Принцип работы электромагнитных датчиков

Особенности преобразования перемещения в электрический сигнал за счет изменения параметров электромагнитной цепи с помощью датчиков. Принцип работы простейшего индуктивного преобразователя как дросселя с переменным воздушным зазором в магнитопроводе.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 21.02.2014
Размер файла 163,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

1. Назначение. Типы электромагнитных датчиков

Электромагнитные датчики предназначены для преобразования перемещения в электрический сигнал за счет изменения параметров электромагнитной цепи. Эти изменения могут заключаться, например, в увеличении или уменьшении магнитного сопротивления Ам -- магнитной цепи датчика при перемещении сердечника. Если пepемещается не сердечник, а обмотка, то происходит изменение потокосцепления обмотки. Таким образом, изменения в электромагнитной цепи датчика могут быть вызваны как перемещением элементов магнитной цепи (сердечника или якоря), так и перемещением элемента электрической цепи (обмотки). В результате таких перемещений изменяется индуктивность обмотки L или ее взаимоиндуктивность М с обмоткой возбуждения. Поэтому в технической литературе электромагнитные датчики часто называют индуктивными.

Электромагнитные датчики обычно рассматривают как параметрические, поскольку величины L и М зависят от перемещения х: L=f(x), M=f(x). Но электромагнитные датчики с изменяющейся взаимоиндуктивностью можно отнести и к генераторному типу, поскольку в результате изменяется и ЭДС обмотки, т. е. Е=f(x).

Так как ЭДС в выходной обмотке появляется за счет изменения коэффициента взаимоиндукции с обмоткой возбуждения, то такие электромагнитные датчики называют трансформаторными. Ведь обмотку возбуждения можно рассматривать как первичную обмотку трансформатора, а выходную обмотку -- как вторичную. К генераторным относятся и индукционные датчики, в обмотках которых генерируется ЭДС в зависимости от скорости перемещения:-- E-f(dx/dt).

С помощью электромагнитных датчиков можно автоматические измерять механические силы, давление, температуру, свойства магнитных материалов, определять внутренние полости и трещины в деталях (дефектоскопия). Толщину немагнитных покрытий на стали, расход жидкостей и газов в трубопроводах и др.

Электромагнитные датчики имеют следующие достоинства: простота и дешевизна конструкции, механическая прочность, высокая надежность за счет возможности съема выходного сигнала безскользящих контактов, возможность питания от промышленной сети частотой 50 Гц, возможность получения достаточно высокой мощности выходного сигнала, возможность работы как в диапазоне малых (доли мм), так и больших (метры) перемещений.

К недостаткам электромагнитных датчиков следует отнести влияние на выходной сигнал внешних электромагнитных полей и частоты питающего напряжения, а также возможность работы только на переменном токе (питание постоянным током возможно лишь для индукционных датчиков).

Изменение индуктивности и взаимоиндуктивности может происходить и под влиянием механических напряжений в сердечнике электромагнитного датчика. Такие напряжения приводят к изменению магнитной проницаемости ферромагнитного материала сердечника. Электромагнитные датчики, основанные на таком физическом явлении, называются магнитоупругими датчиками.

Электромагнитные датчики (индуктивные, трансформаторные, индукционные, магнитоупругие) получили широкое распространение в системах автоматики.

