)

(рис.63). ВРЛ вырабатывает кодированные запросные сигналы, представляющие несколько высокочастотных импульсов, отстоящих друг от друга на определенные временные интервалы (коды запроса). Через направленную в горизонтальной плоскости антенну запросные коды излучаются в пространство.

На борту ВС запросные сигналы принимаются ответчиком, и после усиления и преобразования в устройстве формирования ответа УФО образуется ответный кодированный сигнал (ответные коды), который излучается передатчиком ответчика через ненаправленную антенну в пространство. Ответный сигнал представляет набор импульсных сигналов, которые в закодированном виде содержат ответную дополнительную информацию. ВРЛ принимает ответные сигналы, которые после усиления и преобразования поступают на индикаторные устройства. Одной из особенностей системы вторичной радиолокационной системы является то, что несущие частоты, на которых передаются запросы и ответы, выбираются различными. В системах ВРЛ обнаружение ВС и измерение их координат (азимута и наклонной дальности) осуществляется, так же как и в ПРЛС. При распространении запросов от ВРЛ до ВС и ответов от ВС до ВРЛ происходит их запаздывание во времени на величину

tз = 2r/c + t0,

где t0 - дополнительная задержка, связанная с формированием ответного сигнала и его обработкой в ВРЛ.

Время запаздывания ответных сигналов зависит только от расстояния до ВС, поскольку задержка t0 - величина постоянная. Время tз измеряется непосредственно по индикатору, тем самым измеряется расстояние r между ВРЛ и ВС. Азимут ВС определяется по углу поворота антенны ВРЛ в момент поступления ответных сигналов. Дополнительная информация после специальной обработки отображается на обычных индикаторах в виде дополнительных отметок либо на специальных индикаторах (цифровые табло, знаковые ЭЛИ). Во вторичных радиолокационных системах (ВРЛС) УВД в качестве дополнительной информации передаются бортовой номер, высота полета, запас топлива, сигналы бедствия, потери радиосвязи и др.

Дальность действия ВРЛС.

Радиосвязь в ВРЛС осуществляется по двум независимым каналам: запроса и ответа. Дальности действия системы по этим каналам в общем случае могут отличаться друг от друга. Максимальные дальности действия для свободного пространства по каналам запроса и ответа определяются выражениями:

rсв max з = ; rсв max o = (4),

где Р Прд з - импульсная мощность передатчика ВРЛ; D з - КНД антенны ВРЛ при передаче; Dо - КНД антенны ответчика при приеме; з з - к.п.д. антенно-фидерного тракта ВРЛ при передаче; з о - к.п.д. антенно-фидерного тракта ответчика при приеме; л з - длина волны запросного сигнала; Р Прм min o - чувствительность приемника ответчика; РПрд о - импульсная мощность передатчика ответчика; - КНД антенны ВРЛ при приеме; - КНД антенны ответчика при передаче; - к.п.д. антенно-фидерного тракта ВРЛ при приеме;

- к.п.д. антенно-фидерного тракта ответчика при передаче; - длина волны ответного сигнала; Р Прм min з - чувствительность приемника ВРЛ.

Дальность действия системы определяется меньшей из величин rmax з и rmin о. Выражения (4) показывают, что максимальная дальность действия прямо пропорциональна корню второй степени из отношения мощности Прд к чувствительности Прм. Для ПРЛС (см. выражение 1) она пропорциональна четвертой степени из этого же отношения. Это значит, что при одинаковых отношениях мощности Прд к чувствительности Прм во вторичных РЛС обеспечивается большая дальность действия либо обеспечивается такая же дальность при значительно меньшей мощности Прд. В ВРЛ применяются Прд с мощностью, на два или даже на три порядка меньшей, чем в Прд ПРЛС.

Кодирование сигналов

Кодирование сигналов в ВРЛС производится в каналах запроса и ответа для представления информации, передаваемой по этим каналам, и для повышения помехоустойчивости ВРЛС. Режим импульсного излучения вынуждает использовать в ВРЛС различные разновидности импульсных кодов. Так как разработка ВРЛС в России осуществлялась независимо от западных разработок, стандарты, стандарты на них в России и ИКАО оказались различными. Это различие, прежде всего, коснулось кодов. Российский код называется кодом УВД, международный -- кодом RBS, причем в отечественных ответчиках предусмотрена возможность работы с кодами УВД и RBS.

При реализации режима УВД в канале запроса поочередно излучаются двухимпульсные кодовые посылки для запроса бортового номера (1-я посылка), высоты полета (2-я посылка), путевой скорости (3-я посылка) и координатной отметки (4-я посылка). Эти посылки отличаются временным интервалом между импульсами кодовой пары.

