Разработка измерителя концентрации угарного газа для гостиничных комплексов

Анализ проектирования сигнализатора утечки бытового газового вещества: технология изготовления печатных плат; обоснование, конструкторские показатели и расчёты по организации производства измерителя концентрации угарного газа для гостиничных комплексов.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 03.02.2014
Размер файла 3,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Резка заготовок

2. Пробивка базовых отверстий

3. Подготовка поверхности заготовок

4. Нанесение сухого пленочного фоторезиста

5. Нанесение защитного лака

6. Сверловка отверстий

7. Химическое меднение

8. Снятие защитного лака

9. Гальваническая затяжка

10. Электролитическое меднение и нанесение защитного покрытия ПОС-61

11. Снятие фоторезиста

12. Травление печатной платы

13. Осветление печатной платы

14. Оплавление печатной платы

15. Механическая обработка

Далее рассмотрена каждая операция более подробно.

Фольгированные диэлектрики выпускаются размерами 1000-1200 мм, поэтому первой операцией практически любого технологического процесса является резка заготовок. Для резки фольгированных диэлектриков используют роликовые одноножевые, многоножевые и гильотинные прецизионные ножницы. На одноножевых роликовых ножницах можно получить заготовки размером от 50 х 50 до 500 х 900 мм при толщине материала 0.025-3 мм. Скорость резания плавно регулируется в пределах 2-13.5 м/мин. Точность резания 1.0 мм. Для удаления пыли, образующейся при резании заготовки, ножницы оборудованы пылесосом. В данном технологическом процессе будем применять одноножевые роликовые ножницы при скорости резания 5 м/мин.

Из листов фольгированного диэлектрика одноножевыми роликовыми ножницами нарезается заготовки требуемых размеров с припуском на технологическое поле по 10 мм с каждой стороны. Далее с торцов заготовки необходимо снять напильником заусенцы во избежание повреждения рук во время технологического процесса. Качество снятия заусенцев определяется визуально.

Резка заготовок не должна вызывать расслаивания диэлектрического основания, образования трещин, сколов, а также царапин на поверхности заготовок.

Базовые отверстия необходимы для фиксации платы во время технологического процесса. Сверловка отверстий является разновидностью механической обработки. Это одна из самых трудоемких и важных операций. При выборе сверлильного оборудования необходимо учитывать следующие основные особенности: изготовление нескольких тысяч отверстий в смену, необходимость обеспечения перпендикулярных отверстий поверхности платы, обработка плат без заусенцев. При сверлении важнейшими характеристиками операции являются: конструкция сверлильного станка, геометрия сверла, скорость резания и скорость осевой подачи. Для правильной фиксации сверла используются специальные высокоточные кондукторы. Кроме того, необходимо обеспечить моментальное удаление стружки из зоны сверления. Как известно стеклотекстолит является высокоабразивным материалом, поэтому необходимо применять твердосплавные сверла. Применение сверл из твердого сплава позволяет значительно повысить производительность труда при сверлении и улучшить чистоту обработки отверстий. В большинстве случаев заготовки сверлят в пакете, высота пакета до 6 мм.

В данном технологическом процессе заготовки сверлят в пакете на сверлильном станке С-106. Скорость вращения сверла при этом должна быть в пределах 15 000-20 000 об/мин, а осевая скорость подачи сверла - 5-10 мм/мин .Заготовки собираются в кондукторе, закрепляются и на сверлильном

станке просверливаются базовые отверстия.

От состояния поверхности фольги и диэлектрика во многом определяется адгезия наносимых впоследствии покрытий. Качество подготовки поверхности имеет важное значение как при нанесении фоторезиста, так и при осаждении металла.

Широко используют химические и механические способы подготовки поверхности или их сочетание. Консервирующие покрытия легко снимаются

органическим растворителем, с последующей промывкой в воде и сушкой. Окисные пленки, пылевые и органические загрязнения удаляются последовательной промывкой в органических растворителях (ксилоле, бензоле, хладоне) и водных растворах фосфатов, соды, едкого натра.

Удаление оксидного слоя толщиной не менее 0.5 мкм производят механической очисткой крацевальными щетками или абразивными валками. Недостаток этого способа - быстрое зажиривание очищающих валков, а затем, и очищающей поверхности. Часто для удаления оксидной пленки применяют гидроабразивную обработку. Высокое качество зачистки получают при обработке распыленной абразивной пульпой. Гидроабразивная обработка удаляет с фольги заусенцы, образующиеся после сверления, и очищает внутренние медные торцы контактных площадок в отверстиях многосторонних печатных плат от эпоксидной смолы.

Высокое качество очистки получают при сочетании гидроабразивной обработки с использованием водной суспензии и крацевания. На этом принципе работают установки для зачистки боковых поверхностей заготовок и отверстий печатных плат нейлоновыми щетками и пемзовой суспензией.

Обработка поверхности производится вращающимися латунными щетками в струе технологического раствора. Установка может обрабатывать заготовки максимальным размером 500х500 мм при их толщине 0.1-3.0 мм, частота вращения щеток 1200 об/мин, усилие поджатия плат к щеткам 147 Н.

Химическое удаление оксидной пленки (декапирование) наиболее эффективно осуществляется в 10 процентном растворе соляной кислоты. К качеству очистки фольгированной поверхности предъявляют высокие требования, так как от этого во многом зависят адгезия фоторезиста и качество рисунка схемы. В данном технологическом процессе подготовка поверхности заготовок производится декапированием заготовок в 5% раствором соляной кислоты и обезжириванием венской известью. Для этого необходимо поместить заготовки на 15 сек в 5 процентный раствор соляной кислоты при температуре 18-25 С, затем промыть заготовки в течение 2-3 мин в холодной проточной воде при температуре 18- 25 С, далее зачистить заготовки венской известью в течение 2-3 мин, снова промыть заготовки в холодной проточной воде при температуре 18-25 С в течение 2-3 мин, затем декапировать заготовки в 5 процентном растворе соляной кислоты в течение 1-3 сек при температуре 18-25 С, опять промыть заготовки в холодной проточной воде в течение 1-2 мин при температуре 20 C, промыть заготовки в дистиллированной воде при температуре 20 C в течение 1-2 мин, и затем сушить заготовки сжатым воздухом при температуре 180-250 С до полного их высыхания. После всех этих операций необходимо проконтролировать качество зачистки поверхности фольги. Контроль рабочий.

От фоторезиста очень часто требуется высокое разрешение, а это достигается только на однородных, без проколов пленках фоторезистов, имеющих хорошее сцепление с фольгой. Вот почему предъявляются такие высокие требования к предыдущим операциям. Необходимо свести до минимума содержание влаги на плате или фоторезисте, так как она может стать причиной проколов или плохой адгезии. Все операции с фоторезистом нужно проводить в помещении при относительной влажности не более 50 %. Для удаления влаги с поверхности платы применяют сушку в термошкафах.

