Физические основы электроники
Физические процессы, устройство, характеристики, параметры основных полупроводниковых приборов – диодов, биполярных и полевых транзисторов, тиристоров. Принципы работы, синтеза и методы анализа электронных усилителей. Краткие сведения по микроэлектронике.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 27.06.2014 |
Размер файла | 4,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Для стабилизации режима сопротивление в цепи истока (Rи) увеличивают до значения, большего чем необходимо для создания нужного смещения, а излишнее смещение компенсируют с помощью делителя R1, RЗ.
Линия нагрузки графически соответствует уравнению выходной цепи каскада:
Uси = Eс - Iс (Rс + Rи).
Линия нагрузки по переменному току определяется сопротивлением:
Rн~ = RС РР Rн.
Но если Rн >> Rс (а это выполняется, когда нагрузкой на ПТ является каскад с ОЭ), в этом случае Rвых пт является внутренним сопротивлением источника сигнала, а от его значения зависит коэффициент усиления каскада с ОЭ:
Ku оэ = в·Rн~ / (Rвх + Rг).
Обычно задают Rc < 0,1 Rн.
Линия нагрузки по переменному току незначительно отличается от линии нагрузки по постоянному току.
Рассмотрим работу каскада (см. рис. 6.28) по переменному току (рис. 6.29). Входной сигнал (Uвх) поступает на затвор транзистора через разделительный конденсатор Cр1, создает токи IR1 и IRз делителя. При этом в цепи затвора тока практически нет. Под действием входного напряжения изменяется сопротивление транзистора и в токе стока появляется переменная составляющая (Ic~), часть которой (IRc~), проходит через стоковый резистор Rс, а остальная через резистор нагрузки Rн. При прохождении тока Ic~ через параллельно включенные резисторы Rс и Rн на них образуется выходной усиленный сигнал:
Uвых = Ic~(Rс || Rн).
Основные параметры каскада получим также с помощью эквивалентной схемы для средних частот (рис. 6.30).
По схеме замещения определяются основные параметры каскада по переменному току
Размещено на http://www.allbest.ru/
:
;;
.
6.5.6 Схема с ОС (истоковый повторитель)
В схеме истокового повторителя (рис. 6.31) выходной переменный сигнал снимается с сопротивления Ru, т.е. сопротивление Ru является нагрузкой каскада по постоянному току. Эта схема обладает значительно большим входным сопротивлением, чем схема с ОИ.
В большинстве случаев в области низких частот это не имеет особого значения, так как Rвх достаточно велико и для схем с ОИ. Преимуществом схемы с ОС является то, что она существенно уменьшает входную емкость усилителя. А это делает ИП по отношению к каскаду с ОИ более высокочастотным.
Выходное сопротивление ИП равно:
Rвых = (1/S) || Ru = Ru / (1 + S Ru)при S Ru >> 1, Rвых ? 1 / S.
Величина Rвых в схеме с ОС составляет от десятков ом до единиц килоом. Небольшое значение крутизны не позволяет в ИП таких низких выходных сопротивлений как в эмиттерном повторителе.
Размещено на http://www.allbest.ru/
Таким образом, Ku < 1; чем больше S и Rн~, тем ближе Ku к единице.
Коэффициент передачи по напряжению ИП равно:
Ku = Uн / Uвх = S (ri || Rн~) / [1 + S (ri || Rн~)],
так как ri >> Rн~.
Ku = S·Rн~ / (1 + S Rн~).
7. УСИЛИТЕЛИ ПОСТОЯННОГО ТОКА
7.1 Определение усилителя постоянного тока. дрейф нуля
Размещено на http://www.allbest.ru/
Усилителями постоянного тока (УПТ) называются устройства, предназначенные для усиления медленно изменяющихся сигналов вплоть до нулевой частоты. На рис. 7.1 приведена АЧХ усилителя постоянного тока. Отличительной особенностью УПТ является отсутствие разделительных элементов, предназначенных для отделения усилительных каскадов друг от друга, а также от источника сигнала и нагрузки по постоянному току.
Таким образом, для осуществления передачи сигналов частот, близких к нулю, в УПТ используется непосредственная (гальваническая) связь. Непосредственная связь может быть использована и в обычных усилителях переменного тока с целью уменьшения числа элементов, простоты реализации в интегральном исполнении, стабильности смещения и т.д. Однако такая связь вносит в усилитель ряд специфических особенностей, затрудняющих как его выполнение, так и эксплуатацию. Хорошо передавая медленные изменения сигнала, непосредственная связь затрудняет установку нужного режима покоя для каждого каскада и обусловливает нестабильность их работы.