Ответные УВД состоят из трех частей (рис.64). Первая его часть представляет так называемую координатную двухипульсную посылку КК, с помощью

а) код бортового номера; б) код высоты

Рис. 64. Структура ответных кодов в режиме “УВД”

которой формируется отметка ВС на экране индикатора, вторая -- ключевой трехимпульсный код, обозначающий содержание информации следующей в третьей, информационной части кода. Ключевой код имеет три разновидности. Это может быть код ключа номера КН, либо ключ высоты КВ, либо ключ скорости КС.

Третья информационная часть ответного кода представляет собой многоимпульсный позиционный двоично-десятичный код, для которого выделено 80 временных позиций, отстоящих друг от друга на 4 мкс. Каждые 8 временных позиции называются декадами и предназначены для представления нулей и единиц, с помощью которых формируются десятичные цифры и числа. Для отображения единиц и нулей используется по две позиции. Единице соответствует импульс на первой временной позиции, нулю -- на второй . Если ответный код содержит информацию о бортовом номере , то первая декада отображает единицы номера, вторая - десятки, третья - сотни, четвертая - тысячи, пятая - десятки тысяч. Таким образом, информация о бортовом номере занимает 40 временных позиций. Остальные 40 служат для повторения информации о бортовом номере в интересах повышения его верности.

Ответный код высоты и запаса топлива имеет сходную структуру. Вначале следует координатный код КК и код ключа высоты КВ (рис.64,б). Далее идут 80 позиции, разделенные на 10 восьмиэлементных декад, каждая из которых обеспечивает кодирования десятичных цифр. Первая декада отображает десятков метров высоты, вторая -- сотен, третья -- тысяч, четвертая -- десятков тысяч и вида информации о высоте (абсолютная или относительная), пятая представляет запас топлива. Последующие пять декад, как и прежде, служат для повторения этой информации.

Путевой угол кодируется с помощью первых 10 пар информационных импульсов, каждая из которых позволяет отобразить угол с дискретностью 1800/256 значениями, кратными этим минимальным долям. Путевая скорость передается с дискретностью 5,9 м/с десятью следующими парами. Численное значение путевого угла и скорости определяется суммой численных значений, закрепляемых за отдельными разрядами, в которых фигурируют единицы.

Международный код RBS имеет следующую структуру (рис.65,в).

Рис. 65 . Структура ответного кода номера (7306) в режиме RBS

Запросные сигналы представляют собой 4 вида двухимпульсные кодов А, В, С и D. Коды А и В служат для запрос номера рейса, С -- высоты, D -- резервный. Ответные коды более сложные. Они содержат два опорных импульса F1 и F2 соответствующих координатному коду КК и серию информационных импульсов, располагаемых на 13 временных позициях между опорными импульсами. Номер рейса и высота полета передаются четырьмя группами импульсов А, В, С и D, каждая из которых отображает цифру восьмеричной системы счисления. Для отображения цифр от 0 до 7 в каждой группе имеется три позиции, обозначенных буквами А1, А21, А4 , В1 , В2, В4 и т.д. Позиция, занимаемая импульсом, имеет значение двоичной единицы, пустая -- нуля. Таким образом, здесь реализована четырехзначная двоично-восьмеричная система счисления, позволяющая отобразить 4096 номеров ВС, высоты в пределах 103…105 футов с дискретностью 100 футов. При передаче информации о номере импульсы группы А кодируют информацию, соответствующую тысячам, В -- сотням, С -- десяткам и D -- единицам десятичных чисел. Число 7700 служит для передачи сигнала бедствия, число 7600 -- сообщения о потере радиосвязи, 7500 -- о нападении на экипаж. Дополнительный импульс SPI предназначен для индивидуального опознавания и передается по запросу по каналм радиосвязи с земли. Импульс выдается в течение 10…30с при нажатии кнопки “Знак” на пульте управления бортовым ответчиком.

При передаче информации о высоте порядок передачи групп импульсов информационного кода установлен следующим: D, А, В, С. В группе D используется две позиции D2 и D4 позиция D1 свободна и передаются три градации высоты ценой 32000 футов каждая. Позициями групп А и В передается по 7 градаций ценой соответственно 4000 и 500 футов каждая, а позициями группы С -- 5 градаций по 100 футов. Последняя пятая градация передается цифрой 7 . Цифры 5 и6 не используются. Максимальная высота, которая кодируется таким методом, будет равна сумме произведений чисел градаций на их цену, т.е. 128000 футов. Так как отсчет высоты производится от остаточной высоты 1300 футов, то максимальная передаваемая высота будет 126700 футов. Процесс заполнения позиций и градаций идет следующим образом. После заполнения пяти градаций С двоичная единица передается на позиции В. Позиция С при этом обнуляется. После заполнения пяти градаций В единица передается позиции А, а после ее заполнения позиции D. Заполнение может изменяться как в большую, так и в меньшую сторону.