В зависимости от применяемого фоторезиста существуют несколько методов нанесения фоторезиста на поверхность фольгированного диэлектрика. Жидкий фоторезист наносится методом окунания, полива, разбрызгиванием, электростатическим распылением с последующей сушкой при температуре 40 С в центрифуге до полного высыхания. Такая сушка обеспечивает равномерность толщины слоя. При применении жидкого фоторезиста необходимо обеспечивать высокую равномерность наносимого слоя по заготовке и исключать потерю фоторезиста. Известны установки нанесения жидкого фоторезиста валковым способом с последующей сушкой теплонагревателями. Этот способ обеспечивает равномерную толщину фоторезиста на заготовках с предварительно просверленными отверстиями.

Более производительной является заготовка нанесения жидкого фоторезиста способом медленного вытягивания заготовки с заданной скоростью из объема фоторезиста. При этом обеспечивается толщина наносимого слоя фоторезиста в 3-4 мкм. Такая установка может обрабатывать заготовки размерами от 70х80 мм до 500х500 мм, при объеме ванны 0.35 м3, скорости вытягивания заготовки 0.143-0.430 м/мин, температуре сушки 35-120 С, времени сушки 20 мин и производительности 75 шт/ч.

Для повышения защитных свойств жидкого фоторезиста после экспонирования и проявления проводят его термическое дубление. Для этой цели используют шкафы с электрокалорифером. При температуре нагрева камеры до 1500 С, цикл дубления длится 4-4.5 ч. Более эффективным является применение установок дубления фоторезиста в расплаве солей.

Для экспонирования рисунка схемы рекомендуются установки с равномерным световым потоком по всей площади светокопирования, невысокой рабочей температурой ламп для предотвращения перегрева фотошаблона.

Возрастающие требования к точности и качеству схем, необходимость автоматизации процессов и рост объемов выпуска плат привели к замене жидких фоторезистов сухим пленочным фоторезистом (СПФ). Широкое внедрение сухопленочных фоторезистов привело к тому, что все ведущие предприятия-изготовители печатных плат в настоящее время располагают всем необходимым технологическим и контрольным оборудованием для их применения.

СПФ состоит из слоя полимерного фоторезиста, помещенного между двумя защитными пленками. Для обеспечения возможности нанесения сухопленочных фоторезистов на автоматическом оборудовании пленки поставляются в рулонах. На поверхность заготовки СПФ наносится в установках ламинирования. Адгезия СПФ к металлической поверхности заготовок обеспечивается разогревом пленки фоторезиста на плите до размягчения с последующим прижатием при протягивании заготовки между валками. Установка снабжена термопарой и прибором контроля температуры нагрева пленки фоторезиста. На установке можно наносить СПФ на заготовки шириной до 600 мм со скоростью их прохождения между валками 1.0-3.0 м/мин. Фоторезист нагревается до температуры 110-120 С. В процессе нанесения одну защитную пленку с фоторезиста удаляют, в то время как другая остается и защищает фоторезист с наружной стороны.

В данном технологическом процессе применяется сухой пленочный фоторезист СПФ-2, наносимый на ламинаторе КП 63.46.4.

В данном случае рисунок схемы получают методом фотопечати. Для этого перед нанесением фоторезиста заготовку необходимо выдержать в сушильном шкафу при температуре 75 С в течение 1 часа, затем последовательно на необходимую сторону заготовки нанести фоторезист, обрезать ножницами излишки по краям платы, освободить базовые отверстия от фоторезиста, выдержать заготовки при неактиничном освещении в течение 30 мин при температуре собрать пакет из фотошаблона и платы, экспонировать заготовки в установке экспонирования КП 6341, снова выдержать заготовки при неактиничном освещении в течение 30 мин при температуре 18-20 С, проявить заготовку в установке проявления АРС-2.950.000, затем промыть платы в мыльном растворе, промыть заготовки в холодной проточной воде в течение 1-2 мин при температуре 20 С, декапировать заготовки в 20%-ном растворе серной кислоты в течение 1 мин при температуре 20 С, снова промыть заготовки в холодной проточной воде в течение 1-2 мин при температуре 20 С, сушить заготовки сжатым воздухом. После этого следует проконтролировать проявленный рисунок. После экспонирования заготовки, перед проявлением, необходимо удалить пленку, защищающую фоторезист.

Лак наносится для того, чтобы защитить поверхность платы от процесса химического меднения. Лак обычно наносится окунанием в ванну с лаком, поливом платы с наклоном в 10-150 или распылением из пульверизатора. Затем плата сушится в сушильном шкафу при температуре 60-150 С в течение 2-3 ч. Температура сушки задается предельно допустимой температурой для навесных электрорадиоэлементов, установленных на печатную плату. Лак для защитного покрытия должен обладать следующими свойстами: высокой влагостойкостью, хорошими диэлектрическими параметрами (малыми диэлектрической проницаемостью и тангенсом угла диэлектрических потерь), температуростойкостью, химической инертностью и механической прочностью.

При выборе лака для защитного покрытия следует также учитывать свойства материалов, использованных для изготовления основания печатной платы и для приклеивания проводников, чтобы при полимеризации покрытия не произошло изменения свойств этих материалов.

Существуют различные лаки для защитного покрытия, такие как лак СБ-1с на основе фенолформальдегидной смолы, лак Э-4100 на основе эпоксидной смолы лак УР-231 и другие.

В данном технологическом процессе в качестве защитного покрытия применяется лак СБ-1с. Для нанесения лака на поверхность заготовки необходимо окунуть заготовки в кювету с лаком на 2-3 сек, температура лака должна быть в пределах 18-25 С, а затем следует сушить заготовки в термошкафе КП 4506 в течение полутора часов при температуре 120 С.

Наиболее трудоемкий и сложный процесс в механической обработке печатных плат - получение отверстий под металлизацию. Их выполняют главным образом сверлением, так как сделать отверстия штамповкой в применяемых для производства плат стеклопластиках трудно. Для сверления стеклопластиков используют твердосплавный инструмент специальной конструкции. Применение инструмента из твердого сплава позволяет значительно повысить производительность труда при сверлении и зенковании и улучшить чистоту обработки отверстий. Чаще всего сверла изготавливают из твердоуглеродистых сталей марки У-10, У-18, У-7. В основном используют две формы сверла: сложнопрофильные и цилиндрические. Так как стеклотекстолит является высокоабразивным материалом, то стойкость сверл невелика. Так, например, стойкость тонких сверл - около 10 000 сверлений.

