Акустический выключатель

Описание схемы электрической принципиальной. Расчет надежности электронно-акустических выключателей. Технология пошагового освещения. Коммутация электрических цепей в нормальных условиях эксплуатации и перегрузки. Технология пошагового освещения подъезда.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 15.01.2014
Размер файла 48,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Пояснительная записка к курсовому проекту

по дисциплине: «Импульсная техника»

Акустический выключатель

Акустический выключатель может применятся в качестве выключателя освещения. Устройство реагирует на громкий звук, например: хлопок в ладоши. После каждого последующего звука переходит в противоположное состояние (После первого хлопка включается, после второго выключается и т.д.). Нагрузка подключается на контакты реле.

Выключатель, предназначенный для коммутации электрических цепей в нормальных условиях эксплуатации и в определенных условиях перегрузки, а также для пропускания в течение заданного интервала времени токов в условиях, отличных от нормальных. Примечание. Выключатель нагрузки может быть способен включать токи короткого замыкания.

Предлагаемый выключатель, принципиальная схема которого приведена на рисунке, кроме своей основной функции - включение/выключение одной из четырех нагрузок (в зависимости от количества хлопков) - еще и управляет любым автоматом световых эффектов. В большинстве автоматов световых эффектов используется задающий генератор, частота которого регулируется переменным резистором. Поэтому либо скорость переключения ламп или гирлянд не совпадает с темпом музыки, либо приходится под каждую мелодию перенастраивать генератор вручную. Данный акустический выключатель позволяет переключать гирлянды в соответствии с темпом музыки. При отсутствии музыки или в паузах гирлянды переключаются с минимальной частотой, которая устанавливается путем подбора резистора R19.

Я использовал этот акустический выключатель в паре с автоматом световых эффектов на ППЗУ К556РТ4 [1], в одном корпусе, использовав реле 4-го канала для его включения (+5В - питание схемы, -220 В - питание гирлянд). Чувствительность выключателя регулируется подстроечным резистором R8, так чтобы он реагировал на музыку, но не переключал каналы коммутации нагрузок. Практика показывает, что кроме задействованного 4-го канала, достаточно использовать 2-й и 3-й каналы, а от использования 1-го канала следует воздержаться, так как при резких всплесках музыки возможно его срабатывание.

Рассмотрим работу выключателя. С микрофона ВМ1 через подстроечный резистор R8 сигнал поступает на вход усилителя-ограничителя на микросхеме К538УН1. После усиления сигнал детектируется диодами VD5, VD6 и поступает на базу транзистора VT1. В его коллекторную нагрузку включена резисторная оптопара ОЭП-13, которая и управляет генератором автомата световых эффектов. Таким образом, всплеском шумового спектра мелодии открывается транзистор VT1, и выходное сопротивление оптопары (контакты 2 и 4) уменьшается, что приводит к увеличению скорости переключения гирлянд. При этом транзистор VT1 открывается не полностью (степень открывания регулируется резистором R8, чтобы не сработал коммутатор нагрузок).

Электронно-акустические выключатели улавливают любые звуковые сигналы - звук шагов, голоса, хлопанье дверей и т.п. Иными словами, реагируют на все звуки, дающие понять, что в помещении появились люди. Результатом этой реакции является плавное включение электроосветительных приборов. Для прибора устанавливается определенное значение чувствительности, что исключает его срабатывание «впустую» на акустические сигналы, уровень которых ниже уровня звуков, которые может воспроизводить человек (например, капание воды).

После того как уровень шума возвращается к исходному, прибор «выжидает» определенное время (20-30 сек) и, при сохранении тишины, выключает свет. Очевидно, что такой принцип значительно увеличивает срок эксплуатации электроосветительных ламп, заставляя их работать только в случаях реальной необходимости.

Использование электронно-акустических выключателей рекомендуется там, где бывает недостаточно естественного освещения или оно отсутствует вовсе, а также там, где нет постоянного потока людей - в подъездах жилых домов, закрытых тамбурах, коридорах, лифтах, подвалах.