Помехи, создаваемые боковыми лепестками ДНА антенны. Во вторичном радиолокаторе используются антенны направленного излучения, которые излучают и принимают основную часть энергии в пределах узкого сектора (главный лепесток ДНА), но они также излучают и принимают часть энергии сигналов и в других направлениях (боковые лепестки ДНА). По этим лепестка, так же как и по главному лепестку, происходит излучение запросных и прием ответных сигналов. При уменьшении расстояния между ВС (ответчиком) и ВРЛ ответчик будет срабатывать не только от сигналов главного лепестка, но и от сигналов боковых лепестков, что приводит к появлению на экранах индикаторов кроме основной отметки цели, так называемых ложных отметок. Угловое положение ложных отметок не соответствует угловому положению ВС в пространстве (рис.66).

Рис. 66. Ложные отметки от ВС на экране ВРЛ

1,2,3,4 - отметки на индикаторе при разных положениях ВС; 5 - основная отметка; 6 - ложные отметки

Ложные отметки снижают качество работы системы, затрудняют наблюдение за полезными отметками и снижают точность измерения азимута. Все это требует принятия специальных мер для устранения ложных отметок, которые называются подавлением сигналов боковых лепестков. Эти меры применяются как в канале запроса, так и в канале ответа. В первом случае устраняется срабатывание ответчика от сигналов запроса, излучаемых боковыми лепестками, во втором - прием сигналов ответа боковыми лепестками антенны запроса ВРЛ. Наиболее эффективным способом является сравнение сигналов направленной антенны ВРЛ с сигналами специальной ненаправленной в горизонтальной плоскости антенны подавления. Для реализации этого способа в ВРЛ используются два передатчика: Прд запроса (Прд з), связанный с направленной антенной запроса А з, и Прд подавления, (Прд п), связанный с антенной подавления А п (рис.67) .

Рис. 67. Подавление сигналов боковых лепестков по каналу запроса:

а - упрощенная структурная схема; б - амплитудные соотношения сигналов запроса и подавления; 1 - диаграммы излучения сигналов запроса Е з и подавления Е п; 2 - сигналы запроса, принятые от главного лепестка; 3 - сигналы запроса, принятые от боковых лепестков; 4 - импульсы запроса; 5 - импульс подавления

Антенна подавления излучает сигналы подавления на частоте запроса, а в ответчике импульсы подавления выделяются по известному временному интервалу между ними импульсами запроса. Мощность Прд п выбирается такой, чтобы амплитуда излучаемых сигналов подавления была меньше уровня сигналов запроса, излучаемых главным лепестком, но больше уровня сигналов запроса, излучаемых боковыми лепестками (рис.67,б). Когда ВС облучается главным лепестком, амплитуда сигналов запроса будет больше амплитуды сигнала подавления: Е з > Е п. Если же ВС облучается боковыми лепестками, то Е з< Е п. В ответчике на выходе приемника используется схема амплитудного сравнения САС. Она пропускает импульсы на схему формирования ответов УФО только в том случае, когда Е з > Е п. Таким образом, ответчик вырабатывает ответные сигналы только тогда, когда он запрашивается сигналами главного лепестка, а сигналы запроса, передаваемые боковыми лепестками, на ответчик не воздействуют.

При подавлении по каналу ответа в ВРЛ используются два приемника (или два канала приема одного Прм): Прм ответа, связанный с Аз , и Прм подавления, связанный с Ап. Выходы этих Прм объединяются схемой амплитудного сравнения. На ее выходе выделяются сигналы, принимаемые главным лепестком. А з.

Недостатки существующих систем ВРЛ и перспективы развития

Опыт эксплуатации систем ВРЛ выявил ряд существенных недостатков, которые ограничивают их использование в составе автоматизированных систем УВД. К ним относятся:

невысокие точностные характеристики определения координат ВС

значительная зона (до 100 км) влияния боковых лепестков, снижающая вероятность получения информации при увеличении интенсивности воздушного движения и числа ответчиков из-за наложения ответных кодов;

недостаточный объем информации, содержащийся в ответных сигналах; невысокая пропускная способность;

ограниченная пропускная способность по информационному обмену.

Радикально устранение существующих недостатков СВРЛ будет осуществлено при внедрении дискретно-адресной ВРЛС (ДАС).

Основной принцип работы ДАС заключается в использовании индивидуальной адресации запроса и ответа, для чего всем ВС (ответчикам) присваиваются номера-адресы, а в сигналы запросов и ответов включаются адреса ответчиков ВС. При этом значительно уменьшается вероятность наложения кодов, так как поток ответных сигналов уменьшится в 10…20 раз.

Следовательно, увеличивается пропускная способность ответного канала ВРЛС. Это позволит увеличить объем передаваемой по ним информации и использовать его для речевого обмена между диспетчерами и экипажами ВС. В принципе число запросов на одно ВС при адресной работе может быть уменьшено до одного.

В ДАС, кроме запросной и расширенной полетной информации, с борта ВС будут передаваться следующие сообщения: навигационная информация от БПНК ВС, информация о метеообстановке в районе полета, решение экипажа по использованию полетной информации, а с земли будут передаваться: указания диспетчера УВД, дублирующие их передачу по каналу голосовой связи (эшелон, курс, частота радиосвязи, минимальная безопасная высота полета), инструктивная информация о воздушной обстановке. Кроме того, по этим же каналам обеспечивается автоматическая работа системы предупреждения столкновений с ВС и с землей. Предусмотрено буквенно-цифровое отображение информации в кабине пилотов.