При выборе сверлильного оборудования необходимо учитывать такие

особенности, как изготовление нескольких миллионов отверстий в смену, диаметр отверстий 0.4 мм и меньше, точность расположения отверстий 0.05 мм и выше, необходимость обеспечения абсолютно гладких и перпендикулярных отверстий поверхности платы, обработка плат без заусенцев и так далее. Точность и качество сверления зависит от конструкции станка и сверла.

В настоящее время используют несколько типов станков для сверления печатных плат. В основном это многошпиндельные высокооборотные станки с программным управлением, на которых помимо сверлений отверстий в печатных платах одновременно производится и зенкование или сверление отверстий в пакете без зенкования.

Широко применяется также одношпиндельный полуавтомат, который может работать как с проектором, так и со щупом. На станке можно обрабатывать заготовки плат максимальным размером 520х420 мм при толщине пакета 12 мм. Частота вращения шпинделя 15 000-30 000 об/мин (изменяется ступенчато). Максимальный диаметр сверления 2,5 мм.

Более производительным является четырехшпиндельный станок с программным управлением, на котором можно одновременно обрабатывать одну, две или четыре (в зависимости от размера) печатных плат по заданной программе. Станок обеспечивает частоту вращения шпинделя 10 000-40 000 об/мин, максимальную подачу шпинделя 1000 об/мин, толщину платы или пакета 0.1-3.0 мм, диаметр сверления 0.5-2.5 мм.

Разработан специальный полуавтоматический станок с программным управлением, предназначенный для сверления и двустороннего зенкования отверстий в МПП. Станок имеет позиционную систему программного правления с релейным блоком и контактным считыванием. Полуавтомат имеет два шпинделя - сверлильный и зенковальный. Частота вращения первого бесступенчато может изменяться в пределах 0-33 000 об/мин, второй шпиндель имеет постоянную частоту вращения 11 040 об/мин. На станке возможно вести обработку плат размером 350х220 мм, толщиной 0.2-4.5 мм. Максимальный диаметр сверления 2.5 мм, зенкования - 3.0 мм. Скорость подачи шпинделей: сверлильного - 1960 мм/мин, зенковального - 1400 мм/мин.

Совершенствование сверлильного оборудования для печатных плат ведется в следующих направлениях: увеличения числа шпинделей; повышения скорости их подачи и частоты вращения; упрощения методов фиксации плат на столе и их совмещение; автоматизации смены сверла; уменьшения шага перемещения; увеличение скорости привода; создание систем, предотвращающих сверление отверстий по незапрограммированной координате с повторным сверлением по прежней координате; перехода на непосредственное компьютерное управление станка.

Сверление не исключает возможности получения отверстий и штамповкой, если это допускается условиями качества или определяется формой отверстий. Так, штамповкой целесообразно изготавливать отверстия в односторонних платах, не требующих высокого качества под выводы элементов и в слоях МПП, изготавливаемых методом открытых контактных площадок, где перфорационные окна имеют прямоугольную форму.

В данном технологическом процессе сверление отверстий производится на одношпиндельном сверлильном станке КД-10. Необходимо обеспечивать следующие режимы сверления: 20 000-25 000 об/мин, скорость осевой подачи шпинделя 2-10 мм/мин.

Перед сверлением отверстий необходимо подготовить заготовки и оборудование к работе. Для этого нужно промыть заготовки в растворе очистителя в течение 1-2 мин при температуре 20 С, промыть заготовки в холодной проточной воде в течение 1-2 мин при температуре 20 С, промыть

заготовки в 10% растворе аммиака в течение 1-2 мин при температуре 20 С, снова промыть заготовки в холодной проточной воде в течение 2-3 мин при температуре 18-20 С, подготовить станок КД-10 к работе согласно инструкции по эксплуатации, затем обезжирить сверло в спирто-бензиновой смеси, собрать пакет из трех плат и фотошаблона, далее сверлить отверстия согласно чертежу. После сверления необходимо удалить стружку и пыль с платы и продуть отверстия сжатым воздухом. После этого следует проверить количество отверстий и их диаметры, проверить качество сверления. При сверлении не должно образовываться сколов, трещин. Стружку и пыль следует удалять сжатым воздухом.

Химическое меднение, является первым этапом металлизации отверстий. При этом возможно получение плавного перехода от диэлектрического основания к металлическому покрытию, имеющих разные коэффициенты теплового расширения. Процесс химического меднения, основан на восстановлении ионов двухвалентной меди из ее комплексных солей. Толщина слоя химически осажденной меди 0.2- 0.3 мкм. Химическое меднение можно проводить только после специальной подготовки - каталитической активации, которая может проводиться одноступенчатым и двухступенчатым способом.

При двухступенчатой активации печатную плату сначала обезжиривают, затем декапируют торцы контактных площадок. Далее следует первый шаг активации - сенсибилизация, для чего платы опускают на 2-3 мин в соляно-кислый раствор дихлорида олова. Второй шаг активации - палладирование, для чего платы помещают на 2-3 мин в соляно-кислый раствор дихлорида палладия. Адсорбированные атомы палладия являются высокоактивным катализатором для любой химической реакции. При одноступенчатой активации предварительная обработка (обезжиривание и декапирование) остается такой же, а активация происходит в коллоидном растворе, который содержит концентрированную серную кислоту.

В данном случае процесс химического меднения состоит из следующих операций: обезжирить платы в растворе тринатрий фосфата и кальцинированной соли в течение 5-10 мин при температуре 50-60 С; промыть платы горячей проточной водой в течение 1-2 мин при температуре 50-60 С; промыть платы холодной проточной водой в течение 1-2 мин при температуре 20 С; декапировать торцы контактных площадок в 10 процентном растворе соляной кислоты в течение 3-5 сек при температуре 18-25 С; промыть платы холодной проточной водой в течение 1-2 мин при температуре 18-25 С; промыть платы в дистиллированной воде в течение 1-2 мин при температуре 18-25 С; активировать в растворе хлористого палладия, соляной кислоты, двухлористого олова и дистиллированной воды в течение 10 мин при температуре 18-25 С; промыть платы в дистиллированной воде в течение 1-2 мин при температуре 20 С; промыть платы в холодной проточной воде в течение 1-2 мин при температуре 20 С; обработать платы в растворе ускорителя в течение 5 мин при температуре 20 С; промыть платы в холодной проточной воде в течение 1-2 мин при температуре 20 С; произвести операцию электрополировки с целью снятия металлического палладия с поверхности платы в течение 2 мин при температуре 20 С; промыть платы горячей проточной водой в течение 2- 3 мин при температуре 50 С; протереть поверхность платы бязевым раствором в течение 2-3 мин; промыть платы холодной проточной водой в течение 1-2 мин при температуре 20 С; произвести визуальный контроль электрополировки (плата должна иметь блестящий или матовый вид, при появлении на плате темных пятен, которые не удаляются во время промывки, необходимо увеличить время электрополировки до 6 мин); произвести операцию химического меднения в течение 10 мин при температуре 20 С; промыть платы в холодной проточной воде в течение 1-2 мин при температуре 20 С; визуально контролировать покрытие в отверстиях.