2. Принцип действия и основы расчета индуктивных датчиков

Простейший индуктивный датчик представляет собой дроссель с переменным воздушным зазором в магнитопроводе. На рис. 1 показаны две наиболее распространенные конструктивные схемы индуктивных датчиков на одном сердечнике. Это одинарные индуктивные датчики. На сердечнике 1 из электротехнической стали размещена обмотка 2, подключаемая к источнику переменного напряжения. Магнитный поток в сердечнике замыкается через якорь 3, который может перемещаться относительно сердечника 1. Якорь 3 механически связан с деталью, перемещение которой необходимо измерить. Эта деталь на рисунке не показана, но перемещение х ее может происходить в вертикальном (рис. 1, а) или в горизонтальном направлении (рис. 1, б). Перемещение якоря изменяет магнитное сопротивление магнитной цепи, состоящей из сердечника, якоря и воздушного зазора 5. Следовательно, изменится индуктивность обмотки 2. Поскольку эта обмотка включена на переменное напряжение, ток в обмотке 2 будет определяться ее полным сопротивлением, в которое входит и индуктивное сопротивление. С увеличением воздушного зазора магнитное сопротивление увеличивается, а индуктивность, индуктивное и полное сопротивления уменьшаются (рис. 1, а). Следовательно, ток в обмотке увеличивается (рис. 1, б). Полагая ток / в обмотке за выходной сигнал датчика, а перемещение х -- за входной сигнал, имеем выходную статическую характеристику в виде графика I=f(х).

Рис. 1. Характеристики индуктивного датчика

Найдем выражение, определяющее зависимость тока в обмотке датчика от перемещения. Анализ проведем применительно к конструктивной схеме, показанной на рис. 1, а. В этом случае приращение перемещения х всегда равно приращению зазора 5, поэтому нам необходимо получить математическую зависимость тока I от зазора д: I=f(д).

Пусть обмотка датчика включена на напряжение питания; и = v2U sin щt, где U -- действующее значение напряжения, щ-- угловая частота, рад/с. По закону Ома, действующее значение тока в обмотке:

i=U/z,

где z -- полное сопротивление обмотки датчика, Ом, состоящее из активного R и индуктивного XL сопротивлений:

z = vR2 + Х2 L.

Индуктивное сопротивление XL пропорционально индуктивности L и частоте питания f. XL = 2nfL = wL. (Напомним, что щ = 2f.) После подстановки имеем:

z = vR2 + (2)2.

Индуктивность обмотки датчика с числом витков w:

L = щФ/I,

где Ф -- магнитный поток сердечника, Вб. Принимаем, что весь магнитный поток проходит через воздушный зазор, т. е. потоки рассеяния отсутствуют. Тогда:

Ф = Iщ/Rм.

Здесь RM -- магнитное сопротивление магнитопровода датчика, Гн-1.

RM = RCT+RB.

Сопротивление воздушного зазора пропорционально удвоенной длине воздушного зазора д, поскольку магнитный поток проходит через воздушный зазор дважды:

где sM -- поперечное сечение воздушной части магнитопровода, равное активной площади поперечного сечения сердечника в зоне воздушного зазора, м2; Гн/м -- магнитная проницаемость вакуума (магнитная постоянная).

После подстановки получим выражение для магнитного потока:

Выражение для индуктивности получаем подстановкой:

Индуктивное сопротивление обмотки:

Полное сопротивление обмотки:

Анализ формулы показывает, что с увеличением воздушного зазора (а следовательно, и перемещения) полное сопротивление уменьшается, стремясь в пределе к величине активного сопротивления обмотки R. Зависимость полного сопротивления z от величины зазора 8 показана на рис. 1, а. Ток в обмотке датчика:

Если входным сигналом датчика считать перемещение якоря х от начального положения при 8 = 0 в сторону увеличения зазора (по рис. 1, а), то формула после замены 8 на х представляет собой статическую характеристику одинарного индуктивного датчика, т.е. 1=/(х). График статической характеристики показан на рис. 1, б. Как видно из анализа формулы и графика, зависимость I=f(x) имеет нелинейный характер. Однако на графике можно выделить участок АБ, на котором соблюдается прямая пропорциональность между входным и выходным сигналами. Этот участок называется рабочим, датчик используется именно в диапазоне входных сигналов от хА до хБ. Следовательно, датчик всегда имеет некоторый воздушный зазор, не меньший хА. В большинстве конструкций индуктивных датчиков магнитопровод ненасыщен и магнитная проницаемость материала сердечника весьма велика. Поэтому магнитное сопротивление воздушного зазора (уже при 8 = хА) значительно больше магнитного сопротивления стального сердечника, т е.