Эффективность работы электронно-акустического выключателя зависит от ряда факторов.

Количество осветительных приборов, которые он обслуживает. Самый неблагоприятный в экономическом плане вариант - работа на одну лампу. Чем больше ламп обслуживает устройство, тем выше экономический эффект.

Частота использования помещения. Чем реже в помещении появляются люди тем очевиднее польза. Если людской поток постоянный, необходимость во включении и выключении света просто отсутствует.

Наличие естественного освещения. Даже если помещение хорошо освещается в дневные часы, прибор будет срабатывать, расходуя энергию впустую. В подобных случаях следует предусмотреть ручное отключение света в дневное время.

Устройство предназначено для эксплуатации внутри помещений и рассчитано на круглосуточный режим работы.

При определении экономической эффективности особое внимание уделялось двум аспектам:

1. Реальной экономии электроэнергии, расходуемой на освещение.

2. Сроку окупаемости.

Проведем расчет для одного электронно-акустического выключателя. Непосредственно на экономию электроэнергии влияют несколько факторов:

- на какое количество электроосветительных приборов нагружен ЭАВ;

- как часто используется данное помещение;

- имеется ли естественное освещение и т.д.

Например, если к ЭАВ подключено одновременно две электролампы, то и экономические показатели будут в соответствующее число раз выше. Мы же для расчета возьмем наиболее типичный вариант (не самый благоприятный в экономическом плане - работа на одну электролампу): установим ЭАВ в общем тамбуре на две квартиры в стандартном 9-и этажном 5-и подъездном здании.

Исходные данные:

- количество осветительных приборов в тамбуре - одна эл. лампа 60вт.;

- естественное освещение - отсутствует;

- количество жильцов - кв.1 - 4чел., кв.2 -5чел.

До установки ЭАВ освещение было постоянно включено. Расход электроэнергии в сутки составлял:

60вт. х 24час. = 1440вт.

Было установлено, что количество входов/выходов через тамбур составляет от 2-х до 8-и на каждого жильца в сутки. Возьмем по максимуму и подсчитаем общее количество входов/выходов в сутки: 8 х 9(колич. жильцов двух квартир) = 72

Если не учитывать одновременное прохождение по тамбуру двух или более жильцов, то общее время, необходимое для освещения тамбура в сутки составило 72 х 30сек.(временной цикл ЭАВ) = 2160сек. = 36мин. = 0,6час.

Потребленная при этом электроэнергия:

0,6час. х 60вт. + 0,25вт. (собственное потребление ЭАВ) х 24час. = 42вт.

Нетрудно подсчитать, что потребление электроэнергии снизилось в 1440вт. : 42вт. = 34,3 (практические испытания с установкой контрольного электросчетчика показали, что фактическое потребление электроэнергии снизилось более чем в 40 раз).

Окупаемость определим как отношение затрат на приобретение, установку и обслуживание ЭАВ к суточной экономии.

При данном варианте установки ЭАВ окупаемость составит:

(294 руб. + 40руб.) : (1,4квт х 1,60руб/кВт.) = 149 сут.,

где:

-294 руб. - стоимость ЭАВ;

-40 руб. - расходы на установку.

- расходы на обслуживание не предусмотрены;

- 1,4квт - суточная экономия электроэнергии (1440вт - 42вт = 1398вт = 1,4квт)

- 1,60 руб/кВт - тариф на электроэнергию (для примера).

Таким образом, окупаемость одного ЭАВ при данном варианте установки составит менее 5-ти месяцев.

При расчете экономической эффективности не учитывалась экономия от увеличения срока службы электроламп (статистика по данной теме до сих пор не конкретизирована, так как электролампы при применении плавного накала при включении практически не выходят из строя).

Технология пошагового освещения подъезда применена в самом северном городе, Свердловской области - Североуральске. Свет в подъездах загорается по мере продвижения человека по лестнице. За счет этой технологии экономия составляет около 17%.

