Логарифмический усилитель на операционном усилителе. Описание, принцип работы
Выполнение операционным усилителем математических операций в вычислительных машинах. Изучение использования различных электронных схем на основе операционного усилителя. Рассмотрение реализации нелинейных преобразований сигналов с высокой точностью.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 10.04.2014 |
Размер файла | 140,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http:www.allbest.ru/
Контрольная работа
по дисциплине «Электротехника и электроника»
Вариант № 8
2014г
Задание
8. Логарифмический усилитель на операционном усилителе. Описание, принцип работы.
Общие сведения
Операционный усилитель (ОУ) предназначен для выполнения математических операций в аналоговых вычислительных машинах. Первый ламповый ОУ K2W был разработан в 1942 году Л.Джули (США). Первые ОУ на транзисторах появились в продаже в 1959 году. Р.Малтер (США) разработал ОУ Р2, включавший семь германиевых транзисторов и варикапный мостик. Требования к увеличению надежности, улучшению характеристик, снижению стоимости и размеров способствовали развитию интегральных микросхем, которые были разработаны в лаборатории фирмы Texas Instruments (США) в 1958 г. Первый интегральный ОУ mА702, имевший рыночный успех, был разработан Р.Уидларом (США) в 1963 году. В настоящее время номенклатура ОУ насчитывает сотни наименований. Эти усилители выпускаются в малогабаритных корпусах и очень дешевы, что способствует их массовому распространению.
ОУ представляют собой усилители медленно изменяющихся сигналов с низкими значениями напряжения смещения нуля и входных токов и с высоким коэффициентом усиления. По размерам и цене они практически не отличаются от отдельного транзистора. В то же время, преобразование сигнала схемой на ОУ почти исключительно определяется свойствами цепей обратных связей усилителя и отличается высокой стабильностью и воспроизводимостью. Кроме того, благодаря практически идеальным характеристикам ОУ реализация различных электронных схем на их основе оказывается значительно проще, чем на дискретных элементах. ОУ почти полностью вытеснили отдельные транзисторы в качестве элементов схем ("кирпичиков") во многих областях аналоговой схемотехники.
На рис.1 приведена схема ОУ. Входной каскад его выполняется в виде дифференциального усилителя, так что операционный усилитель имеет два входа. Выходное напряжение Uвых находится в одной фазе с разностью входных напряжений:
Uвых = U1 - U2
Рис. 1. Обозначение ОУ
Чтобы обеспечить возможность работы ОУ как с положительными, так и с отрицательными входными сигналами, следует использовать двухполярное питающее напряжение. Для этого нужно предусмотреть два источника постоянного тока, которые, как это показано на рис. 1, подключаются к соответствующим внешним выводам ОУ. операционный усилитель почти всегда охвачен глубокой отрицательной обратной связью, свойства которой и определяют свойства схемы с ОУ.
Принцип введения отрицательной обратной связи иллюстрируется рис.2.
Рис. 2. Принцип отрицательной обратной связи
Часть выходного напряжения возвращается через цепь обратной связи ко входу усилителя. Если, как это показано на рис. 2, напряжение обратной связи вычитается из входного напряжения, обратная связь называется отрицательной. операционный усилитель электронный схема
Для физического анализа схемы, представленной на рис. 2, допустим, что входное напряжение изменилось от нуля до некоторого положительного значения Uвх. В первый момент выходное напряжение Uвых, а следовательно, и напряжение обратной связи Uвых также равны нулю. При этом напряжение, приложенное ко входу операционного усилителя, составит Uд = Uвх. Так как это напряжение усиливается усилителем с большим коэффициентом усиления KU, то величина Uвых быстро возрастет до некоторого положительного значения и вместе с ней возрастет также величина Uвых. Это приведет к уменьшению напряжения Uд, приложенного ко входу усилителя. Тот факт, что выходное напряжение воздействует на входное напряжение, причем так, что это влияние направлено в сторону, противоположную изменениям входной величины и есть проявление отрицательной обратной связи. После достижения устойчивого состояния выходное напряжение ОУ
Uвых =KUUд =KU(Uвх - Uвых).
Решив это уравнение относительно Uвых, получим:
K=Uвых /Uвх =KU/(1 + KU) (1)
Таким образом, из этого соотношения следует, что коэффициент усиления ОУ с обратной связью определяется почти исключительно только обратной связью и мало зависит от параметров самого усилителя. В простейшем случае цепь обратной связи представляет собой резистивный делитель напряжения. При этом схема с ОУ работает как линейный усилитель, коэффициент усиления которого определяется только коэффициентом ослабления цепи обратной связи. Если в качестве цепи обратной связи применяется RC-цепь, то образуется активный фильтр. Наконец, включение в цепь обратной связи ОУ диодов и транзисторов позволяет реализовать нелинейные преобразования сигналов с высокой точностью.