При разработке УПТ приходится решать две основные проблемы: согласование потенциальных уровней в соседних каскадах и уменьшение дрейфа (нестабильности) выходного уровня напряжения или тока.
Применение усилительных каскадов в УПТ ограничивается дрейфом нуля. Дрейфом нуля называется самопроизвольное отклонение напряжения или тока на выходе усилителя от начального значения. Этот эффект наблюдается и при отсутствии сигнала на входе. Поскольку дрейф нуля проявляется таким образом, как будто он вызван входным сигналом УПТ, то его невозможно отличить от истинного сигнала. Существует достаточно много физических причин, обусловливающих наличие дрейфа нуля в УПТ. К ним относятся нестабильности источников питания, температурная и временная нестабильности параметров транзисторов и резисторов, низкочастотные шумы, помехи и наводки. Среди перечисленных причин наибольшую нестабильность вносят изменения температуры, вызывающие дрейф. Этот дрейф обусловлен теми же причинами, что и нестабильность тока коллектора усилителя в режиме покоя: изменениями Iкбо, Uбэ п и в. Поскольку температурные изменения этих параметров имеют закономерный характер, то в некоторой степени могут быть скомпенсированы.
Абсолютным дрейфом нуля (ДUвых), называется максимальное самопроизвольное отклонение выходного напряжения УПТ при замкнутом входе за определенный промежуток времени. Качество УПТ обычно оценивают по напряжению дрейфа нуля, приведенного ко входу усилителя:
едр = ДUвых / Ku.
Приведенный ко входу усилителя дрейф нуля не зависит от коэффициента усиления по напряжению и эквивалентен ложному входному сигналу. Величина едр ограничивает минимальный входной сигнал, т.е. определяет чувствительность усилителя.
В усилителях переменного тока, естественно, тоже существует дрейф нуля, но так как их каскады отделены друг от друга разделительными элементами (например, конденсаторами), то этот низкочастотный дрейф не передается из предыдущего каскада в последующий и не усиливается им. Поэтому в таких усилителях дрейф нуля минимален и его обычно не учитывают.
В УПТ для уменьшения дрейфа нуля, прежде всего, следует заботиться о его снижении в первом каскаде. Приведенный ко входу усилителя температурный дрейф снижается при уменьшении номиналов резисторов, включенных в цепи базы и эмиттера. В УПТ резистор RЭ большого номинала может создать глубокую ООС по постоянному току, что повысит стабильность и одновременно уменьшит KU для рабочих сигналов постоянного тока.
Минимального значения едр можно достичь за счет снижения величин Rэ, Rб и Rк. Следует подчеркнуть, что работа УПТ может быть удовлетворительной только при превышении минимальным входным сигналом величины eдр. Поэтому основной задачей следует считать всемерное снижение дрейфа нуля усилителя.
С целью снижения дрейфа нуля в УПТ могут быть использованы следующие способы:
· применение глубоких ООС;
· использование термокомпенсирующих элементов;
· преобразование постоянного тока в переменный и усиление переменного тока с последующим выпрямлением;
· построение усилителя по балансной схеме и др.
7.2 Однотактные усилители прямого усиления
Однотактные УПТ прямого усиления по сути своей являются обычными многокаскадными усилителями с непосредственной связью. В таком усилителе резисторы в цепи эмиттера не только создают местную последовательную ООС по току, но и обеспечивают необходимое напряжение Uбэ п в своих каскадах. В многокаскадном усилителе наблюдается последовательное повышение потенциала на эмиттере транзистора каждого последующего каскада. Необходимость повышения потенциалов эмиттера от каскада к каскаду обусловлена тем, что за счет непосредственной связи потенциал коллектора у каждого последующего транзистора оказывается выше, чем у предыдущего.
Размещено на http://www.allbest.ru/
Обеспечить необходимый режим покоя в каскадах рассматриваемого усилителя можно и за счет последовательного уменьшения номиналов коллекторных резисторов от каскада к каскаду (Rк1 > Rк2). Однако в этом случае, как и в рассмотренном в разделе 7.1, будет падать усиление УПТ.