Пренебрегая величиной RсТ в формуле, получаем упрощенное выражение для индуктивного сопротивления (с учетом Гн/м):

В этом же диапазоне изменения воздушного зазора от хА до хБ активное сопротивление R значительно меньше индуктивного сопротивления:

XL: R «XL.

Пренебрегая величиной R, получаем приближенное выражение статической характеристики индуктивного датчика:

где К -- коэффициент передачи, определяемый напряжением и частотой питания, конструктивными размерами сердечника и числом витков обмотки датчика:

Таким образом, в некотором диапазоне изменения входного сигнала хА < х < хБ статическая характеристика индуктивного датчика является линейной с постоянным коэффициентом передачи.

График такой статической характеристики имеет вид прямой линии (штриховая линия 1 на рис. 1, б). Это идеальная характеристика датчика. Реальная характеристика (сплошная линия 2 на рис. 1 б) совпадает с идеальной на рабочем участке АБ. Проанализируем причины отклонения реальной характеристики от идеальной.

В зоне х < хА воздушный зазор очень мал и его магнитное сопротивление становится соизмеримым с магнитным сопротивлением стальных сердечника и якоря. Реальная характеристика начинается не от нуля, поскольку даже при д = 0 индуктивное сопротивление не может быть равно бесконечности. Следовательно, некоторый ток будет протекать по обмотке, выполненной даже на замкнутом магнитопроводе. Для уменьшения значения начального тока /0 используют для сердечника и якоря индуктивного датчика материалы с высоким значением магнитной проницаемости.

В зоне х > хь индуктивное сопротивление обмотки уже настолько уменьшается, что становится соизмеримым с активным сопротивлением обмотки, которое и ограничивает нарастание тока. Следует также отметить, что при больших зазорах часть магнитного потока уже не замыкается через якорь, а замыкается непосредственно по воздуху.

На практике диапазон изменения воздушного зазора для индуктивных датчиков по рис. 1, а не превышает 4--5 мм. Значительно больший диапазон изменения входного сигнала (перемещения) имеют индуктивные датчики по рис. 1, б. Такие датчики имеют близкую к линейной статическую характеристику при перемещениях якоря до 10--15 мм.

Величину начального воздушного зазора д0 (т. е. исходное положение якоря, при котором входной сигнал равен нулю) рекомендуется выбирать в середине линейного участка статической характеристики датчика. Оценим чувствительность индуктивного датчика при включении его в одно плечо мостовой измерительной схемы в качестве переменного сопротивления. Питание моста осуществляется напряжением переменного тока. В этом случае чувствительность представляет собой относительное изменение сопротивления, деленное на приращение величины воздушного зазора:

где ?д -- приращение величины воздушного зазора, вызывающее изменение полного сопротивления обмотки датчика z на ?z.

Пренебрегая R « XL, имеем z = щL. Возьмем производную полного сопротивления по перемещению при а = const:

или, переходя к конечным приращениям,

Поделив на , получим выражение для чувствительности:

С увеличением зазора чувствительность датчика резко уменьшается. А при выборе в качестве начальной точки малой величины зазора можно получить большую чувствительность и значительный сигнал разбаланса мостовой схемы, что позволяет в ряде случаев отказаться от использования усилителя на выходе моста. Например, при д0 = 1 мм и ?5 = 0,1 мм чувствительность Sa = 1/10-3 = 1000 1/м и относительное изменение сопротивления ?z/z = SД?д = 1000 * 10"4 = 0,1, т.е. при изменении зазора на 0,1 мм сопротивление датчика изменяется на 10 %.

Одним из недостатков одинарного индуктивного датчика является то, что на его якорь действует сила притяжения к сердечнику. Эта сила вносит погрешность в работу датчика тем большую, чем меньше перестановочное усилие детали, перемещение которой надо измерить. Индуктивный датчик представляет собой электромагнит, тяговая сила которого, как известно из электротехники, пропорциональна производной магнитной энергии WM по перемещению:

Знак минус означает, что сила направлена в сторону, соответствующую уменьшению магнитной энергии.