Поскольку ОУ имеет два входа, то возможны такие основные виды его включения с использованием ООС (Рис. 3):
Рис. 3 Основные схемы включения ОУ
а) инвертирующее (Рис. 3, А) -- сигнал подается на инвертирующий вход, а неинвертирующий подключается непосредственно к опорному потенциалу (не используется);
б) неинвертирующее (Рис. 3, Б) -- сигнал подается на неинвертирующий вход, а инвертирующий подключается непосредственно к опорному потенциалу (не используется);
в) дифференциальное (Рис. 3, В) -- сигналы подаются на оба входа, инвертирующий и неинвертирующий.
Логарифмический усилитель
В схеме, представленной на рис. 4,логарифмическая зависимость напряжения Uбэ от тока Iк используется для получения выходного напряжения, пропорционального логарифму положительного входного напряжения. Благодаря потенциальному заземлению инвертирующего входа резистор R1 преобразует напряжение UBx в ток. Этот ток протекает через транзистор Т1 и создает на его эмиттере потенциал, который, согласно уравнению Эберса - Молла, на величину падения напряжения Uбэ ниже потенциала земли. Транзистор Т2, который работает при фиксированном токе и обеспечивает корректирующее напряжение, равное по величине падению напряжения на диоде, служит для температурной компенсации. Источник тока (роль которого может выполнять резистор, так как потенциал точки В отличается от потенциала земли на несколько десятых долей вольта) задает входной ток, служащий для установки выходного напряжения на нуль. Второй операционный усилитель является неинвертирующим, его коэффициент усиления по напряжению должен быть равен приблизительно 16. для того чтобы напряжение на выходе изменялось в отношении - 1.0 В на декаду входного тока (напомним, что напряжение Uбэ увеличивается в отношении б0 мВ на декаду коллекторного тока).
Еще несколько деталей: если базу транзистора Т соединить с его коллектором, то базовый ток будет создавать ошибку (дело в том, что ток Iк связан точной экспоненциальной зависимостью с напряжением Uбэ). В этом схеме благодаря потенциальному заземлению напряжение на базе равно напряжению на коллекторе, однако, базовый ток ошибку не создает. В качестве Т1 и Т2 следует использовать согласованную пару транзисторов. Такая схема обеспечивает точную логарифмическую зависимость выходного напряжения от входного тока в пределах семи или более декад (приблизительно от 1 нА до 10 мА) при условии, что транзисторы имеют небольшие токи утечки, а ОУ - малый входной ток смещения. Операционный усилитель типа 741, в котором ток смещения равен 80 нА, для этой схемы не подходит; для получения линейной характеристики в пределах семи декад обычно используют ОУ с полевыми транзисторами на входах, например ОУ типа 411. Кроме того, для получения хорошей характеристики при малых входных токах входной ОУ следует точно настроить на нуль сдвига. Дело в том, что при токах, близких к нижнему предельному значению, напряжение UBx может составлять всего несколько десятков микровольт. Лучше всего применить в этой схеме источник тока на входе и вообще не использовать резистор R1.
Конденсатор С1 служит для частотной стабилизации при включении обратной связи, так как усиление по напряжению в контуре ОС определяет транзистор Т1. Диод Д1 предотвращает пробой и разрушение перехода база - эмиттер транзистора Т1 в случае появления отрицательного напряжения на входе; это необходимо, так как транзистор Т1 не обеспечивает цепь обратной связи при положительном выходном напряжении операционного усилителя. Обе эти проблемы можно устранить, если транзистор Т1 включить как диод, т.е. соединить базу с коллектором.
Список литературы
1 П. Хоровиц, У. Хилл. «Искусство схемотехники» - Научное издание. Издание 5-е, переработанное. Перевод с английского под редакцией Б.Н.Бронина. - М.: Мир, 1998.
2 http://cxem.net/
3 http://ru.wikipedia.org/
Размещено на Allbest.ru
...Подобные документы
Экспериментальное исследование параметров инвертирующего усилителя на операционном усилителе. Конструктивное исполнение лабораторного макета. Обеспечение устойчивой работы операционного усилителя серии TL072CN. Базовая схема и параметры усилителя.
курсовая работа [266,7 K], добавлен 14.07.2012Устройство интегратора, построенного на операционном усилителе. Принцип действия прибора, принципиальные схемы и основные выражения. Основные проблемы и способы их решения. Применение интегратора на операционных усилителях. Тестирование и описание схем.
курсовая работа [529,2 K], добавлен 21.06.2014Назначение и описание выводов инвертирующего усилителя постоянного тока К140УД8. Рассмотрение справочных параметров и основной схемы включения операционного усилителя. Расчет погрешностей дрейфа напряжения смещения от температуры и входного тока.
реферат [157,8 K], добавлен 28.05.2012Моделирование схемы неинвертирующего усилителя переменного тока; принцип работы, элементы: резистивный делитель, входная цепь, фильтр высоких частот. Расчёт сопротивлений резисторов и емкости конденсатора; определение параметров операционного усилителя.