Перед гальваническим меднением необходимо снять слой защитного лака с поверхности платы. В зависимости от применяемого лака существуют различные растворители. Некоторые лаки возможно снять ацетоном.

В данном технологическом процессе защитный лак снимается в растворителе 386. Для этого платы необходимо замочить на 2 часа в растворителе 386, а затем снять слой лака беличьей кистью, после этого промыть платы в холодной проточной воде в течение 2-3 мин при температуре 20 С, контролировать качество снятия защитного лака (на поверхности лака не должны оставаться места, покрытые пленками лака).

Слой химически осажденной меди обычно имеет небольшую толщину (0.2-0.3 мкм), рыхлую структуру, легко окисляется на воздухе, непригоден для токопрохождения, поэтому его защищают гальваническим наращиванием (“затяжкой”) 1-2 мкм гальванической меди.

Для этого необходимо декапировать платы в 5 процентный растворе соляной кислоты в течение 1-3 сек при температуре 18-25 С, промыть платы в холодной проточной воде в течение 2-3 мин при температуре 18-25 С, зачистить платы венской известью в течение 2-3 мин при температуре 18-25 С, промыть платы в холодной проточной воде в течение 2-3 мин при температуре 18-25 С, снова декапировать заготовки в 5%-ном растворе соляной кислоты в течение 1-3 сек при температуре 18-25 С, промыть платы в холодной проточной воде в течение 1-2 мин при температуре 20 С, промыть платы в дистиллированной воде в течение 1-2 мин при температуре произвести гальваническую затяжку в течение 10-15 мин при температуре 20 С, промыть платы холодной проточной водой в течение 1-2 мин при температуре 18-25 С, сушить платы сжатым воздухом при температуре 18-25 С до полного их высыхания, контролировать качество гальванической затяжки (отверстия не должны иметь непокрытий, осадок должен быть плотный, розовый, мелкокристаллический).

После гальванической затяжки слой осажденной меди имеет толщину 1-2 мкм. Электролитическое меднение доводит толщину в отверстиях до 25 мкм, на проводниках - до 40-50 мкм.

Электролитическое меднение включает в себя следующие операции: ретушь под микроскопом краской НЦ-25 беличьей кистью № 1; декапирование плат в 5 процентном растворе соляной кислоты в течение 1-3 сек при температуре 20 С; промывка плат холодной проточной водой в течение 1-2 мин при температуре 20 С; зачистка плат венской известью в течение 2-3 мин при температуре 18-25 С; промывка плат холодной проточной водой в течение1-2 мин при температуре 18-25 С; декапирование плат в 5 процентном растворе соляной кислоты в течение 1мин при температуре 18-25 С; промыть платы холодной проточной водой в течение 1-2 мин при температуре 18-25 С; произвести гальваническое меднение в растворе борфтористоводородной кислоты, борной кислоты, борфтористоводородной меди и дистиллированной воды в течение 80-90 мин при температуре 20 С; промыть платы холодной проточной водой в течение 1-2 мин при температуре 20 С; произвести визуальный контроль покрытия (покрытие должно быть сплошным без подгара, не допускаются механические повреждения, отслоения и вздутия).

Чтобы при травлении проводники и контактные площадки не стравливались их необходимо покрыть защитным металлическим покрытием. Существует различные металлические покрытия (в основном сплавы), применяемые для защитного покрытия. В данном технологическом процессе применяется сплав олово-свинец. Сплав олово-свинец стоек к воздействию травильных растворов на основе персульфата аммония, хромового ангидрида и других, но разрушается в растворе хлорного железа, поэтому в качестве травителя раствор хлорного железа применять нельзя.

Для нанесения защитного покрытия необходимо промыть платы дистиллированной водой в течение 1-2 мин при температуре 18-25 С, затем произвести гальваническое покрытие сплавом олово-свинец в растворе борфтористоводородной кислоты, борной кислоты, мездрового клея, нафтохинондисульфоновой кислоты, 25 процентов аммиака, металлического свинца, металлического олова, гидрохинона и дистиллированной воды в течение 12-15 мин при температуре 20 С, промыть платы в горячей проточной воде в течение 1-2 мин при температуре 50 С, промыть платы в холодной водопроводной воде в течение 1-2 мин при температуре 20 С, сушить платы сжатым воздухом в течение 2-3 мин при температуре 20 С, удалить ретушь ацетоном с поля платы, контролировать качество покрытия (покрытие должно быть сплошным без подгара, не допускаются механические повреждения, отслоения и вздутия).

Перед операцией травления фоторезист с поверхности платы необходимо снять. При большом объеме выпуска плат это следует делать в установках снятия фоторезиста (например, АРС-2.950.000). При небольшом количестве плат фоторезист целесообразней снимать в металлической кювете щетинной кистью в растворе хлористого метилена. В данном технологическом процессе фоторезист снимаетсять в установке снятия фоторезиста АРС-2.950.000 в течение 5-10 мин при температуре 18-25 С,

после этого необходимо промыть платы в холодной проточной воде в течение 2- 5 мин при температуре 18-25 С.

Травление предназначено для удаления незащищенных участков фольги с поверхности платы с целью формирования рисунка схемы.

Существует несколько видов травления: травление погружением, травление с барботажем, травление разбрызгиванием, травление распылением. Травление с барботажем заключается в создании в объеме травильного раствора большого количества пузырьков воздуха, которые приводят к перемешиванию травильного раствора во всем объеме, что способствует увеличению скорости травления.

Существует также несколько видов растворов для травления: раствор хлорного железа, раствор персульфата аммония, раствор хромового ангидрида и другие. Чаще всего применяют раствор хлорного железа.

Скорость травления больше всего зависит от концентрации раствора. При сильно и слабо концентрированном растворе травление происходит медленно. Наилучшие результаты травления получаются при плотности раствора 1,3 г/см3. Процесс травления зависит также и от температуры травления. При температуре выше 25С процесс ускоряется, но портится защитная пленка. При комнатной температуре медная фольга растворяется за 30 сек до 1 мкм.