Если сделать те же допущения, что и при выводе уравнения статической характеристики датчика, то для электромагнитной силы, воздействующей на якорь, можно записать уравнение:

Анализ уравнения показывает, что в рабочем диапазоне входных перемещений при принятых допущениях электромагнитная сила притяжения не зависит от зазора д. Эта сила пропорциональна квадрату напряжения питания и обратно пропорциональна квадрату частоты питания. Повышение частоты питания снижает силу притяжения, но ухудшает точность работы датчика, поскольку возрастают потери в стали из-за вихревых токов.

Кроме наличия электромагнитной силы притяжения индуктивные датчики имеют также и другие серьезные недостатки: при изменении знака входного сигнала не меняется знак выходного сигнала (т.е. датчик не является реверсивным); диапазон изменения входного сигнала, при котором сохраняется линейность статической характеристики, невелик.

Указанные недостатки ограничивают область применения одинарных индуктивных датчиков. На практике они нашли применение в качестве бесконтактных датчиков положения и концевых выключателей при управлении механизмами, имеющими значительные перестановочные усилия. В таких схемах автоматики наиболее полно проявляются достоинства одинарных индуктивных датчиков: простота конструкции и высокая надежность.

электромагнитный датчик индуктивный дроссель

Литература

1. Гальперин М.В. Автоматическое управление. - М.: ИД «Форум»: ИНФРА-М, 2007- 224с.

2. Горошков Б.И. Автоматическое управление.- М.: 2003 - 304с.

3. Келим Ю.М. Типовые элементы систем автоматического управления.- М.:ФОРУМ: ИНФРА - М, 2007 - 384с.

4. Головенков С.Н., Сироткин С.В. Основы автоматики и автоматического регулирования станков с программным управлением. - М.: Машиностроение. - 288с.

5. Немцов М.В., Светлакова И.И. Электротехника. - Ростов-н/Д: Феникс, 2004-567с.

6. Шурков В.Н. Основы автоматизации производства и промышленные роботы. - М.: Машиностроение - 240с.

Размещено на Allbest.ru

...

Подобные документы

  • Структурная схема, характеристики и режимы работы микросхемы преобразователя Угол-Код для обработки сигналов индуктивных датчиков типа СКВТ (синусно-косинусные вращающиеся трансформаторы). Ее сравнение с зарубежными аналогами и модулями на их основе.

    статья [3,1 M], добавлен 28.01.2015

  • Виды и использование датчиков автоматического контроля режимных параметров технологических процессов химического производства. Принцип действия измеряемых датчиков, регуляторов температуры, модульных выключателей. Средства защиты электроустановок.

    дипломная работа [770,6 K], добавлен 26.04.2014

  • Датчик — элемент управляющего устройства, первичный преобразователь контролируемой величины в удобный сигнал: принцип работы, схемы подключения к микроконтроллеру (МК). Общая характеристика емкостных датчиков со звуковым индикатором, расчет параметров.

    курсовая работа [1,8 M], добавлен 04.12.2011

  • Понятие и принцип работы датчиков, их назначение и функции. Классификация и разновидности датчиков, сферы и возможности их применения. Сущность и основные свойства регуляторов. Особенности использования и параметры усилителей, исполнительных устройств.

    реферат [17,8 K], добавлен 28.03.2010

  • Понятие и общие свойства датчиков. Рассмотрение особенностей работы датчиков скорости и ускорения. Характеристика оптических, электрических, магнитных и радиационных методов измерения. Анализ реальных оптических, датчиков скорости вращения и ускорения.

    курсовая работа [1,4 M], добавлен 14.01.2016

  • Особенности применения электрохимических датчиков в составе мультисенсорных пожарных извещателей. Сравнение технических характеристик. Конструкция, принцип действия электролитических датчиков. Перспективы развития технологий изготовления извещателей.

    курсовая работа [1,7 M], добавлен 09.12.2015

  • Принцип действия датчиков сейсмического типа, предназначенных для проведения исследований влияния ускорений и вибрационных нагрузок на элементы радиоэлектронной аппаратуры. Разработка схем приборов, расчет статических и динамических характеристик.