Для запроса каждого ВС запросчик должен хранить данные об адресах и ориентировочном местоположении ВС, находящихся в зоне действия ВРЛ. Для получения этих сведений ДАС вначале работает в режиме “Вызов всем” с запросом координат всех ВС и адресов ВС с ответчиками ДАС. Ответы запоминаются в наземной РЛС, после чего возможна работа в режиме индивидуального запроса, который заключается в ориентировании ДНА на определенные ВС по заданной оператором программе с целью их автосопровождения. Периодически режим “Вызов всем” должен повторяться с целью получения обновленной информации о несопровождаемых ВС и новой от ВС, вошедших в зону наблюдения. Возможность одновременной работы систем ДАС и существующих СВРЛ обеспечивается чередованием адресного и неадресного режимов. Длительность периода адресной работы выбирается

такой, чтобы обеспечить обработку 10 ответчиков в луче ДН. В таблице 13 приведены основные характеристики вторичных радиолокаторов

Таблица 13

Характеристика

Корень-АС

Лист

ДАС

Максимальная дальность действия, км

450

-

400/160

Пределы зоны обзора по углу места, град

0,5…45

0,5…45

0,3 50

Вероятность получения информации

? 0,9

0,95

0,9…0,98

Вероятность получения ложной информации

10-3

-

10-6

СКП измерения дальности, м

500

50

200/50

СКП измерения азимута, угл. мин

60

15

8

Время обновления информации , с

4 и 20

-

5 и 10

Наработка на отказ, ч

> 500

400

4000

Технический ресурс, ч

40000

-

80000

3.9.4 Автоматизированные системы УВД (АС УВД)

Важнейшую роль в обеспечении высокой регулярности и безопасности полетов играет четкость и надежность управления движения ВС. Однако традиционные способы УВД становятся недостаточно эффективными при большой интенсивности воздушного движения из-за ограниченных возможностей человека по управлению движением большого числа ВС.

Характер работы диспетчера принципиально не меняется, но ее напряженность резко возрастает, он уже не в состоянии справиться с огромным объемом информации, которая поступает к нему от большого числа ВС по различным каналам и в разной форме. Увеличение числа диспетчеров не решает задачи, так как при этом возникает новая проблема по координации их действий. Для упрощения и облегчения работы диспетчера его нужно освободить от функций сбора, хранения и обработки информации, оставив за ним лишь функцию принятия наиболее важных решений по УВД. В таком виде эта задача решается путем автоматизации процессов УВД на основе применения современных радиоэлектронных средств и вычислительной техники.

Структура АС УВД

АС УВД выполняет разнообразные функции по переработке большого объема информации и состоит из ряда отдельных комплексов и подсистем (рис.68):

- подсистема сбора информации ПСИ;

- подсистема связи и передачи информации ПСПИ;

- вычислительный комплекс ВК;

- подсистема отображения информации;

- подсистема связи с ВС ПСВС.

Рис. 68. Структурная схема АС УВД

Важным звеном АС УВД является диспетчер, замыкающий контур управления. В зависимости от вида системы и степени автоматизации каждая из подсистем может иметь различную структуру и функции, но для всех АС УВД эти подсистемы имеют общие задачи и отличительные признаки.

ПСИ включает датчики информации различных типов, позволяющие измерять координаты ВС, получать метеоинформацию, сообщения из соседних центров УВД. Информация, используемая в процессе УВД, подразделяется на статическую и динамическую. Статическая информация не меняется работы системы и включает параметры ВС и трасс. Она вводиться в ВК на этапе подготовки системы к эксплуатации, но при необходимости может корректироваться и в процессе эксплуатации. К динамической, т.е. изменяющейся, информации относятся координаты ВС, высота полета, бортовой номер или номер рейса, остаток топлива, сообщения об аварийной ситуации или отказе радиосредств, метеорологические данные. Все эти данные должны вводиться в систему автоматически в течение всего времени работы, т.е. по существу непрерывно.

Промежуточное положение между статической и динамической информацией занимают планы полетов, так как они могут корректироваться в процессе полета. План полета должен содержать номер ВС, номер трассы, время вылета, пролета контрольных пунктов и прибытия в пункт назначения, запас топлива и сведения о наличии на борту ответчика. Оперативно должны вводиться в систему планы внерейсовых полетов, передаваемых из других центров УВД. Планы полетов для рейсов, выполняемых по расписанию, вводятся заранее и корректируются относительно редко. Сигналы от отдельных датчиков ПСИ имеют различную природу. Некоторые сигналы представлены в аналоговой, другие - в дискретной форме. При этом способы кодирования дискретных сигналов могут быть разными. Для преобразования всех, поступающих от ПСИ сигналов, к единому виду, пригодному для ввода в ВК служит подсистема связи и передачи информации ПСПИ. На выходе этой подсистемы вся информация представляется в цифровых кодах, с которыми оперирует ЦВМ ВК. Дополнительно ПСПИ обеспечивает связь персонала центра управления со всеми взаимодействующими службами.