В данном технологическом процессе в качестве защитного покрытия использован сплав олово-свинец, который разрушается в растворе хлорного железа. Поэтому в качестве травильного раствора применяется раствор на основе персульфата аммония. В данном случае применяется травление с барботажем. Для этого необходимо высушить плату на воздухе в течение 5-10 мин при температуре 18-20С, при необходимости произвести ретушь рисунка белой краской НЦ-25, травить платы в растворе персульфата аммония в течение 5-10 мин при температуре не более 500 С, промыть платы в 5%-ном растворе водного аммиака, промыть платы в горячей проточной воде в течение 3-5 мин при температуре 50-60 С, промыть платы в холодной проточной воде в течение 2-5 мин при температуре 18-25 С, сушить платы на воздухе в течение 5-10 мин при температуре 18-25 С, контролировать качество травления (фольга должна быть вытравлена в местах, где нет рисунка. Оставшуюся около проводников медь подрезать скальпелем. На проводниках не должно быть протравов).

Осветление покрытия олово-свинец проводится в растворе двухлористого олова, соляной кислоты и тиомочевины. Для этого необходимо погрузить плату на 2-3 мин в раствор осветления при температуре 60-70 С, промыть платы горячей проточной водой в течение 2-3 мин при температуре 50 С, промыть платы холодной проточной водой в течение 1-2 мин при температуре 18-20 С, промыть платы дистиллированной водой в течение 1-2 мин при температуре 18-50 С.

Оплавление печатной платы производится с целью покрытия проводников и металлизированных отверстий оловянно-свинцовым припоем. Наиболее часто применяют конвейерную установку инфракрасного оплавления ПР-3796.

Для оплавления печатных плат необходимо высушить платы в сушильном шкафу КП-4506 в течение 1 часа при температуре 80С, затем флюсовать платы флюсом ВФ-130 в течение 1-2 мин при температуре 20-50 С, выдержать платы перед оплавлением в сушильном шкафу в вертикальном положении в течение 15- 20 мин при температуре 80-50 С, подготовить установку оплавления ПР-3796 согласно инструкции по эксплуатации, загрузить платы на конвейер установки, оплавить плату в течение 20 мин при температуре 50-100 С, промыть платы от остатков флюса горячей проточной водой в течение 1-2 мин при температуре 50-100 С, промыть плату холодной проточной водой в течение 1-2 мин при температуре 18-25 С, промыть плату дистиллированной водой в течение 1-2 мин при температуре 20-50 С, сушить платы в течение 45 мин при температуре 85-50 С в сушильном шкафу КП-4506, контролировать качество оплавления на поверхности проводников и в металлизированных отверстиях визуально.

Проводники должны иметь блестящую гладкую поверхность. Допускается на поверхности проводников наличие следов кристаллизации припоя и частично непокрытые торцы проводников.

Не допускается отслаивание проводников от диэлектрической основы и заполнение припоем отверстий диаметром большим 0,8 мм. Не допускается наличие белого налета от плохо отмытого флюса на проводниках и в отверстиях печатной платы.

Механическая обработка необходима для обрезки печатных плат по размерам (отрезка технологического поля) и снятия фаски. Существует несколько способов механической обработки печатных плат по контуру. Бесстружечная обработка печатных плат по контуру отличается низкими затратами при использовании специальных инструментов. При этом исключается нагрев обрабатываемого материала. Обработка осуществляется дисковыми ножницами. Линия реза должна быть направлена так, чтобы не возникло расслоения материала. Внешний контур односторонних печатных плат при больших сериях формируется на скоростных прессах со специальным режущим инструментом. Многосторонние печатные платы бесстружечным методом не обрабатываются, так как велика возможность расслоения.

Механическая обработка печатных плат по контуру со снятием стружки осуществляется на специальных дисковых пилах, а также на станках

для снятия фаски. Эти станки снабжены инструментами или фрезами из твердых сплавов или алмазными инструментами. Скорость резания таких станков 500-2000 мм/мин. эти станки имеют следующие особенности: высокую скорость резания, применение твердосплавных или алмазных инструментов, резка идет с обязательным равномерным охлаждением инструмента, обеспечение незначительных допусков, простая и быстрая замена инструмента.

Широко используют широкоуниверсальный фрезерный станок повышенной точности типа 675П. На станке выполняют фрезерные работы цилиндрическими, дисковыми, фасонными, торцовыми, концевыми, шпоночными и другими фрезами.

В данном технологическом процессе обрезка платы производится с помощью дисковых ножниц, а снятие фасок - на станке для снятия фасок типа ГФ-646. Для этого необходимо обрезать платы на дисковых ножницах, снять фаски на станке для снятия фасок ГФ-646, промыть платы в горячей воде с применением стирально-моющего средства в течение 2-3 мин при температуре 55+/-5 С, затем промыть платы в дистиллированной воде в течение 1-2 мин при температуре 20+/-2 С, сушить платы в сушильном шкафу КП 4506. После этого следует визуально проконтролировать печатные платы на отслаивание проводников.

3.6 Техника безопасности

К работе с оборудованием допускаются лица, достигшие восемнадцатилетнего возраста, и прошедшие инструктаж по технике безопасности на данном оборудование на рабочем месте.

Все технологические операции необходимо выполнять в соответствии с инструкциями.

Операции резка, сверление, механическая обработка необходимо выполнять в защитных очках, халате х/б ТУ 17.543-70 и перчатках.

Операции связанные с химическими растворами необходимо выполнять в халате кислостойком ГОСТ 12.4.015-76, перчатках резиновых, перчатках хирургических ГОСТ 12.4.029-76, фартуке прорезиненном.

В случае попадания раствора на кожу пораженное место срочно промыть.

Помещения должны быть оборудованы вытяжными устройствами.

4. Безопасность жизнедеятельности

4.1 Современное законодательство по вопросам охраны труда

Законодательство об охране труда основано на положениях, закрепленных Конституцией. Конституция гарантирует гражданам России права на труд, отдых, охрану здоровья, а также на материальное обеспечение в старости, в случае болезни, при полной или частичной утрате трудоспособности [15].

После утверждения основных законодательств о труде союзные республики приняли новые Кодексы законов о труде (КЗоТы).

В основных законодательствах о труде большое внимание уделено установлению трудовых прав и обязанностей рабочих и служащих; рассматриваются коллективного и трудового договора, рабочего времени и времени отдыха, заработанной платы, трудовой дисциплины.

Юридическая ответственность может быть четырех видов: дисциплинарная, административная, уголовная и материальная.