По словам заместителя министра энергетики и ЖКХ Николая Смирнова, осуществившего проверку реализации Программ Фонда реформирования ЖКХ в Североуральске, технология пошагового освещения подъезда будет рекомендована к применению при проведении ремонтов за счет региональных средств, а в случае одобрения заявки области на 2010 год, в рамках дальнейшей реализации 185 федерального закона.

Устройство «одноканального» акустического выключателя показано на вкладке, а его принципиальная схема приведена в тексте.

Схема акустического выключателя

Сначала разберем по схеме работу автомата. Начнем, естественно, с того момента, когда раздался звуковой сигнал. Микрофон ВМ1, являющийся датчиком автомата, преобразовал его в электрический сигнал звуковой частоты. С движка подстроечного резистора R1 (он является регулятором усиления автомата, а значит, регулятором порога срабатывания акустического выключателя) часть сигнала подается через конденсатор С1 на первый каскад усилителя 34, выполненный на транзисторе VT1. Нужное для нормальной работы транзистора напряжение смещения на базе образуется благодаря включению между базой и коллектором резистора R2. С нагрузки первого каскада (резистор R3) усиленный сигнал поступает через конденсатор СЗ на следующий каскад, выполненный на транзисторе VT2 по такой же схеме, что и первый. С коллекторной нагрузки (резистор R6) сигнал подается через конденсатор С4 на несколько необычный каскад, выполненный на транзисторе VT3 Он одновременно является усилителем переменного напряжения и усилителем постоянного тока. Если сигнала нет, смещение на базе транзистора незначительное -- оно зависит от сопротивления резистора R7. Через нагрузку каскада (обмотку электромагнитного реле К1) протекает слабый ток, недостаточный для срабатывания реле. Как только на базе транзистора появляется сигнал 34, он усиливается, выделяется на обмотке реле (она представляет для таких сигналов сравнительно большое сопротивление) и поступает через конденсатор С5 на детектор. Последний выполнен на диодах VD2 и VD1. В результате напряжение смещения на базе транзистора возрастает, увеличивается и постоянный ток в цепи коллектора транзистора. Срабатывает реле К1. В таком положении реле находится недолго -- это зависит от продолжительности звукового сигнала. Но и этого времени достаточно, чтобы контакты К1.1, замкнувшись, подали сигнал на своеобразный триггер -- устройство с двумя устойчивыми состояниями,-- выполненный на реле К2.

Рассмотрим подробнее работу триггера. Сразу же после включения автомата заряжается до напряжения питания электролитический конденсатор С6 (через резистор R8 и нормально замкнутые контакты группы К2.1). Как только замыкаются контакты K1.I, конденсатор С6 подключается к обмотке реле К2, и оно срабатывает. Замыкающиеся контакты группы К2.1 подключают к источнику питания обмотку реле К2 (через резистор R9), и оно встает на самоблокировку. Теперь при размыкании контактов К1.1 реле К2 будет удерживаться током, протекающим через его обмотку и резистор R9. А конденсатор С6 при этом разрядится через резисторы R8 и R10. При следующем появлении звукового сигнала, когда вновь сработает реле К1, контакты К1.1 подключат разряженный конденсатор С6 к обмотке реле К2. При этом через цепь R9C6 потечет зарядный ток конденсатора, напряжение на обмотке реле упадет и реле отпустит. Контакты К2.1 возвратятся в исходное положение. Таким образом, от одного звукового сигнала реле К2 срабатывает, от другого -- отпускает. Соответственно его контакты К2.2 либо подключают нагрузку, питающуюся через разъем XS1, к сети, либо отключают ее. Для питания акустического реле использован блок, состоящий из понижающего трансформатора Т1 и двух-полупериодного выпрямителя, выполненного на диодах VD3--VD6 по мостовой схеме. Выпрямленное напряжение фильтруется электролитическим конденсатором С7. Чтобы предупредить возможное самовозбуждение усилителя, питание на первый каскад подается через фильтрующую цепочку R4C2. О деталях автомата. Транзисторы первых двух каскадов высокочастотные. Объясняется это вовсе не необходимыми частотными параметрами усилителя, а получением возможно большего усиления при меньшем числе каскадов. А для этого нужны транзисторы с возможно большим коэффициентом передачи. Таким требованиям отвечают П416Б. Отберите те из них, у которых коэффициент передачи 100... 120. В третьем каскаде можно использовать транзисторы МП25А, МП25Б, МП26А, МП26Б с коэффициентом передачи 30...40. В детекторе могут работать диоды Д9В--Д9Л или Д2Б--Д2Ж, а в выпрямителе -- серий Д226, Д7 с любым буквенным индексом. Постоянные резисторы -- МЛТ-0,25, подстроечный -- СПО-0,5. Электролитический конденсатор С2 -- К50-12, С6 и С7 -- К50-3, остальные конденсаторы -- МБМ. Реле К1 -- РЭС-6, паспорт РФО.452.143, с сопротивлением обмотки 550 Ом, током срабатывания 22 мА и током отпускания 10 мА. Реле К2 -- РЭС-9, паспорт РС4.524.200, с сопротивлением обмотки 500 Ом, током срабатывания 28 мА и током отпускания 7 мА. Подойдут и другие реле, но при их подборе следует помнить, что реле К1 должно срабатывать при токе не более 25 мА и отпускать при токе не менее 8 мА, а К2 срабатывать при токе не более 40 мА и отпускать при 6...15 мА.