На рис. 7.2, приведены принципиальные схемы двух вариантов каскадов УПТ, в одном из которых (рис. 7.2, а) потенциал эмиттера устанавливается за счет балластного сопротивления Ro во втором (рис. 7.2, б) - за счет применения опорного диода D. Отметим, что вместо опорного диода можно включить несколько обычных прямосмещенных p-n-переходов. Часто используются сочетания обоих вариантов схем.
При разработке УПТ необходимо обеспечивать согласование потенциалов не только между каскадами, но и с источником сигнала и нагрузкой. Если источник сигнала включить на входе усилителя между базой первого транзистора и общей шиной, то через него будет протекать постоянная составляющая тока от источника питания Eк. Для устранения этого тока обычно включают генератор входного сигнала между базой транзистора Т1 (рис. 7.3) и средней точкой специального делителя напряжения, образованного резисторами R1 и R2. При правильно выбранном делителе потенциал его средней точки в режиме покоя равен потенциалу покоя на базе первого транзистора.
Размещено на http://www.allbest.ru/
Нагрузка усилителя обычно включается в диагональ моста, образованного элементами выходной, цепи УПТ (рис. 7.3, б). Рассматриваемый здесь способ включения нагрузки используется для получения Uн = 0 при Ек= 0. Номиналы резисторов R3 и R4 выбираются таким образом, чтобы напряжение средней точки делителя равнялось напряжению на коллекторе выходного транзистора в режиме покоя. При этом в нагрузке для режима покоя не будет протекать тока.
В каждом каскаде УПТ прямого усиления за счет резисторов в цепи эмиттера образуется глубокая ООС. Обычно максимальное усиление свойственно первому каскаду, у которого Rк имеет наибольшее значение. Однако и в последующем каскаде УПТ, где Rк меньше, все равно его номинал должен быть больше номинала Rэ.
В многокаскадных УПТ прямого усиления может происходить частичная компенсация дрейфа нуля. Так, положительное приращение тока коллектора, первого транзистора вызовет отрицательное приращение тока базы и, следовательно, тока коллектора второго транзистора. В результате суммарный дрейф нуля второго каскада может оказаться меньше, чем в отсутствие первого каскада и в идеальном случае сведен к нулю. Заметим, что полная компенсация дрейфа нуля возможна лишь при специальном подборе элементов и только для некоторой конкретной температуры. Хотя на практике это почти и недостижимо, тем не менее, в УПТ с четным числом усилительных каскадов наблюдается снижение дрейфа нуля.
Способ построения УПТ на основе непосредственной связи в усилительных каскадах с глубокой ООС может быть использован для получения сравнительно небольшого коэффициента усиления (в несколько десятков) при достаточно большом Uвх ? 50 мВ. Если в таких УПТ попытаться повысить Кu, то неизбежно получим резкое возрастание дрейфа нуля, вызванного не только температурной нестабильностью, но и нестабильностью источников питания. Отметим, что применение традиционных методов уменьшения влияния нестабильностей Ек с помощью фильтрующих конденсаторов здесь не дает желаемого результата (слишком низкие частоты).
Для снижения температурного дрейфа в УПТ прямого усиления иногда применяют температурную компенсацию. В настоящее время в качестве термокомпенсирующего элемента обычно используется диод в прямом смешении, включенный в цепь базы транзистора. Принцип построения таких устройств практически одинаков для усилителей постоянного и переменного тока. Все рассмотренные УПТ имеют большой температурный дрейф (eдр составляет единицы милливольт на градус). Кроме того, в них отсутствует зримая компенсация временного дрейфа и влияния низкочастотных шумов. Эти факторы могут оказаться даже более существенными, чем температурный дрейф нуля.
7.3 Дифференциальные усилители
7.3.1 Схема дифференциального каскада и ее работа при подаче дифференциального и синфазного входных сигналов
В настоящее время наибольшее распространение получили дифференциальные (параллельно-балансные или разностные) усилители. Такие усилители просто реализуются в виде монолитных ИС и широко выпускаются отечественной промышленностью (К118УД, КР198УТ1 и др.). Их отличает высокая стабильность работы, малый дрейф нуля, большой коэффициент усиления дифференциального сигнала и большой коэффициент подавления синфазных помех.