    курсовая работа [737,5 K], добавлен 10.01.2014

  • Проектирование вычислительного модуля, состоящего из 2 датчиков давления и 4 датчиков температуры (до +125 и до +400). Составление схемы подключения датчиков. Написание демонстрационных программ для работы с устройствами DS18B20, АЦП DS2450 и MPX2010.

    курсовая работа [190,3 K], добавлен 24.12.2010

  • Ограничения на конструкцию, параметры и методы преобразования разработанного датчика. Анализ методов преобразования силы в электрический сигнал. Выбор измерительной цепи и типа преобразователя. Расчёт частотного диапазона и коэффициента деформации.

    курсовая работа [211,4 K], добавлен 30.05.2014

  • Основные типы и принцип работы резистивных преобразователей. Область применения датчиков контактного сопротивления, реостатных преобразователей и датчиков температуры. Резистивные преобразователи контактного сопротивления: тензорезисторы и пьезорезисторы.

    реферат [651,4 K], добавлен 21.05.2013

  • Последовательность и методика разработки датчиков расстояния и касания. Принцип работы поверяемых датчиков и образцовых приборов (микрометра или индикатора часового типа ИЧ-25). Соотношение показаний поверяемого датчика. Обработка результатов измерений.

    дипломная работа [947,7 K], добавлен 10.07.2012

  • Назначение и принцип работы потенциометров. Зависимость напряжения на выходе от перемещения ползунка. Электрическая схема потенциометрического датчика. Статическая характеристика нагруженных потенциометров. Реверсивный и нереверсивный типы их включения.

    презентация [2,3 M], добавлен 10.05.2016

  • Конструкция и принцип действия датчиков перемещения различных типов: емкостных, оптических, индуктивных, вихретоковых, ультразвуковых, магниторезистивных, магнитострикционных, потенциометрических, на основе эффекта Холла. Области использования приборов.

    реферат [546,1 K], добавлен 06.06.2015

  • Действие гироскопического агрегата. Определение знака угла отклонения гироскопов относительно платформы под воздействием внешних моментов. Распределение управляющих сигналов от датчиков по разгрузочным двигателям с помощью преобразователя координат.

    лабораторная работа [732,1 K], добавлен 19.12.2010

  • Особенности выбора типа датчиков. Создание датчиков контроля параметров внешней среды (уровня воды) в системе автоматизированного прогнозирования затоплений и подтоплений. Способы измерения уровня жидкости. Устройство датчиков для измерения уровня воды.

    реферат [1,8 M], добавлен 04.02.2015

  • Разработка принципиальных схем блоков чтения информации с датчиков. Сопряжение с цифровыми и аналоговыми датчиками. Алгоритм работы блока чтения информации с цифровых датчиков. Расчет электрических параметров микропроцессорной системы управления.

    дипломная работа [760,0 K], добавлен 27.06.2016

  • Принцип работы супергетеродина, основанного на принципе преобразования принимаемого сигнала в сигнал фиксированной промежуточной частоты с усилением. Выбор и обоснование конструктивного исполнения, подбор элементной базы и расчет надежности блока.

    дипломная работа [1,1 M], добавлен 13.02.2016

  • Транзистор как прибор, предназначенный для преобразования различных электрических сигналов. Устройство и принцип действия транзисторов. Схема включения, система обозначения силовых транзисторов, кодовая маркировка, тип корпуса, пример параметров.

    реферат [283,7 K], добавлен 19.02.2010

  • Общие принципы резервирования. Методы диагностики обрыва во входных цепях аналоговых модулей. Принцип работы системы, резервированной методом замещения. Резервирование датчиков и модулей ввода дискретных сигналов, аналоговых модулей ввода и вывода.

    статья [185,8 K], добавлен 12.12.2010

  • Принцип эффекта Фарадея в работе волоконно-оптических датчиков тока. Разработка и исследование микроструктурных оптических волокон. Сравнение оптоволоконного датчика и трансформатора тока. Потенциальные сферы применения оптоволоконных датчиков тока.

    реферат [934,2 K], добавлен 12.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.