Под эти детали и рассчитана печатная плата (см. вкладку), изготовленная из одностороннего фольгированного стеклотекстолита. Соединительные проводники выполнены методом прорезания изоляционных канавой в фольге. Для крепления реле К1 в плате вырезано окно прямоугольной формы, под колодки же с контактами реле К2 в плате выпилены фигурные отверстия. Соединения выводов обмоток и контактов обоих реле выполнены со стороны печатных проводников. С этой же стороны смонтированы резисторы R8--R10. С помощью двух уголков плата прикреплена к дну корпуса, изготовленного из органического стекла. Заготовки стенок и дна корпуса соединены между собой металлическими уголками. Верхняя крышка корпуса съемная, она крепится винтами к уголкам. Снаружи корпус можно оклеить, например, декоративной пленкой. В передней стенке корпуса вырезано отверстие диаметром 14 мм и напротив него изнутри приклеен капсюль от головных телефонов ТОН-2 -- датчик автомата. Подойдут капсюли и от других телефонов, например, ТОН-1, ТЭГ-1, капсюли ТК-47, ДЭМШ. В боковой стенке напротив подстроечного резистора просверлено отверстие под отвертку. На задней стенке размещены выключатель питания SA1 (тумблер ТВ2-1), держатель предохранителя с предохранителем FU1 и двухгнездная розетка XS1. Через отверстие в задней стенке выведен шнур питания с вилкой ХР1 на конце. Рядом с платой к дну корпуса прикреплен трансформатор питания Т1. Он самодельный и выполнен на магнитопроводе Ш16Х32. Обмотка I содержит 2200 витков провода ПЭВ-1 0,1, обмотка II -- 160 витков ПЭВ-1 0,2. Подойдет и готовый трансформатор мощностью не менее 5 Вт и с напряжением на вторичной обмотке 13...15 В. Соответственно изменятся указанные на схеме выпрямленные напряжения.

Прежде чем налаживать автомат, нужно тщательно проверить монтаж, убедиться в надежности соединений. Включив автомат, измеряют выпрямленное напряжение -- на конденсаторе С7, а затем -- напряжение на конденсаторе С2. Убедившись, что они равны указанным на схеме или отличаются не более чем на 10 %, измеряют коллекторные токи транзисторов первых двух каскадов. При необходимости коллекторный ток транзистора VT1 устанавливают точнее подбором резистора R2, а транзистора VT2 -- подбором резистора R5. После этого движок подстроечного резистора R1 устанавливают в верхнее по схеме положение, прикрывают микрофон и измеряют ток коллектора транзистора VT3. Он должен быть хотя бы на 1...2 мА ниже тока отпускания реле. Точнее этот ток устанавливают подбором резистора R7. Открыв микрофон и плавно перемещая движок подстроечного резистора из нижнего по схеме положения в верхнее, хлопают в ладоши и замечают увеличение тока коллектора транзистора VT3. При определенном положении движка резистора этот ток должен возрастать до тока срабатывания реле К1, но по окончании хлопка падать ниже тока отпускания. Далее включают в розетку XS1 вилку настольной лампы и проверяют действие триггера. При первом хлопке лампа должна, например, зажигаться, а при последующем -- гаснуть. Если же она при хлопке зажигается, а после него сразу же гаснет, значит протекающий через резистор R9 и обмотку реле К2 ток ниже тока отпускания. В этом случае достаточно подобрать резистор R9.