На рис. 7.4 приведена принципиальная схема простейшего варианта дифференциального усилителя (ДУ). Любой ДУ выполняется по принципу сбалансированного моста, два плеча которого образованы резисторами Rк1 и Rк2, а два других - транзисторами Т1 и Т2. Сопротивление нагрузки включается между коллекторами транзисторов, т.е. в диагональ моста. Сразу отметим, что резисторы R01 и R02 имеют небольшие значения, а часто и вообще отсутствуют. Можно считать, что резистор RЭ подключен к эмиттерам транзисторов. Питание ДУ осуществляется от двух источников, напряжения которых равны (по модулю) друг другу. Таким образом, суммарное напряжение питания ДУ равно 2Е.
Размещено на http://www.allbest.ru/
Использование второго источника (-Е) позволяет снизить потенциалы эмиттеров транзисторов Т1 и Т2 до потенциала общей шины. Это обстоятельство дает возможность подавать сигналы на входы ДУ без введения дополнительных компенсирующих напряжений. При анализе работы ДУ принято выделять в нем два общих плеча, одно из которых состоит из транзистора Т1 и резистора Rк1 (и R01), второе - из транзистора Т2 и резистора Rк2 (и R02). Каждое общее плечо ДУ является каскадом ОЭ. Таким образом, можно заключить, что ДУ состоит из двух каскадов ОЭ. В общую цепь эмиттеров транзисторов включен резистор RЭ, которым и задается их общий ток.
Для того чтобы ДУ мог качественно и надежно выполнять свои функции, а также в процессе длительной работы сохранять свои параметры и уникальные свойства, в реальных усилителях требуется выполнить два основных требования. Рассмотрим эти требования последовательно.
Первое требование состоит в симметрии обоих плеч ДУ. По этому требованию необходимо обеспечить идентичность параметров каскадов ОЭ, образующих ДУ. При этом должны быть одинаковы параметры транзисторов Т1 и Т2, а также выполнялось условие: Rк1 = Rк2 (и R01 = R02). Если первое требование выполнено полностью, то больше ничего и не требуется для получения идеального ДУ. Действительно, при Uвх1 = Uвх2 = 0 достигается полный баланс моста, т.е. потенциалы коллекторов транзисторов Т1 и Т2 одинаковы, следовательно, напряжение на нагрузке равно нулю. При одинаковом дрейфе нуля в обоих каскадах с общим эмиттером (плечах ДУ) потенциалы коллекторов будут изменяться всегда одинаково, поэтому на выходе ДУ дрейф нуля будет отсутствовать.
За счет симметрии общих плеч ДУ будет обеспечиваться высокая стабильность при изменении напряжения питания, температуры, радиационного воздействия и т.д. Но как обеспечить симметрию общих плеч в ДУ? На первый взгляд, может показаться, что решить этот вопрос довольно просто. Действительно, всегда можно подобрать пары транзисторов и резисторов с весьма близкими параметрами. Если собрать ДУ на таких дискретных элементах, т, может быть, и будет получен желаемый результат, но только в относительно небольшой промежуток времени.
С течением времени параметры транзисторов и резисторов будут изменяться различным образом в соответствии с законами своей собственной структуры, естественно, что на них различным образом будут влиять и внешние факторы, а следовательно, нарушится симметрия плеч со всеми вытекающими отсюда последствиями. В конечном счете, можно заключить, что на дискретных элементах (изготовленных в разное время и в разных условиях) осуществить выполнение первого требования для ДУ практически невозможно. Это объясняет тот факт, что прекрасные свойства ДУ не нашли должного использования в дискретной электронике.
Приблизиться к выполнению первого основного требования для ДУ позволила микроэлектроника. Ясно, что симметрию общих плеч ДУ могут обеспечить лишь идентичные элементы, в которых все одинаково и которые были изготовлены в абсолютно одинаковых условиях. Так, в монолитной ИС близко расположенные элементы действительно имеют почти одинаковые параметры. Следовательно, в монолитных ИС первое требование к ДУ почти выполнено.
Второе основное требование состоит в обеспечении глубокой ООС для синфазного сигнала. Синфазными называются одинаковые сигналы, т.е. сигналы, имеющие равные амплитуды, формы и фазы. Если на входах ДУ (см. рис. 7.4) присутствуют
Uвх1 = Uвх2, причем с совпадающими фазами, то можно говорить о поступлении на вход ДУ синфазного сигнала. Синфазные сигналы обычно обусловлены наличием помех, наводок и т.д. Часто они имеют большие амплитуды (значительно превышающие полезный сигнал) и являются крайне нежелательными, вредными для работы любого усилителя.
