Термоэлектрическое охлаждение
Экономическая эффективность применения термоэлектрических холодильников и их бытовое назначение. Выбор материала для элементов: металлические сплавы и диэлектрики. Сравнение термоэлектрических охлаждающих устройств с другими способами охлаждения.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 03.03.2014 |
Размер файла | 129,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ВВЕДЕНИЕ
Экономическая эффективность применения термоэлектрических холодильников по сравнению с другими типами холодильных машин возрастает тем больше, чем меньше величина охлаждаемого объема. Поэтому наиболее рационально в настоящее время использование термоэлектрического охлаждения для холодильников бытового назначения, в охладителях пищевых жидкостей, кондиционерах воздуха, кроме того, термоэлектрическое охлаждение успешно используется в химии, биологии и медицине, метрологии, а также в торговом холоде (поддержание температуры в холодильных камерах), холодильном транспорте (рефрижераторы), и др. областях
Термоэлектрический эффект
В технике широко известен эффект возникновения термоЭДС в спаянных проводниках, контакты (места спаев) между которыми поддерживаются при различных температурах (эффект Зеебека). В том случае, когда через цепь двух разнородных материалов пропускается постоянный ток, один из спаев начинает нагреваться, а другой -- охлаждаться. Это явление носит название термоэлектрического эффекта или эффекта Пельтье.
Рис. 1. Схема термоэлемента
На рис. 1 показана схема термоэлемента. Два полупроводника n и m составляют контур, по которому проходит постоянный ток от источника питания С, при этом температура холодных спаев X становится ниже, а температура горячих спаев Г становится выше температуры окружающей среды, т. е. термоэлемент начинает выполнять функции холодильной машины.
Температура спая снижается вследствие того, что под воздействием электрического поля электроны, двигаясь из одной ветви термоэлемента (m) в другую (n), переходят в новое состояние с более высокой энергией. Энергия электронов повышается за счет кинетической энергии, отбираемой от атомов ветвей термоэлемента в местах их сопряжений, в результате чего этот спай (X) охлаждается.
При переходе с более высокого энергетического уровня (ветвь п) на низкий энергетический уровень (ветвь т) электроны отдают часть своей энергии атомам спая Г термоэлемента, который начинает нагреваться.
В нашей стране в конце 1940-х и начале 1950-х годов академиком А. Ф. Иоффе и его учениками были проведены очень важные исследования, связанные с разработкой теории термоэлектрического охлаждения. На базе этих исследований была впервые сконструирована и испытана серия охлаждающих устройств.
Энергетическая эффективность термоэлектрических холодильных машин значительно ниже эффективности других типов холодильных машин, однако простота, надежность и отсутствие шума делают использование термоэлектрического охлаждения весьма перспективным.
Эффективность применения термоэлектрического охлаждения
Выбор материала для элементов
Экономичность термоэлемента, а также максимальное снижение температуры на спаях зависят от эффективности (добротности) полупроводникового вещества z, в которую входят удельная электропроводность у, коэффициент термоЭДС б и удельная теплопроводность к. Эти величины взаимосвязаны, так как зависят от концентрации свободных электронов или дырок. Такая зависимость представлена на рис. 2.
Из рисунка видно, что электропроводность у пропорциональна числу носителей n, термоЭДС стремится к нулю с увеличением n и возрастает при уменьшении n. Теплопроводность состоит из двух частей: теплопроводности кристаллической решетки и электронной теплопроводности.
Эффективность металлов и металлических сплавов мала из-за низкого коэффициента термоЭДС, а в диэлектриках -- из-за очень малой электропроводимости. По сравнению с металлами и диэлектриками эффективность полупроводников значительно выше, чем и объясняется их широкое применение в настоящее время в термоэлементах. Эффективность материалов также зависит от температуры.
Термоэлемент состоит из двух ветвей: отрицательной (n-тип) и положительной (р-тип). Так как материал с электронной проницаемостью имеет термоЭДС с отрицательным знаком, а материал с дырочной проводимостью -- с положительным, то можно получить большее значение термоЭДС.