ВК обрабатывает все данные, поступающие от различных датчиков и формируют массивы информации для ПОИ. При высокой степени автоматизации в ВК решаются и задачи анализа воздушной обстановки. Обработка сигналов датчиков происходит в два этапа. Первоначальная обработка информации, называемая первичной, производится в ПСИ и ПСПИ. Основная цель этой обработки - очистка сигналов от помех и получение данных в форме машинных кодов. Второй этап осуществляется в ВК и называется вторичной обработкой, основная цель которой - получение возможно более полных данных о траекториях движения всех ВС, находящихся в зоне управления.

ПОИ предназначена для отображения воздушной обстановки в наиболее удобной для восприятия форме. В АС УВД координатная информация отображается в графической, т.е. аналоговой, форме, а дополнительная - в цифровой (рис. 69).

Рис. 69. Совмещенный план-индикатор

1 - формуляры сопровождения; 2 - формуляр ожидания прилетающего ВС; 3 - формуляр ожидания вылетающего ВС; 4 - табличный формуляр; 5 - таблица системных данных

С помощью ПОИ решаются также задачи активного взаимодействия диспетчера с ВК. ПСВС обеспечивает передачу команд управления на ВС, обмен сообщениями между экипажами ВС и службой УВД, а также получение и ввод в ВК некоторых данных с борта ВС.

Классификация АС УВД

АС УВД классифицируются по ряду признаков. Основными из них являются область применения, назначение, степень автоматизации (номенклатура автоматизированных функций) и способ получения информации о параметрах движения ВС.

В зависимости от сферы применения АС УВД различают:

- трассовые (районные);

- аэродромные;

- аэроузловые.

По назначению АС УВД разделяются на:

- АС планирования воздушного движения (АС ПВД);

- АС непосредственного управления воздушным движением (АС УВД);

- совмещенные (АС ПВД и УВД);

- АС управления наземным движением.

По степени автоматизации АС УВД разделяются::

- системы малой (частичной) автоматизации (МАСУВД);

- системы 1-го уровня автоматизации;

- системы 2-го уровня автоматизации;

- системы 3-го уровня автоматизации.

По способу получения координатной информации АС УВД делят:

- системы радиолокационного контроля;

- системы процедурного контроля .

Эксплуатационно-технические характеристики (ЭТХ) АС УВД

Эксплуатационно-техническими характеристиками принято называть показатели, отображающие сведения о сфере применения, функциях, Эксплуатационно-технических возможностях и качестве функционирования АС УВД. ЭТХ основных типов АС УВД, эксплуатируемых в Росси, приведены в таблице 14.

Таблица 14

Показатели

Типы АС УВД

Аэродромные

Аэроузловые

Районные

“Старт”

“Теркас” Мин. Воды

“Теркас” Киев

“Спектр”

“Теркас” Москва

“Теркас” Москва

“Трасса”

“Стрела”

Размеры зоны управления, тыс. км2

70

32

55

160

75

600

300

600

Число секторов управления

25

8

25

подхода

2

3

4

6

9

-

-

-

круга

1

1

2

4

4

-

-

-

посадки

1

-

-

2

-

-

-

-

старта

-

-

-

2

-

-

-

-

руления

-

-

-

1

-

-

-

-

Число р/локационных позиций

1

1

1

2

3

7

4

8

Число ВС, сопровождаемых системой ПРЛС

36

40

60

100

100

325

300

Число ВС, сопровождаемых системой ВРЛ

-

-

-

-

-

325

0

300

Число обрабатываемых планов полетов:

стандартных

-

3000

3000

3000

10000

10000

-

6000

суточных

-

500

900

700

300

3000

-

3000

текущих

-

80

400

100

600

600

-

300

3.9.5 Перспективы развития систем наблюдения

Действующая в настоящее время система наблюдения включает первичные и вторичные РЛС, бортовые средства навигации и систему электросвязи, обеспечивающую передачу речевых сообщений экипажей ВС о местоположении и реализацию режима А/С ВРЛ. Речевые сообщения о местоположении ВС все еще остается единственным средством наблюдения за пределами радиолокационного поля. Это существенно увеличивает нагрузку на пилотов и может давать удовлетворительные результаты только при невысокой интенсивности полетов ВС. Из-за ограничений существующих радиолокационных систем полеты вне зон действия обзорных РЛС УВД сегодня контролируются на основании полетных планов о местоположении ВС, которые постоянно обновляются посредством речевых докладов по каналам радиосвязи, причем без какой-либо автоматизации.