контрольная работа [909,9 K], добавлен 19.11.2012Параметры и свойства устройств обработки сигналов, использующих операционного усилителя в качестве базового элемента. Изучение основных схем включения ОУ и сопоставление их характеристик. Схемотехника аналоговых и аналого-цифровых электронных устройств.
реферат [201,0 K], добавлен 21.08.2015Знакомство с основными особенностями широкополосного усилителя переменных сигналов, общая характеристика частотных и нелинейных искажений отдельных каскадов. Анализ видов построения схем усилителей. Рассмотрение схем, используемых в усилительной технике.
дипломная работа [643,1 K], добавлен 24.06.2013Анализ схемотехнической реализации усилителя. Формирование математической модели параметрического синтеза усилителя. Характеристики коэффициента передачи напряжения. Исследование влияния на частотные характеристики варьируемых параметров усилителя.
курсовая работа [358,3 K], добавлен 16.09.2017Исследование работы интегрального усилителя в различных режимах. Подключение усилителя как повторителя. Измерение входящего и выходящего напряжения. Определение частоты пропускания усилителя. Анализ способов получения большого усиления на высокой частоте.
лабораторная работа [81,5 K], добавлен 18.06.2015Компенсация напряжения сдвига операционных усилителей, их свойства и принцип работы. Исследование работы инвертирующего, неинвертирующего и дифференциального включения операционного усилителя. Измерение коэффициента ослабления синфазной составляющей.
лабораторная работа [4,0 M], добавлен 16.12.2015Понятие электронного усилителя, принцип работы. Типы электронных усилителей, их характеристики. Типы обратных связей в усилителях и результаты их воздействия на работу электронных схем. Анализ электронных усилителей на основе биполярных транзисторов.
курсовая работа [540,7 K], добавлен 03.07.2011Характеристика особенностей логарифмического усилителя с температурной стабилизацией. Исследование возможностей построения термостабилизированного логарифмического усилителя с помощью интегральных транзисторных сборок. Анализ конструкции печатной платы.
контрольная работа [621,1 K], добавлен 25.09.2010Разработка усилителя низкочастотного сигнала с заданным коэффициентом усиления. Расчеты для каскада с общим коллектором. Амплитуда высших гармоник. Мощность выходного сигнала. Синтез преобразователя аналоговых сигналов на базе операционного усилителя.
курсовая работа [1,4 M], добавлен 21.02.2016Условное обозначение операционного усилителя и его передаточная характеристика. Эквивалентная схема замещения операционных усилителей. Допущения, принятые при рассмотрении работы идеального операционного усилителя. Изменяемый коэффициент усиления.
презентация [730,7 K], добавлен 02.03.2016Характеристики операционного, инвертирующего и неинвертирующего усилителя. Оценка величин среднего входного тока и разности входных токов операционного усилителя. Измерение коэффициента усиления неинвертирующего усилителя на операционный усилитель.
методичка [760,8 K], добавлен 26.01.2009Обоснование технических решений, проектирование усилителя низкой частоты, назначение и условия эксплуатации, описание существующих конструкций и электрических схем. Расчет параметров усилителя, выбор электронных компонентов схемы, входящих в состав.
курсовая работа [303,6 K], добавлен 14.03.2011Принцип действия схемы генератора на основе операционного усилителя. Проверка работы мультивибратора в программе Micro-Cap, определение относительной погрешности. Описание интегральной схемы К572ПА2. Схема дискретно-аналогового преобразования фильтра.
курсовая работа [790,6 K], добавлен 06.04.2013Проектирование транзисторного каскада усилителя и фильтра низкой частоты на основе операционного усилителя, комбинационно-логического устройства (КЛУ) и транзисторного стабилизатора постоянного напряжения. Синтез преобразователей аналоговых сигналов.
курсовая работа [1,1 M], добавлен 06.02.2014Разработка и расчет оконечного каскада усилителя мощности. Выбор типа транзистора. Расчет масштабирующего усилителя с инвертированием сигнала. Разработка блока питания. Расчет предоконечного и промежуточного каскадов. Выбор операционного усилителя.
курсовая работа [1,3 M], добавлен 14.10.2009Расчет усилителя на биполярном транзисторе. Проектирование генератора гармонических колебаний на основе операционного усилителя с использованием моста Вина. Расчет параметров каскада по полезному сигналу. Подбор элементов схемы для источника питания.
курсовая работа [3,5 M], добавлен 29.04.2014Динамический режим работы усилителя. Расчет аналоговых электронных устройств. Импульсные и широкополосные усилители. Схемы на биполярных и полевых транзисторах. Правила построения моделей электронных схем. Настройка аналоговых радиотехнических устройств.
презентация [1,6 M], добавлен 12.11.2014