Выполнить второе основное требование позволяет введение в ДУ резистора Rэ. Если на вход ДУ поступает сигнал синфазной помехи, например, положительной полярности, то транзисторы Т1 и Т2 приоткроются, и токи их эмиттеров возрастут. В результате, по резистору Rэ будет протекать суммарное приращение этих токов, образующее на нем сигнал ООС. Нетрудно показать, что Rэ образует в ДУ последовательную ООС по току. При этом будет наблюдаться уменьшение коэффициента усиления по напряжению для синфазного сигнала каскадов ОЭ (Kисф1 и Кисф2), образующих общие плечи ДУ. Поскольку коэффициент усиления ДУ для синфазного сигнала равен:
Кисф = Кисф1 - Кисф2,
за счет выполнения первого основного требования
Кисф1 ? Кисф2
удается получить весьма малое значение Кисф, т.е. значительно подавить синфазную помеху.
Так как в монолитном ДУ с достаточным приближением можно выполнить оба основных требования, удается не только подавить синфазную внешнюю помеху, но и снизить влияние внутренних факторов, проявляющихся через изменения параметров элементов схемы. Конечно, параметры составляющих каскадов будут изменяться, но по весьма близким зависимостям, влияние которых будет дополнительно ослабляться наличием ООС.
Теперь рассмотрим работу ДУ для основного рабочего входного сигнала - дифференциального. Дифференциальными (противофазными) принято называть сигналы, имеющие равные амплитуды, но противоположные фазы. Будем считать, что входное напряжение подано между входами ДУ, т.е. на каждый вход поступает половина амплитудного значения входного сигнала, причем в противоположных фазах. Если Uвх1 в рассматриваемый момент представляется положительной полуволной, то Uвх2 - отрицательной.
За счет действия Uвх1 (см. рис. 7.4) транзистор Т1 приоткрывается, и ток его эмиттера получает положительное приращение ?Iэ1, а за счет действия Uвх2 транзистор Т2 призакрывается, и ток его эмиттера получает отрицательное приращение (-?Iэ2) В результате, приращение тока в цепи резистора Rэравно:
?IRэ = ?Iэ1 - ?Iэ1.
Если общие плечи ДУ идеально симметричны, то ?IRэ = 0 и, следовательно, ООС для дифференциального сигнала отсутствует. Это обстоятельство позволяет получать от каждого каскада ОЭ в рассматриваемом усилителе, а следовательно, и от всего ДУ большое усиление. Отсюда происходит и название усилителя - дифференциальный. Так как для дифференциального входного сигнала в любой момент напряжения на коллекторах транзисторов Т1 и Т2 будут находиться в противофазе, то на нагрузке происходит выделение удвоенного выходного сигнала. Итак, резистор Rэ образует ООС только для синфазного сигнала.
Поскольку в реальных ДУ идеальную симметрию плеч осуществить нельзя, то Rэ все же будет и для дифференциального сигнала создавать ООС, но незначительной глубины, причем чем лучше симметрия плеч, тем меньше ООС. Небольшую последовательную ООС по току задают в каскадах ДУ с помощью резисторов R01 и R02. Как отмечалось ранее, эти резисторы имеют небольшие номиналы, поэтому создаваемая ими ООС невелика и существенно не влияет на усилительные свойства ДУ.
Таким образом, при выполнении в ДУ двух основных требований он обеспечивает стабильную работу с малым дрейфом нуля, с хорошим усилением дифференциального сигнала и со значительным подавлением синфазной помехи. В зависимости от того, как подключены в ДУ источник входного сигнала и сопротивление нагрузки, следует различать схемы его включения.
7.3.2 Схемы включения дифференциального усилителя
Можно выделить четыре схемы включения ДУ:
1) симметричный вход и выход;
2) симметричный вход и несимметричный выход;
3) несимметричный вход и симметричный выход;
4) несимметричный вход и выход.
Рассмотрим их последовательно при воздействии рабочего входного сигнала.