Дисциплинарная ответственность представляет собой обязанность работников отвечать перед администрацией за невыполнение ими дисциплины труда. Основным документом, регулирующим дисциплину труда, являются типовые правила внутреннего трудового распорядка для рабочих и служащих предприятий, учреждений, организаций, утвержденные по согласованию с августа1996 Статья 11 этих правил обязывает рабочих и служащих независимо от их должности соблюдать требования по охране труда и противопожарной охране, предусмотренные соответствующими правилами и инструкциями, пользоваться средствами индивидуальной защиты. На основе этих типовых или отраслевых правил администрация предприятия разрабатывает правила внутреннего трудового распорядка, инструкции, положения, невыполнение требований которых является дисциплинарным проступком.

За нарушение трудовой дисциплины администрация может применить к работнику следующие дисциплинарные взыскания: замечание, выговор, строгий выговор, перевод на нижеоплачиваемую работу на срок до трех месяцев или смещение на низшую должность на тот же срок, увольнение. Налагать дисциплинарное взыскание может только должностное лицо на подчиненного ему работника.

Административная ответственность выражается в форме различных административных взысканий - предупреждения, общественного порицания, штрафа и др. Предупреждение и штраф налагаются не в порядке прямой подчиненности или вышестоящими хозяйственными органами, а должностными лицами, осуществляющими государственный надзор в области охраны труда, или административными комиссиями при районных и городских исполнительных комитетах Советов народных депутатов по представлению этих лиц.

Штраф за нарушение норм и правил охраны труда может налагаться только на лиц административно-управленческого персонала, причем не только в случаях, когда нарушение может создать возможность повреждения здоровья человека, но и когда нарушаются другие права трудящихся по охране труда (например, некачественное расследование несчастного случая).

Уголовная ответственность выражается в наказании лиц, допустивших нарушения правил охраны труда, которые могли повлечь или повлекли за собой несчастные случаи или другие тяжкие последствия. Степень этого наказания устанавливается рядом статей уголовного кодекса (УК). Например, по ст. 140 УК России должностные лица, постоянно или временно выполняющие обязанности по охране труда в связи с должностным положением или по распоряжению (приказу) руководителя, в зависимости от тяжести последствий могут понести наказание от штрафа, исправительных работ, увольнения до лишения свободы на разные сроки. По другим статьям к ответственности могут привлекаться как инженерно-технические работники,

так и рабочие, преступно нарушившие правила безопасности движения и эксплуатации автотранспорта (ст. 211 и 213 УК РФ), правила безопасности ведения горных работ (ст. 214 УК РФ), правила безопасности на взрывоопасных предприятиях или во взрывоопасных цехах (ст. 216 УК РФ), правила хранения, использования или перевозки взрывчатых или радиоактивных веществ (ст. 217 УК РФ).

Материальная ответственность работника связана с материальной ответственностью предприятия. В соответствии со ст.67 "Основ" предприятие несет материальную ответственность за ущерб, причиненный рабочим и служащим увечьем или иным повреждением здоровья, связанным с исполнением им своих трудовых обязанностей. Часть суммы в возмещение этого ущерба может быть взыскана с работника предприятия, если несчастный случай произошел по его вине.

4.2 Задачи решаемые службой охраны труда на предприятии

Охрана труда - это система законодательных, социальноэкономических, организационных, технических, гигиенических и лечебно-профилактических мероприятий и средств, обеспечивающих безопасность, сохранение здоровья и работоспособности человека в процессе труда [15].

Охрана труда является органическим элементом процесса производства. Поэтому она имеет как организационно-технические, так и социальные аспекты. Охрана труда призвана ограждать работников от воздействия опасных и вредных производственных факторов, обеспечивать наиболее благоприятные условия труда, что предотвращает бесполезную затрату их сил, содействует повышению производительности труда, всестороннему развитию личности. Благоприятные условия труда на производстве способствует активному участию людей в общественно-политической жизни, позволяет шире удовлетворять их культурные запросы.

Сложность задач стоящих перед службой охраной труда требует использования достижений и выводов многих научных дисциплин, прямо или косвенно связанных с задачами создания здоровых и безопасных условий труда, предупреждение несчастных случаев и профессиональных заболеваний.

Служба охраны труда выполняет следующие функции: проводит анализ состояния и причин производственного травматизма и профессиональных заболеваний, разрабатывает и проводит соответствующие мероприятия по предупреждению несчастных случаев и профессиональных заболеваний;

организует разработку и выполнение планов улучшения условий труда и санитарно-оздоровительных мероприятий;

участвует в работе по внедрению стандартов безопасности труда и научных разработок по охране труда;

проводит совместно с соответствующими службами предприятия проверки технического состояния зданий, цехов, оборудования, состояния санитарно-технических устройств;

контролирует своевременное приобретение спецодежды;

проводит вводный инструктаж по вопросам охраны труда.

Успех в решении проблем охраны труда в большой степени зависит от качества подготовки специалистов в этой области, от их умения принимать правильное решение в сложных и изменчивых условиях производства [15].

4.3 Состояние охраны труда на базовом предприятии с анализом существующих ситуаций

Содержанием функции контроля является проверка состояния условий труда работающих, выявление отклонений от требований законодательства о труде, стандартов безопасности труда, правил и норм охраны труда, постановлений директивных органов, а также проверка выполнения службами и подразделениями своих обязанностей в области охраны труда.

На данный момент на предприятии на котором будет производиться пайка плат проделывается большая работа по обеспечению здоровых и безопасных условий труда. Выполняется ряд мероприятий, направленных на снижение доли ручного труда, улучшения состояния воздушной среды, снижения загазованности на рабочих местах.

На данном предприятии рационально спроектированные и правильно эксплуатируемые вентиляционные системы способствуют улучшению самочувствия работающих и повышению производительности труда. По имеющимся данным, кондиционирование воздуха может повысить производительность труда на 4... 10%.

4.3.1 Вентиляция

Системы вентиляции классифицируют по способу перемещения воздуха, направлению потока воздуха, зоне действия, времени работы.

В зависимости от способа перемещения воздуха различают вентиляцию естественную и механическую. Естественную вентиляцию подразделяют на организованную и неорганизованную. Организованная естественная вентиляция может быть канальной и бесканальной (аэрация).

Аэрация - это организованная управляемая естественная вентиляция, осуществляемая за счет разности гравитационного давления наружного и внутреннего воздуха и действия ветра.

В этом случае необходимый воздухообмен в здании может быть обеспечен только при устройстве открывающихся отверстий достаточной площади. Аэрацию предусматривают, если с ее помощью могут быть обеспечены нормируемые условия воздушной среды и если она допустима по технологическим условиям. Особенно целесообразно устройство аэрации в горячих цехах.

При неорганизованной естественной вентиляции воздух поступает и удаляется через щели, окна, двери и т. п. Если перемещение воздуха производят с помощью вентиляторов с электроприводом, вентиляцию называют механической. Существуют и смешанные системы вентиляции.