Такой тип УВД называется -- процедурное управление. Способ УВД на основе информации, полученной с помощью РЛС различного назначения, получил название -- радарное управление. Конечно, радарное управление предпочтительнее процедурного, однако оно требует создания радиолокационных информационных полей и их поддержания, что не всегда осуществимо в таких регионах, как над океанами, пустынями или обширными болотными пространствами. Решение проблем УВД традиционными методами, используя традиционные средства, требует привлечение громадных материальных и кадровых ресурсов не только для создания, установки и эксплуатации средств РТО, но и на освоение необжитых мест, в которых необходимо разместить эти средства. Исследования последних лет, проведенные в рамках ИКАО и в нашей стране, показали, что по экономическим критериям более выгодно создание спутниковых систем УВД, чем обеспечение всех необходимых для полетов районов традиционными средствами. В определении специального комитета ФАНС (Комитет по будущим аэронавигационным системам) записано: “принцип спутниковой технологии является единственным имеющимся в настоящее время решением, которое позволит преодолеть недостатки существующих средств связи, навигации и наблюдения (СНН) и в большей степени отвечать требованиям потребителей”.

Спутниковая систем УВД (ССУВД) должна отвечать следующим требованиям:

- иметь глобальную зону действия от малых высот до 21000 м над большинством районов мира;

- обеспечивать работу при различной плотности ВД, с различными типами ВС и бортовым оборудованием различной сложности, не требуя излишнего увеличения оборудования на земле и в космосе;

- обеспечивать навигацию ВС и неточный заход на посадку, т. е. с погрешностями, позволяющими последующее проведение точного захода на посадку и посадку с системой MLS, а в последующем обеспечение точного захода на посадку без системы MLS (СКП ? 75 м);

- обеспечивать обмен не только цифровыми внутрисистемными данными,

но и речевой, в том числе социальной связью;

- иметь свойство целостности, т.е. способность обнаруживать и сообщать о неисправности системы потребителю.

Структура спутниковой системы УВД

В настоящее время рассматриваются две принципиально разные системы:

ССУВД с автоматическим зависимым наблюдением (АЗН, а в ИКАО -- ADS);

ССУВД с автономным независимым наблюдением (АНН или CIS).

В системе, использующей подсистему АЗН, наблюдение за ВС, определение координат и вектора скорости производится на борту ВС по навигационным параметрам, получаемых от спутниковой навигационной подсистемы. В качестве традиционных средств в системе будут использованы известные виды наземного и бортового оборудования, применяемые для определения параметров движения ВС (РТС дальней и ближней навигации, инерциальные системы, VOR, DME и др.). Конкретные виды оборудования могут быть разными для различных типов ВС и разных сроков внедрения системы.

В системе, использующей АНН, параметры движения ВС определяются в наземных центрах УВД по ретранслированным на них от ВС через спутники навигационным сигналам или параметрам, которые были приняты и измерены бортовой аппаратурой ВС.

Традиционными средствами, которые могут решать задачу АНН, могут быть РЛС. Ко времени широкого внедрения ССУВД, первичные РЛС будут применяться, как правило, лишь для оперативного обеспечения метеоинформацией. Основными средствами наблюдения за воздушной обстановкой будут ВРЛС, работающие в дискртно-адресном режиме (ДАС) или, по терминологии ИКАО, в режиме S.

Первой по срокам внедрения и основной для УВД на маршрутах с низкой и средней ИВД будет ССУВД на базе принципов АЗН.

Для обеспечения УВД на маршрутах с высокой ИВД рекомендуется использовать ССУВД на принципах АНН, возможный режим АЗН может быть резервным.

На рис. 70 представлена схема ССУВД, реализующая принцип АЗН (ADS) и АНН.

Рис. 70. Схема ССУВД, реализующей принципы АЗН и АНН

ИСЗН - навигационный спутник; ИСЗР - спутник ретранслятор; ССОПД - станция слежения и определения параметров движения спутников; ГВЦ - главный вычислительный центр; ОРЦ - объединенный районный центр УВД; БКОИ - блок комплексной обработки информации; ТС - традиционные средства навигации и УВД; БО - бортовое оборудование ( СС - спутниковое; ТС - традиционное); ИУ ДП - индикаторные устройства диспетчерских пультов.

Оборудование любой ССУВД состоит из четырех крупных частей:

- созвездия ИСЗ с оборудованием спутников;

- бортовое оборудование ССН на ВС;

- наземное оборудование слежения за ИСЗ и центры УВД;

- линии передачи данных и связи между различными звеньями системы.

Кроме того, в состав системы могут входить традиционные средства (ТС) обеспечения навигации ВС как на борту ВС, так и на земле, используемые в качестве резерва в переходный к ССУВД период.

Созвездие ИСЗ может содержать как навигационные (ИСЗН), так и спутники - ретрансляторы (ИСЗР). В будущем предполагается, что навигационная и ретрансляционная аппаратура будет располагаться на одном и том же ИСЗ.