1. При симметричном входе источник входного сигнала (см. рис. 7.4) подключается между входами ДУ (между базами транзисторов Т1 и Т2). При симметричном выходе сопротивление нагрузки подключается между выходами ДУ (между коллекторами транзисторов Т1 и Т2). Такое включение ДУ и было рассмотрено в разделе 7.2. Теперь остановимся на определении параметров симметричного включения ДУ.
Проанализируем работу одного плеча, т.е. одного каскада ОЭ, входящего в ДУ. Для этого представим плечо ДУ в виде, изображенном на рис. 7.5. Здесь отсутствует резистор Rэ, поскольку, он не участвует в работе на дифференциальном сигнале. Для входного сопротивления плеча ДУ (Rвх пл), можно записать:
Rвх.пл = rб + rэ(в + 1) + R0(в + 1) = h11э + вR0. (7.1)
Здесь опущены индексы для номеров резисторов, так как плечи ДУ практически симметричны. Слагаемое вR0 вносится за счет последовательной ООС. При R0 = 0 уравнение (7.1) для нашего случая можно упростить до следующего вида:
Rвх.пл = в rэ (7.2)
Размещено на http://www.allbest.ru/
Меньшую погрешность при расчете Rвх.пл формула (7.2) обеспечивает для ДУ, работающего на малых токах. Поскольку при симметричном входе источник входного сигнала включается между входами ДУ, то общее входное сопротивление ДУ будет равно 2Rвх.пл.
Ku пл = (Uвх.пл / 2)(2 / Eг) = (Uвх.пл / Eг) = Кu диф
т.е. коэффициент усиления по напряжению всего ДУ равен Ku пл. В нашем случае для Ku пл можно переписать в несколько измененном виде:
. (7.3)
Здесь учтено, что к выходу одного плеча подключается только половина RH. Действительно, средняя точка резистора RH для рассматриваемого режима ДУ всегда будет иметь нулевой потенциал (потенциал общей шины).
Если Rк < (Rн / 2), Rвх.пл > Rг и в велико, то формулу (7.3) можно переписать в следующем приближенном виде:
Кu диф = Rк /rэ. (7.4)
Учитывая изложенное ранее, коэффициент усиления ДУ по току можно представить в виде выражения (7.4), заменив Rк на Rн /2. Нетрудно показать, что значение выходного сопротивления ДУ для рассматриваемой схемы его включения равно удвоенному значению выходного сопротивления плеча (Rвых пл), которое для каскада ОЭ можно считать равным Rк.
2. Теперь остановимся на схеме включения ДУ с симметричным входом и несимметричным выходом. В этом случае источник входного сигнала подключается между входами ДУ; сопротивление нагрузки подключается одним концом к коллектору одного из транзисторов, а другим -- к общей шине. При этом в коллекторной цепи второго транзистора может отсутствовать резистор Rк. Поскольку способ подачи входного сигнала здесь совпадает с ранее рассмотренным случаем (см. пункт 1), то входное сопротивление также можно определить с помощью формулы (7.1) или (7.2). Однако выходной сигнал снимается лишь с одного выхода ДУ, следовательно, выходное сопротивление ДУ равно: Rвыхпл = Rк. По той же причине Кu диф оказывается в 2 раза меньше, чем при симметричном выходе.
3. Интересна схема включения ДУ с несимметричным входом и симметричным выходом. Для удобства восприятия специфики этого включения ДУ (рис. 7.6) приведена его принципиальная схема. Здесь Rо = 0, а входной сигнал подается на базу транзистора Т1. Плечо, образованное транзистором Т1, является каскадом ОЭ с ООС, образуемой резистором Rэ. Коэффициент усиления Кu пл для него может быть рассчитан по формуле (7.3), а коэффициент Rвыхпл - формуле (7.1), где R0 следует заменить на Rэ. У этого плеча ДУ есть и выход с эмиттера, где коэффициент усиления по напряжению для эмиттерного выхода Кu к < Кu пл.