По зоне действия различают вентиляцию общеобменную, местную и смешанную (комбинированную). При общеобменной вентиляции происходит обмен воздуха во всем помещении. Она применяется тогда, когда выделения вредных факторов незначительны и равномерно распределены по всему объему помещения. Местная вентиляция может быть вытяжной и приточной. Вытяжная предназначена для удаления воздуха непосредственно от мест образования или выхода вредных выделений, приточная - для подачи чистого воздуха на определенные рабочие места или участки.

Местная вытяжная вентиляция осуществляется с помощью местных отсосов, а также патрубков, решеток, панелей и т. п. В тех случаях, когда источник производственных вредностей можно заключить внутри пространства, огражденного жесткими стенками, местные отсосы устраивают в виде вытяжных шкафов, кожухов, витринных отсосов (рис. 10,о-в). Если по условиям технологии или обслуживания источник вредности нельзя заключить в кожух, то над таким источником или около него устраивается вытяжной зонт. При этом поток удаляемых вредных веществ не должен проходить через зону дыхания работающего.

Аварийная вентиляция предназначается для быстрого удаления из помещений значительных объемов воздуха с большим содержанием вредных и взрывоопасных веществ, поступающих в помещение при нарушении технологического режима и авариях. Аварийная вентиляция, как правило, проектируется вытяжной. Она должна обеспечивать (как минимум) восьмикратный воздухообмен в помещениях, где отсутствуют постоянно действующие механические вытяжные системы. В случае наличия последних суммарный воздухообмен должен быть не менее восьмикратного.

Вентиляция считается эффективной, если она обеспечивает соответствие состояния воздуха рабочей зоны требованиям действующих нормативных документов (СН 245-71 и ГОСТ 12.1.005-76).

Общие положения, касающиеся устройства вентиляции в производственных помещениях, изложены также в СНиП П-33 -75 «Отопление, вентиляция и кондиционирование воздуха».

4.3.2 Электробезопастность

Электробезопасность на производстве обеспечивается соответствующей конструкцией электроустановок; применением технических способов и средств защиты; организационными и техническими мероприятиями (ГОСТ 12.1.009-76) [16].

Конструкция электроустановок соответствует условиям их эксплуатации и обеспечивает защиту персонала от соприкосновения с токоведущими и движущимися частями, а оборудования - от попадания внутрь посторонних твердых тел и воды.

Основными техническими способами и средствами защиты от поражения электрическим током, используемыми отдельно или в сочетании друг с другом, являются: защитное заземление; зануление; выравнивание потенциалов; малое напряжение; электрическое разделение сетей; защитное отключение; изоляция токоведущих частей (рабочая, дополнительная, усиленная, двойная); компенсация токов замыкания на землю; оградительные устройства; предупредительная сигнализация, блокировка, знаки безопасности; изолирующие защитные и предохранительные приспособления.

Наиболее распространенными техническими средствами защиты являются защитное заземление и зануление.

Защитным заземлением называется преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением (ГОСТ 12.1.009 - 76). Защитному заземлению или занулению подлежат металлические части электроустановок, доступные для прикосновения человека и не имеющие других видов защиты, обеспечивающих электробезопасность. Защитное заземление или зануление выполняют: во всех случаях при переменном номинальном напряжении 380 В и выше и постоянном напряжении 440 В и выше; в помещениях с повышенной опасностью, особо опасных и в наружных установках при Номинальном переменном напряжении от 42 до 380 В и постоянном - 110...440 В. Таким образом, электроустановки напряжением до 42 В переменного и до 110 В постоянного тока не требуют защитного заземления и зануления, за исключением некоторых случаев, специиально оговариваемых ПУЭ.

Электрозащитными средствами называются переносимые и перевозимые изделия, служащие для защиты людей, работающих с электроустановками, от поражения электрическим током, от воздействия электрической дуги и электромагнитного поля (ГОСТ 12.1.009-76).

Электрозащитные средства дополняют такие защитные устройства электроустановок, как ограждения, блокировки, защитное заземление, зануление, отключение и др. Необходимость применения электрозащитных средств вызвано тем, что при эксплуатации электроустановок иногда возникают условия, когда самые совершенные защитные устройства самих электроустановок не гарантируют безопасность человека (например, операции с разъединителями и т. п.).

По своему назначению средства защиты условно разделяют на изолирующие и вспомогательные.

Изолирующие средства защиты предназначены для изоляции человека от частей электроустановок, находящихся под напряжением, и от земли, если человек одновременно касается земли или заземленных частей электроустановок и токоведущих частей или металлических оказавшихся под напряжением корпусов электрооборудования.

Существуют основные и дополнительные изолирующие средства. Основные изолирующие средства имеют изоляцию, предназначенную для того, чтобы длительно выдерживать рабочее напряжение электроустановки, поэтому с их помощью разрешено касаться токоведущих частей, находящихся под напряжением. Изолирующие свойства основных защитных средств бывают разными в зависимости от напряжения электроустановок, где они применяются.

В частности произведена проверка состояния вентиляции и электробезопасности. Вентиляция и электробезопастность находится в отличном состоянии.

Одним из наиболее опасных с точки зрения травматизма является паяльный цех в котором производится пайка плат. Для работников этого цеха разработана инструкция по технике безопасности, которую они должны неукоснительно соблюдать.

4.4 Теоретическая разработка раздела

4.4.1 Освещенность

Основным понятием, характеризующими свет, является световой поток, сила света, освещенность и яркость.

Световым потоком называют поток лучистой энергии, оцениваемой глазом по световому ощущению. Единицей светового потока является люмен - световой поток, излучаемый точечным источником света силой в одну канделу, помещенным в вершину телесного угла в один стерадиан.

Распределение светового потока реального источника излучения в окружающем пространстве обычно неравномерно.

Поэтому один световой поток еще может являться исчерпывающей характеристикой источника излучения. Необходимо еще знать характеристику распределения светового потока в пространстве.

Пространственную плотность светового потока принято называть силой света. Единицей силы света является кандела - сила света точечного источника, испускающего световой поток в один люмен, равномерно распределенный внутри телесного угла в один стерадиан. Кандела является основой светотехнической единицей, устанавливаемой специальному эталону.

Освещенность характеризует поверхностную плотность светового потока и определяется отношением светового потока, падающего на поверхность, к ее площади.

Следует иметь в виду, что освещенность не зависит от свойств освещаемой поверхности: ее формы цвета. Одинаковый световой поток создает равную освещенность на темных и светлых поверхностях при условии равенства площадей. Единицей освещенности является люкс. Один люкс равен освещенности поверхности в один квадратный метр, по которой равномерно распределен световой поток, равный 1 люмену. Освещенность в 1 люкс не позволяет выполнить большинство видов работ. Оценить понятие освещенности можно, зная, что освещенность поверхности Земли в лунную ночь составляет примерно 0.2 люкса, а в солнечный день доходит до 100000 люкса.