Может наблюдаться и такое явление -- лампа хорошо управляется хлопками, а, например, после громкого и продолжительного произнесения кого-нибудь слова не гаснет. Это свидетельствует о том, что протекающий через резистор R8 и обмотку реле К2 ток выше тока отпускания, и он удерживает якорь реле. Достаточно подобрать резистор R8 с большим сопротивлением -- и дефект будет устранен. Окончательно движок подстроечного резистора устанавливают в такое положение, при котором настольная лампа зажигается от хлопка в ладоши с расстояния 4...5 м. Стабильность работы автомата желательно проверить при пониженном на 10 % напряжении сети (например, с помощью автотрансформатора). Мощность нагрузки, подключаемой к автомату, определяется в основном допустимым током через контакты К2.2 и не должна превышать 100 Вт. Для более мощной нагрузки желательно заменить реле К2 на МКУ-48 или аналогичное, рассчитанное на коммутацию нагрузки мощностью до 500 Вт.

Благодаря этому проекту, я закрепил знания по импульсной технике.

При выполнении курсового проекта, я освоил навыки составления пояснительной записки (описание структурной схемы, описание принципиальной схемы) так же научился оформлять графическую часть, в которую вошла моя структурная схема устройства и принципиальная схема.

Навыки оформления технической документации, пригодятся мне при выполнении диплома.

электрический акустический выключатель освещение

Размещено на Allbest.ru

...

Подобные документы

  • Схемотехнические решения построения устройств дежурного освещения. Анализ работы автономного источника дежурного освещения с таймером, построение и описание его структурной и принципиальной схемы. Описание конструкции печатной платы и сборочного чертежа.

    курсовая работа [2,0 M], добавлен 10.07.2014

  • Основные параметры усилителей мощности. Чувствительность акустической системы. Описание схемы электрической структурной. Анализ схемы электрической принципиальной. Условия эксплуатации. Расчет теплового режима устройства. Суммарная интенсивность отказов.

    курсовая работа [360,2 K], добавлен 01.07.2013

  • Обзор аналогов изделия. Описание структурной схемы. Описание схемы электрической принципиальной. Разработка и расчет узлов схемы электрической принципиальной. Обоснование выбора элементов схемы. Расчет печатной платы. Тепловой расчет.

    дипломная работа [622,7 K], добавлен 14.06.2006

  • Описание функционирования системы, предназначенной для освещения больших елочных гирлянд. Элементы управляющего блока. Синтез функциональной и принципиальной схемы. Временная диаграмма работы системы. Оценка аппаратурных затрат и потребляемой мощности.

    курсовая работа [296,1 K], добавлен 10.01.2015

  • Описание принципиальной схемы автомата включения освещения. Анализ элементной базы и применяемых в устройстве полупроводниковых элементов. Габаритные размеры симистора КУ208Г. Микросхема К561ЛА7 логики КМОП, ее маркировка, распиновка, цоколевка и корпус.

    курсовая работа [1,5 M], добавлен 28.12.2015

  • Описание принципиальной электрической схемы, выбор и расчет ее главных элементов, конструкция. Алгоритм функционирования программного обеспечения, описание и принципы функционирования. Технология подготовки и отладки, анализ результатов тестирования.

    реферат [1,5 M], добавлен 08.01.2015

  • Функциональная схема тиристорного преобразователя. Выбор элементов силовой схемы. Расчет надежности трехфазной мостовой схемы выпрямления. Расчет трансформатора с учетом коэффициента запаса. Трансформатор силовой согласующий, автоматический выключатель.