ССОПД осуществляют поиск и слежение за ИСЗ, и определение параметров их движения в своих вычислительных центрах (ВЦ). По линиям связи 1 с ССПОД непосредственно на ИСЗ или через ретрансляторы идут сигналы запуска, а с них ответные сигналы, по которым осуществляется слежение за всеми ИСЗ. После определения на ВЦ ССОПД координат ИСЗ они передаются на спутники по линиям 2.

Вид бортового оборудования зависит от типа ССУВД. При реализации принципа АЗН оно обеспечивает вычисление параметров движения ВС, их использование для коррекции счисленного места ВС и передачу в главный вычислительный центр (ГВЦ) непосредственно через ИСЗР по линиям 4. Кроме параметров движения ВС, в передаваемый сигнал включается дополнительная информация о состоянии ВС.

В случае АНН бортовое оборудование принимает от ИСЗН и передает по линии 4 навигационные сигналы или обработанные навигационные параметры, необходимые для вычисления места ВС в ГВЦ, принимает по той же линии вычисленные параметры движения ВС и использует их для самолетовождения.

ГВЦ, кроме приема данных от всех ВС о их местоположении или навигационных параметров, имеет еще несколько других задач: на базе центрального расписания, заявок на полеты и другой информации, поступающей по линии 6 от всех ОРЦ и различных служб ГА, производит предварительное планирование полетов; получает и обрабатывает информацию, поступающую от ВС и ВЦ ОРЦ, и на ее базе вносит коррективы в предварительный план полетов; выдает информацию в ВЦ ОРЦ по линии 7.

В ОРЦ УВД производится комплексная обработка информации о воздушной обстановке, полученной непосредственно от ВС и от ГВЦ по линии 5, а также по линии 10 от традиционных средств УВД. Полученная информация отображается на индикаторных устройствах диспетчерских пультов (ИУ ДП) по соответствующим секторам управления. Отображается информация, как в настоящий момент, так и прогнозируемая в БКОИ, в том числе о потенциальных конфликтных ситуациях. Связь с ВС, находящимися в видимости ОРЦ, идет по линии 8, а при ее отсутствии - по линии 9 через ИСЗР. Поступившие от ГВЦ по линии 7 предварительные планы полетов сравниваются с полученными на базе обработки данных от подсистем наблюдения. Результаты сравнения в виде сигналов рассогласования поступают на ГВЦ по той же линии для корректировки результатов предварительного планирования.

Список литературы

1. А. И. Верещака, П. В. Олянюк. Авиационное радиооборудование. Учеб. для вузов. - М.: Транспорт, 1996. - 334 с.

2. А. Д. Трояновский, А. М. Клуга, Б. Я. Цилькер Бортовое оборудование радиосистем ближней навигации. - М.: Транспорт, 1990. - 182 с.

3. Международные стандарты, рекомендуемая практика и правила аэронавигационного обслуживания. Авиационная электросвязь. Приложение 10 к Конвенции о международной ГА. Том 4. Части 1 и 2. 4-ое изд., апрель 1985. - 414 с.

4. А. М. Аникин Аэронавигация: Методические указания по изучению темы "Применение спутниковых навигационных систем". СПб, Академия ГА, 1996. - 50 с.

5. Е. В. Соболев. Радиотехнические средства навигации и посадки. Конспект лекций. СПб, Академия ГА, 1993. - 60 с.

6. Г. П. Астафьев, П. В. Олянюк Радиотехнические средства навигации и посадки. Учебное пособие. - М.: Транспорт, 1982. - 128 с.

7. И. Г. Хиврич, А. М. Белкин . Автоматизированное вождение воздушных судов. Учебное пособие.- М.: Транспорт, 1985. - 382с.

8. Концепция и системы CNS/ATM в гражданской авиации. Под ред. Г. А. Крыжановского. - М.: ИКЦ “Академкнига”, 2003.- 415с.

Размещено на Allbest.ru

...

Подобные документы

  • Навигационные измерения в многоканальной НАП. Структура навигационных радиосигналов в системе ГЛОНАСС и GPS. Точность глобальной навигации наземных подвижных объектов. Алгоритмы приема и измерения параметров спутниковых радионавигационных сигналов.

    курсовая работа [359,2 K], добавлен 13.12.2010

  • Обоснование необходимости использования и развития радионавигационных систем. Анализ принципа построения и передачи сигналов радионавигационных систем. Описание движения спутников. Принцип дифференциального режима и методы дифференциальной коррекции.

    курсовая работа [654,2 K], добавлен 18.07.2014

  • Служба эксплуатации радиотехнического оборудования и авиационной электросвязи. Технические характеристики современных средств радиотехнического обеспечения полетов. Анализ отказов и неисправностей оборудования по объектам в аэропорту г. Богучаны.

    дипломная работа [67,5 K], добавлен 29.04.2013

  • Бортовое оборудование радиолокационного контроля траектории движения орбитального корабля "Буран". Устройство радиотехнической системы навигации, посадки и управления воздушным движением, наведения наземных антенн систем телеметрии и радиосвязи "Вымпел".