Рис. 2. Качественные зависимости термоЭДС, электропроводности и теплопроводности от концентрации носителей
Для термоэлементов в настоящее время применяют низкотемпературные термоэлектрические материалы, исходными веществами которых являются висмут, сурьма, селен и теллур. Максимальная эффективность z для этих материалов при комнатных температурах составляет: 2,6·10-3 °С-1 для n-типа, 2,6·10-1 °С-1 -- для р-типа.
В настоящее время Bi2Te3 применяют редко, поскольку созданные на его основе твердые растворы Bi2Te3-Be2Se3 и Bi2Te3-Sb2Te3 имеют более высокие значения z. Эти материалы впервые были получены и исследованы в нашей стране, и на их основе освоен выпуск сплавов ТВЭХ-1 и ТВЭХ-2 для ветвей с электронной проводимостью и ТВДХ-1 и ТВДХ-2 -- для ветвей с дырочной проводимостью [1].
Твердые растворы Bi-Se применяют в области температур ниже 250 К. Максимального значения z = 6·10-3 °С-1 достигает при Т?80ч90 К. Интересно отметить, что эффективность этого сплава значительно повышается в магнитном поле.
Полупроводниковые ветви в настоящее время изготавливают тремя методами: методом порошковой металлургии, литьем с направленной кристаллизацией и вытягиванием из расплава. Метод порошковой металлургии с холодным или горячим прессованием образцов наиболее распространен. термоэлектрический холодильник охлаждающий
В термоэлектрических охлаждающих устройствах применяют, как правило, термоэлементы, у которых отрицательная ветвь изготовлена методом горячего прессования, а положительная -- методом холодного прессования.
Рис. 3. Схема термоэлемента
Механическая прочность термоэлементов незначительна. Так, у образцов сплава Bi2Te3-Sb2Te3, изготовленных методом горячего или холодного прессования, предел прочности при сжатии составляет 44,6-49,8 МПа.
Для повышения прочности термоэлемента между коммутационной пластиной 1 (рис. 3) и полупроводниковой ветвью 6 ставится демпфирующая свинцовая пластина 3; кроме того, применяют легкоплавкие припои 2, 4 и припой SiSb 5. Испытания показывают, что термоэлектрические устройства имеют виброударную стойкость до 20g, термоэлектрические охладители малой холодопроизводительности -- до 250g.
Сравнение термоэлектрических охлаждающих устройств с другими способами охлаждения
Термоэлектрические охлаждающие устройства имеют ряд преимуществ по сравнению с другими типами холодильных машин. В настоящее время в системах кондиционирования воздуха на судах применяют теплоиспользующие или паровые холодильные машины. В холодное время года судовые помещения обогревают электро-, паро- или водонагревателями, т. е. применяют раздельные источники теплоты и холода.
При помощи термоэлектрических устройств в теплое время года можно охлаждать помещения, а в холодное -- обогревать. Режим обогрева изменяют на режим охлаждения путем реверса электрического тока.
Кроме того, к преимуществам термоэлектрических устройств следует отнести: полное отсутствие шума при работе, надежность, отсутствие рабочего вещества и масла, меньшие массу и габаритные размеры при той же холодопроизводительности.
Сравнительные данные по хладоновым машинам для провизионных камер на судах показывают, что при одинаковой холодопроизводительности масса термоэлектрической холодильной машины в 1,7-1,8 раза меньше.
Термоэлектрические холодильные машины для систем кондиционирования воздуха имеют объем приблизительно в четыре, а массу в три раза меньше, чем хладоновые холодильные машины.
Рис. 4. Цикл Лоренца
К недостаткам термоохлаждающих устройств следует отнести их низкую экономичность и повышенную стоимость.
Экономичность термоэлектрических холодильных машин по сравнению с паровыми приблизительно на 20-50% ниже [1]. Высокая стоимость термоохлаждающих устройств связана с высокими ценами на полупроводниковые материалы.
Однако существуют области, где уже теперь они способны конкурировать с другими типами холодильных машин. Например, начали применять термоэлектрические устройства для охлаждения газов и жидкостей. Примерами устройств этого класса могут служить охладители питьевой воды, воздушные кондиционеры, охладители реактивов в химическом производстве и др.