С эмиттерного выхода плеча ДУ будет сниматься неинвертированный сигнал с Кu к , который можно представить в следующем виде:
, (7.5)
где Rвхб - входное сопротивление каскада ОБ, который является плечом ДУ, образованным транзистором Т2. Для эмиттерного выхода первого плеча Rвхб является сопротивлением нагрузки. Формула (7.5) справедлива при Rэ > Rвхб. Для каскада ОБ, образованного транзистором Т2, коэффициент усиления по напряжению равен:
. (7.6)
Размещено на http://www.allbest.ru/
Формула (7.6) записана для условия Rвхб > Rвыхк, где Rвыхк выходное сопротивление по цепи эмиттера каскада на транзисторе Т1. При получении значения Кu пл для выхода с коллектора Т2 следует перемножить выражения (7.5) и (7.6). После проведения преобразований нетрудно записать и для этого плеча ДУ формулу (3). Таким образом, несмотря на то, что входной сигнал подается лишь на один вход ДУ, его усиливают оба плеча, причем плечо, на базу транзистора которого подан входной сигнал, инвертирует, а другое плечо не инвертирует сигнал. В данном случае: Ku диф = 2Ku пл.
4. При несимметричном входе и выходе работа ДУ происходит аналогично работе предыдущей схемы включения ДУ (пункт 3). Если входной сигнал подан на вход того же плеча, с выхода которого снимается выходной сигнал ДУ, то в этом случае работает на усиление сигнала лишь одно плечо. Здесь на выходе будет инвертированный сигнал с коэффициентом усиления Кu пл. Если входной сигнал подан на вход одного плеча ДУ, а выходной сигнал снимается с выхода другого плеча, то на выходе появится неинвертированный сигнал с тем же коэффициентом усиления Кu пл, что и в первом случае. Если снимать выходной сигнал всегда с одного заданного выхода ДУ, то входам усилителя можно присвоить названия «инвертирующий» и «неинвертирующий».
Все изложенное показывает, что усилительные параметры ДУ для рабочего сигнала зависят от схемы его включения, которая выбирается в зависимости от конкретных технических требований.
7.3.3 Коэффициент ослабления синфазного сигнала
Коэффициент ослабления (подавления) синфазного сигнала (KОСC) является основным параметром ДУ, характеризующим качество его работы. Для того чтобы представить этот параметр, прежде всего, необходимо определить коэффициент усиления по напряжению ДУ для синфазного сигнала (Кu сф).
При воздействии синфазного сигнала на ДУ можно представить, что его входы соединены друг с другом. Как уже анализировалось в разделе 7.3 (см. рис. 7.4), в данном случае резистор Rэ, будет создавать последовательную ООС по току для каждого плеча ДУ (каскада ОЭ). Обычно эту ООС стараются сделать глубокой. Коэффициент усиления плеча для синфазного сигнала можно представить как Кu ос каскада ОЭ при глубокой ООС с помощью формулы:
Кu ос = - Rк / Rэ,
т.е. для первого плеча:
Ku сф1 = Rк1 / Rэ,
и для второго
Ku сф2 Rк2 / Rэ.
Теперь можно записать для Ku сф всего ДУ:
. (7.7)
Из формулы (7.7) следует основной вывод, который в разд. 7.3.1 был сформулирован в виде двух основных требований к ДУ. Действительно, чем лучше симметрия плеч ДУ, тем меньше ?Rк. Поскольку идеальная симметрия невозможна, то всегда
ДRк ? 0. При заданном ДRк, уменьшить Ku сф можно за счет увеличения глубины ООС, т.е. увеличения Rэ. Обычно КОСС представляется как отношение модулей Кu диф и Кu cф, выраженное в децибелах, т.е.
KOСC = 201g (Кu диф / Кu cф).
Раскрыв значения коэффициентов усиления из выражений (7.4) и (7.7), можно записать:
(7.8)
где д = ДRк / Rк -- коэффициент асимметрии ДУ.
Размещено на http://www.allbest.ru/
При необходимости коэффициент асимметрии можно дополнить слагаемыми, представляющими разброс других параметров элементов устройства. Напомним, что разброс номиналов резисторов в монолитных ИС не превышает 3%. В дифференциальном усилителе всегда стремятся сделать КОСС как можно больше. Для этого следует увеличивать номинал Rэ. Однако существует несколько серьезных причин, ограничивающих эту возможность. Самая главная из них заключается в больших трудностях при реализации резисторов значительных номиналов в монолитных ИС. Решить эту проблему позволяет использование электронного эквивалента резистора большого номинала, которым является генератор стабильного тока (ГСТ). На рис.7.7 приведена принципиальная схема ДУ с генератором стабильного тока (ГСТ). Здесь ГСТ выполнен на транзисторе ТЗ. Резисторы R1, R2 и R3, а также диод D служат для задания и стабилизации режима покоя транзистора ТЗ.