    реферат [932,7 K], добавлен 11.12.2014

  • Безопасность и регулярность полетов воздушных судов, радиотехнические средства обеспечения полетов. Аналитический обзор аэродромных радиолокационных станций (РЛС): назначение, размещение, особенности и принципы работы. Расчет технических параметров РЛС.

    курсовая работа [432,7 K], добавлен 14.11.2010

  • Распределение европейского рынка спутниковой системы навигации в 2000-2010 гг. Требования к спутниковым системам навигации. Определение координат наземным комплексом управления. Точность местоопределения и стабильность функционирования навигации.

    презентация [2,4 M], добавлен 18.04.2013

  • Развитие спутниковой навигации. Структура навигационных радиосигналов системы GPS. Состав навигационных сообщений спутников системы GPS. Алгоритмы приема и измерения параметров спутниковых радионавигационных сигналов. Определение координат потребителя.

    реферат [254,9 K], добавлен 21.06.2011

  • Краткая характеристика состояния средств радиотехнического обеспечения полетов и авиационной электросвязи УВД. Виды и методы технического обслуживания. Недостатки при эксплуатации РЛС П - 37М, ее структурная схема и рекомендации по модернизации.

    курсовая работа [297,0 K], добавлен 27.10.2012

  • Виды и цели авиационной электросвязи гражданской авиации Российской Федерации, показатели ее надежности. Резервирование средств радиотехнического обеспечения полетов и авиационной электросвязи. Оценка качества передачи речевых сообщений по каналам связи.

    реферат [501,9 K], добавлен 14.06.2011

  • Сущность спутниковых навигационных систем. Определение координат их потребителя. Правовая основа применения систем функционального дополнения. Особенности распространения волн средневолнового диапазона. Метод частотной модуляции с минимальным сдвигом.

    дипломная работа [2,6 M], добавлен 27.07.2013

  • Классификация (типы) бортовых систем автотранспортного средства. Система автоматического управления трансмиссией автомобиля. БИУС – вид автоматизированной системы управления, предназначенной для автоматизации рабочих процессов управления и диагностики.

    дипломная работа [1,5 M], добавлен 26.07.2017

  • Классификация навигационных систем; телевизионная, оптическая, индукционная и радиационная системы измерения угловых координат. Системы измерения дальности и скорости, поиска и обнаружения. Разработка и реализация системы навигации мобильного робота.

    дипломная работа [457,8 K], добавлен 10.06.2010

  • Характеристика основных функций и возможностей спутниковых радионавигационных систем - всепогодных систем космического базирования, которые позволяют определять текущие местоположения подвижных объектов. Система спутникового мониторинга автотранспорта.

    реферат [2,9 M], добавлен 15.11.2010

  • Изучение функционирования систем связи, которые можно разделить на: радиорелейные, тропосферные, спутниковые, волоконно-оптические. Изучение истории возникновения, сфер применения систем связи. Спутниковые ретрансляторы, магистральная спутниковая связь.

    реферат [54,6 K], добавлен 09.06.2010

  • Нелинейные системы, описываемые нелинейными дифференциальными уравнениями. Методы анализа нелинейных систем: кусочно-линейной аппроксимации, гармонической линеаризации, фазовой плоскости, статистической линеаризации. Использование комбинации методов.

    реферат [230,8 K], добавлен 21.01.2009

  • Обоснование, выбор типа модуляции. Кодирование информации. Определение необходимой полосы частот. Расчет основных параметров системы передачи информации с космического аппарата на сеть наземных станций. Выбор оптимального варианта построения радиосистемы.

    курсовая работа [522,8 K], добавлен 21.02.2016

  • Составление структурной и функциональной схемы радиотехнического тракта, представляющего собой приемник прямого усиления. Построение временных и спектральных диаграмм совокупности сигнала и помех на входе тракта и на выходе всех его функциональных узлов.

    контрольная работа [396,2 K], добавлен 06.04.2014

  • Значение оценки профиля подстилающей поверхности при неподвижном носителе. Анализ структурной схемы оптимального измерителя профиля отражающей поверхности. Структура алгоритма измерения профиля применительно к условиям получения оценки отклонения.

    реферат [239,5 K], добавлен 06.04.2011

  • Изучение истории появления спутниковой навигации. Исследование принципов работы GPS в околоземном пространстве. Анализ особенностей технической реализации и применения системы. Наземные станции контроля космического сегмента. GPS приемники и навигаторы.

    презентация [2,2 M], добавлен 08.06.2016

  • Анализ проектирования системы инерциальной навигации. Обзор аналогичных конструкций. Гонка "Крепкий орешек". Принцип построения навигационных систем. Анализ ошибок датчиковой системы. Расчет статических и динамических параметров гироскопа, демпферов.

    дипломная работа [1,5 M], добавлен 21.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.