Так как уровень ощущения света человеческим глазом зависит от плотности светового потока (освещенности) на сетчатке глаза, то основное

значение для зрения имеет не освещенность какой-то поверхности, а световой поток, отраженной от этой поверхности и попадающий на зрачок. В связи с введено понятие яркости. Человек различает окружающие предметы только благодаря тому, что они имеют разную яркость.

Яркостью называется величина, равная отношению силы света, излучаемого элементом поверхности в данном направлении, к площади проекции этой поверхности на плоскость, перпендикулярную к тому же направлению.

...

Подобные документы

  • Датчик угарного газа TGS5042-A00. Устройство для расшифровки (декодирования) сообщения и перевода содержащейся в нём информации на язык (в код) воспринимающей системы. Анализ составных узлов датчика угарного газа. Расчет выпрямителя напряжения.

    дипломная работа [1,3 M], добавлен 20.06.2017

  • Материалы, используемые при изготовлении однослойных печатных плат. Маркировка печатных плат, контроль и автоматизация технологического процесса изготовления однослойных печатных плат. Система печатных проводников. Длина сигнальных проводников в плате.

    курсовая работа [1,2 M], добавлен 14.06.2011

  • Обзор методов измерения и аппаратов. Принципы работы измерителя концентрации нитратов. Потребительские испытания нитрат-тестеров. Разработка аккумуляторной батареи, электрической принципиальной схемы, алгоритма работы программы микроконтроллера.

    курсовая работа [2,5 M], добавлен 18.01.2014

  • Разработка технологических процессов соответственно к единой системе подготовки производства измерителя H21э транзисторов. Анализ типа, условий и годовой программы выпуска. Маршрут конструкторской схемы сборки, выбор оборудования, оптимизация монтажа.

    курсовая работа [135,9 K], добавлен 10.01.2011

  • Обзор существующих методов измерения центральной частоты в радиотехнике. Особенности расчета и проектирования измерителя центральной частоты частотно-манипулированных сигналов, функционирующего в составе панорамного приемного устройства "Катран".

    курсовая работа [1,8 M], добавлен 26.10.2011

  • Процесс производства печатных плат. Методы создания электрических межслойных соединений. Химическая и электрохимическая металлизация. Контроль качества химического меднения. Растворы для тонкослойного и меднения. Виды брака на линии химического меднения.

    курсовая работа [2,2 M], добавлен 14.05.2011

  • Описание структурной схемы измерителя расхода топлива. Разработка принципиальной электрической схемы. Проектирование на базе 8-разрядного микроконтроллера измерителя расхода топлива, использующего оцифрованные аналого-цифровыми преобразователями сигналы.

    курсовая работа [641,9 K], добавлен 17.04.2010

  • Частотный метод измерения высоты и составляющих скорости. Канал оценки составляющих скорости. Вычислительные требования к блоку измерителя и модуляции. Разработка схемы электрической принципиальной. Математическое моделирование усилителя ограничителя.

    дипломная работа [861,7 K], добавлен 24.03.2014

  • Методы измерения тока и напряжения. Проектирование цифрового измерителя мощности постоянного тока. Выбор элементной базы устройства согласно схеме электрической принципиальной, способа установки элементов. Расчет экономической эффективности устройства.

    курсовая работа [1,1 M], добавлен 21.07.2011

  • Функции, выполняемые системой цифрового измерителя времени. Выбор соотношения между аппаратной и программной частями. Разработка функциональной и принципиальной схемы системы. Описание работы системы цифрового измерителя времени по принципиальной схеме.

    курсовая работа [46,1 K], добавлен 25.06.2010

  • Обоснование целесообразности применения микропроцессорного программируемого измерителя. Оценка затрат на стадиях разработки, производства и эксплуатации устройства. Сопоставление разработанного измерительного преобразователя к электромагнитному датчику.

    курсовая работа [179,8 K], добавлен 18.08.2013

  • Значение оценки профиля подстилающей поверхности при неподвижном носителе. Анализ структурной схемы оптимального измерителя профиля отражающей поверхности. Структура алгоритма измерения профиля применительно к условиям получения оценки отклонения.

    реферат [239,5 K], добавлен 06.04.2011

  • Устройства, измеряющие скорость движущегося объекта. Реализация измерителя скорости. Проектирование цифровой и аналоговой частей устройства. Тактовая частота микроконтроллера. Отладка работы микроконтроллера до создания печатной платы устройства.

    курсовая работа [2,3 M], добавлен 04.01.2015

  • Сущность формирования и функционирования многофункциональных комплексов. Проектирование многофункциональных комплексов на основе дифференциального подхода к проектированию кластеров с интеграцией на уровне комплекса. Строительство спортивных сооружений.

    реферат [30,0 K], добавлен 16.04.2012

  • Знакомство с методами и способами измерения затухания и оптической мощности волоконно-оптических линий связи. Способы проектирования и изготовления измерителя оптической мощности. Общая характеристика распространенных типов оптических интерфейсов.

    курсовая работа [1,9 M], добавлен 19.03.2013

  • Выбор элементной базы и технологии изготовления, сборки и монтажа устройства для подачи акустических сигналов с определенной частотой сразу же после пропажи напряжения в сети. Поэлементный расчет и порядок проектирования конструкции данного устройства.

    курсовая работа [4,0 M], добавлен 19.09.2010

  • Анализ исходных данных и основные технические требования к разрабатываемой конструкции, климатические и дестабилизирующие факторы. Выбор элементной базы унифицированных узлов установочных изделий и материалов. Расчет собственной частоты печатной платы.

    курсовая работа [669,3 K], добавлен 25.12.2010

  • Методы создания печатных плат и характерные размеры элементов. Субтрактивный, аддитивный и полуаддитивный метод. Размеры сетки для отображения печатных плат, контактных площадок и отверстий. Создание макета печатной платы в среде Sprint-Layout 5.0.

    дипломная работа [2,5 M], добавлен 11.01.2016

  • Топология и элементы МОП-транзистора с диодом Шоттки. Последовательность технологических операций его производства. Разработка технологического процесса изготовления полупроводниковых интегральных схем. Характеристика используемых материалов и реактивов.

    курсовая работа [666,0 K], добавлен 06.12.2012

  • Комплекс материалов, использующихся на предприятии ККБ "Искра" для изготовления различных элементов СВЧ и микросборок. Способы компоновки изделий на производстве. Получение рисунка плат и ознакомление с системами автоматизированного проектирования.

    отчет по практике [18,7 K], добавлен 08.05.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.