Для таких холодильных машин образцовым циклом будет треугольный цикл Лоренца (см. рис. 4). Приближение к образцовому циклу достигается простым путем, так как для этого требуется только видоизменить электрическую схему коммутации, что не вызывает конструктивных трудностей. Это позволяет существенно, в некоторых случаях более чем вдвое, повысить эффективность термоэлектрических холодильных машин. Для реализации этого принципа в паровой холодильной машине пришлось бы применять сложную схему многоступенчатого сжатия.
Весьма перспективным может быть использование термоэлектрических устройств в качестве «интенсификатора теплопередачи». В тех случаях, когда из какого-либо небольшого пространства необходимо отвести теплоту в окружающую среду, а поверхность теплового контакта ограничена, располагаемые на поверхности термоэлектрические батареи могут значительно интенсифицировать процесс теплопередачи.
Как показывают исследования [2], сравнительно небольшой расход электроэнергии способен существенно увеличить удельный тепловой поток. Можно интенсифицировать теплопередачу и без затраты электроэнергии. В этом случае необходимо замкнуть термобатарею.
Наличие разности температур приведет к появлению термоЭДС Зеебека, которая и обеспечит питание термоэлектрической батареи. С помощью термоэлектрических устройств можно изолировать одну из теплообменивающихся сред, т. е. использовать ее в качестве совершенной тепловой изоляции.
Важное обстоятельство, также определяющее область, в которой термоэлектрические холодильные машины способны конкурировать с другими типами холодильных машин даже по энергетической эффективности, состоит в том, что уменьшение холодопроизводительности, например, паровых холодильных машин ведет к снижению их холодильного коэффициента.
Для термоэлектрической холодильной машины это правило не соблюдается, и ее эффективность практически не зависит от холодопроизводительности. Уже в настоящее время для температур Тх = 0°С и Тк = 26°С и производительности несколько десятков ватт энергетическая эффективность термоэлектрической машины близка к эффективности паровой холодильной машины.
Широкое внедрение термоэлектрического охлаждения будет зависеть от прогресса в создании совершенных полупроводниковых материалов, а также от серийного производства эффективных в экономическом отношении термобатарей.
Размещено на Allbest.ru
...Подобные документы
Данные для выбора способа охлаждения. Коэффициент заполнения по объему, его характеристика. Расчет теплового режима и времени непрерывной работы. Требования при проектировании электронной системы. Правила выбора способа охлаждения. Пример решения задачи.
реферат [129,8 K], добавлен 12.11.2008Проектирование быстродействующего обрабатывающего устройства ЭВМ. Расчет основных и произвольных компоновочных параметров логической схемы устройств. Расчет энергетических характеристик, выбор системы охлаждения. Требования к элементам конструкций.
курсовая работа [1,5 M], добавлен 13.06.2012Анализ схем построения различных типов радиоприемных устройств, сравнение их качественных показателей и выбор методики. Определение чувствительности и влияющие факторы. Обработка смеси полезного радиосигнала и помех, последовательность процессов.
курсовая работа [111,6 K], добавлен 15.12.2009Сущность понятий термопара и терморезистор. Основные виды тепловых преобразователей. Применение термоэлектрических преобразователей в устройствах для измерения температуры. Характерные свойства металлов, применяемых для изготовления терморезисторов.
контрольная работа [34,5 K], добавлен 18.11.2010Анализ и выбор системы электропитания и определение числа элементов аккумуляторной батареи. Расчет и выбор емкости аккумуляторной батареи. Определение числа вольтдобавочных конвертеров в ЭПУ. Выбор типа и материала магнитопровода для трансформатора Т1.
контрольная работа [116,1 K], добавлен 01.05.2019Суммарное сопротивление линии связи и внутреннее сопротивление преобразователей термоэлектрических. Значение информативного параметра выходного сигнала. Электрическое сопротивление изоляции цепей приборов. Принцип работы приборов ГСП ДИСК-250 и ДИСК-250И.