    курсовая работа [225,2 K], добавлен 31.05.2016

  • Анализ прохождения сигнала в схеме электрической принципиальной. Составление структурной схемы: порядок, этапы и принципы. Расчет показателей надежности изделия. Перечень наиболее вероятных отказов и их внешних проявлений, разработка диагностики.

    курсовая работа [212,0 K], добавлен 05.12.2011

  • Разработка структурной схемы электронно-лучевого осциллографа. Методика расчета базовых усилительных каскадов и расчет элементов принципиальной электрической схемы. Выбор тактового генератора - кварцевого автогенератора с буферным выходным элементом.

    курсовая работа [1,1 M], добавлен 12.03.2013

  • Назначение и область применения микромощного радиопередатчика для охранной сигнализации. Анализ схемы электрической принципиальной передатчика. Расчет электрических параметров печатных проводников. Расчет вибро- и ударопрочности. Технология сборки узла.

    курсовая работа [449,3 K], добавлен 29.05.2014

  • Общее понятие об интегральных микросхемах, их назначение и применение. Описание электрической принципиальной схемы логического устройства, выбор и обоснование элементной базы. Расчет тепловых процессов устройства, оценка помехоустойчивости и надежности.

    курсовая работа [90,5 K], добавлен 06.12.2013

  • Основные структуры, характеристики и методы контроля интегральных микросхем АЦП. Разработка структурной схемы аналого-цифрового преобразователя. Описание схемы электрической принципиальной. Расчет надежности, быстродействия и потребляемой мощности.

    курсовая работа [261,8 K], добавлен 09.02.2012

  • Составление баланса мощностей для электрической схемы. Расчет сложных электрических цепей постоянного тока методом наложения токов и методом контурных токов. Особенности второго закона Кирхгофа. Определение реальных токов в ветвях электрической цепи.

    лабораторная работа [271,5 K], добавлен 12.01.2010

  • Технические характеристики, описание конструкции и принцип действия (по схеме электрической принципиальной). Выбор элементной базы. Расчёт печатной платы, обоснование ее компоновки и трассировки. Технология сборки и монтажа устройства. Расчет надежности.

    курсовая работа [56,7 K], добавлен 07.06.2010

  • Описание схемы автоматического включателя освещения на базе датчика движения, его внутренняя структура и элементы, принцип работы, специфика и сферы практического применения. Описание симистора и фотодиода, их функциональные особенности и назначение.

    курсовая работа [180,4 K], добавлен 04.09.2014

  • Расчет линейных электрических цепей постоянного тока. Расчет однофазных и трехфазных линейных электрических цепей переменного тока. Определение токов во всех ветвях схемы на основании законов Кирхгофа. Метод контурных токов. Баланс мощностей цепи.

    курсовая работа [876,2 K], добавлен 27.01.2013

  • Расчет цепей смещения и питания транзистора. Выбор радиодеталей для цепей связи, фильтрации, питания для схемы оконечного каскада. Расчет принципиальной схемы передатчика. Электрический расчет генератора, управляемого напряжением с частотной модуляцией.

    курсовая работа [461,5 K], добавлен 04.11.2014

  • Изучение устройства автомата уличного освещения и его технических параметров. Разработка структурной схемы выключателя, описание принципиальной схемы устройства. Обзор методов настройки и регулировки устройства с целью его максимальной работоспособности.

    курсовая работа [752,7 K], добавлен 28.01.2021

  • Создание электрической структурной и принципиальной схем, выбор элементной базы датчика, используемого для обнаружения металла под землей. Описание специфики проектирования, эксплуатации и утилизации данного устройства. Визуальный вывод информации.

    курсовая работа [1,2 M], добавлен 28.05.2013

  • Анализ особенностей устройства и технических требований; принципиальной электрической схемы. Выбор элементной базы с оформлением эскизов по установке навесных элементов. Разработка компоновочного эскиза устройства. Расчет критерия компоновки схемы.

    контрольная работа [546,4 K], добавлен 24.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.