контрольная работа [28,8 K], добавлен 10.06.2011Схема блока радиоэлектронного средства (РЭС) в герметичном исполнении. Расчет поверхности, удельной мощности, перегрева и температуры корпуса блока. Сущность и классификация систем охлаждения РЭС. Интенсивность теплопередачи различных способов охлаждения.
презентация [428,1 K], добавлен 27.12.2013Описание проектируемого устройства. Выбор и обоснование элементной базы, материалов конструкции, типа печатной платы, класса точности и шага координатной сетки. Метод изготовления электронного модуля. Оценка теплового режима и способа охлаждения.
курсовая работа [671,5 K], добавлен 18.06.2013Понятие и разновидности стабилизаторов напряжения, их функциональные особенности и сферы применения, принцип работы. Сравнение различных схем и выбор лучшего варианта. Расчет параметров элементов для удовлетворения ограничений, моделирование схемы.
курсовая работа [272,5 K], добавлен 29.06.2012Назначение микрополосковых антенн. Выбор материала антенной решетки и определение конструктивных размеров микрополоскового излучателя. Расчёт зависимости входного сопротивления от частоты. Расчёт конструктивных размеров элементов антенной решетки.
курсовая работа [1,5 M], добавлен 28.03.2012Изучение различных типов устройств СВЧ, используемых в схемах распределительных трактов антенных решеток. Практические расчеты элементов автоматизированного проектирования устройств СВЧ на основе метода декомпозиции. Конструирование баз и устройств СВЧ.
контрольная работа [120,9 K], добавлен 17.10.2011Назначение, классификация, общая характеристика однотипных устройств для получения доступа к сведениям, носящим конфиденциальный характер. Особенности применения, сравнительная характеристика возможностей. Образцы технических средств обнаружения пустот.
реферат [689,8 K], добавлен 03.06.2014Ознакомление с современным состоянием развития электрофизических методов обработки. Характеристика роботизированных установок для напыления тонкослойных покрытий на поверхность матового листового материала и для нанесения покрытий на диэлектрики.
контрольная работа [74,0 K], добавлен 20.05.2010Особенности применения дросселей переменного тока для конструирования радиоэлектронной аппаратуры. Назначение дросселей. Параметры и примеры типовых конструкций. Эквивалентная схема дросселя высокой частоты. Магнитопроводы дросселей. Нагрев и охлаждение.
реферат [331,8 K], добавлен 14.01.2017Назначение и классификация полупроводниковых приборов, особенности их применения в преобразователях энергии и передаче информации. Система обозначений диодов и тиристоров, их исследование на стенде. Способы охлаждения расчет нагрузочной способности.
дипломная работа [3,9 M], добавлен 28.09.2014Описание устройства регулятора напряжения. Основное назначение и область применения прибора. Рассмотрение особенностей регулятора на основе тиристоров, магнитных усилителей, транзисторов. Синхронный компенсатор: понятие, назначение, принцип работы.
реферат [133,7 K], добавлен 03.11.2015Анализ способов и систем охлаждения силовых трансформаторов. Основные характеристики термометра ТКП-160Сг-М1. Система контроля и диагностики трансформаторного оборудования НЕВА–АСКДТ. Главные требования к оптоволоконным системам измерения температуры.
дипломная работа [3,0 M], добавлен 15.07.2014Системы воздушного, каскадного и жидкостного охлаждения. Ватерчиллеры и фреоновые установки. Тестирование температуры графического процессора. Установка процессорных кулеров на видеокарты. Использование систем открытого испарения и с элементами пельтье.
курсовая работа [5,4 M], добавлен 11.04.2015Типы электрических схем, их назначение. ГОСТы и соответствующие стандарты по изображению и оформлению структурной, функциональной и принципиальной схем радиотехнических устройств. Условные графические обозначения элементов радиоэлектронной аппаратуры.
курсовая работа [2,8 M], добавлен 27.07.2010Рассмотрение общих принципов работы материнской платы, описание ее компонент и видов. Выполнение усовершенствования материнской платы посредством вольтмода видеокарты Palit GeForce 7600GT: произведение замены системы охлаждения, доработка стабилизатора.
дипломная работа [4,1 M], добавлен 07.07.2010