Напомним, что для реальных условий ГСТ представляет собой эквивалент сопротивления для изменяющегося сигнала (в нашем случае синфазного) большого номинала - до единиц мегаом. Кроме того, в режиме покоя ГСТ представляет собой относительно небольшое сопротивление (порядка единиц килоом), из-за чего и все устройство будет потреблять от источников питания относительно небольшую мощность. Таким образом, использование ГСТ в ДУ позволяет реализовать усилитель в виде экономичной монолитной ИС, имеющей большой КОСС. Современные ДУ могут быть выполнены по различным схемам, но в них всегда используется ГСТ. Для таких ДУ значения КОСС обычно лежат в пределах 60...100 дБ.
7.3.4 Разновидности дифференциальных усилителей
В большинстве практических случаев ДУ используется как входной каскад многокаскадных усилительных ИС. Поэтому при разработке ДУ стремятся реализовать в нем значительное входное сопротивление для дифференциального сигнала. Одной из разновидностей таких устройств является ДУ на составных транзисторах (рис. 7.8). Здесь ГСТ изображен символически.
Отметим, что составной транзистор позволяет получить большой коэффициент усиления по току. При равенстве параметров транзисторов в плече ДУ его Rвхпл может быть рассчитано по формуле:
Rвх = в2Rэ,
где вместо R, следует подставить сопротивление эмиттерного перехода rэ, транзистора Т3 (или Т4).
Для получения больших Rвхпл целесообразно использовать ДУ в режиме малых токов (в микрорежиме), что будет приводить к возрастанию rэ. Кроме того, желательно применять транзисторы с высокими значениями в.
Размещено на http://www.allbest.ru/
Другой разновидностью ДУ с повышенным входным сопротивлением является усилитель на полевых транзисторах. На рис.7.9 приведена принципиальная схема одного из вариантов ДУ на МДП-транзисторах. Здесь использованы МДП-транзисторы с n-каналом, который может быть и встроенным, и индуцированным. Подложки МДП-транзисторов могут быть соединены со своими истоками или с общей шиной.
В рассматриваемом ДУ МДП-транзисторы Т1 и Т2 выполняют свои основные усилительные функции активных элементов, а ТЗ и Т4 - функции резисторов. Такой ДУ иногда называют усилителем с динамической нагрузкой. Коэффициент усиления по напряжению для дифференциального сигнала определяется отношением ширин каналов МДП-транзисторов (см. рис. 7.9) Т1 и ТЗ (или Т2 и Т4).
Технологически это отношение сделать большим очень трудно, поэтому в реальных структурах Кu диф обычно не превышает 10, и коэффициент ослабления синфазного сигнала у таких ДУ тоже меньше, чем у ДУ на биполярных транзисторах. Однако входные сопротивления велики как для дифференциального, так и для синфазного сигналов (более 1010 Ом). В дифференциальных усилителях на МДП-транзисторах обычно Rвх пл определяется утечками структуры. Для получения ДУ с очень большими входными сопротивлениями и с хорошими другими параметрами целесообразно использовать усилитель рис.99, в котором транзисторы Т1 и Т2 являются МДП-транзисторами.
В ИС широкое распространение получили замены резисторов транзисторами, которые, являются наиболее предпочтительными элементами для ИС. Пример такой замены приведен (см. рис. 7.9). Однако не только МДП-транзисторы, но и биполярные широко используются в усилительных ИС (в частности, в ДУ) вместо резисторов Rк, т. е. выполняют в усилителях функцию динамических нагрузок.
Размещено на http://www.allbest.ru/
Например, в ДУ с динамической нагрузкой (рис. 7.10) выполнен на комплементарных транзисторах: n-p-n-транзисторах Т1, Т2 и p-n-p-транзисторах ТЗ и Т4. Транзисторы Т1 и Т2 выполняют свои обычные функции усилительных элементов, а транзисторы Т3 и Т4 - нагрузочных элементов, т. е. резисторов. Транзистор Т3 включен по схеме диода. Предположим, что на базу у транзистора Т1 приложена в рассматриваемый момент положительная полуволна Uвх1. В результате в цепи транзистора Т3 возникает приращение тока (?Iк1), протекающего в направлении, указанном стрелкой (см. рис. 7.10).
За счет этого тока возникает приращение напряжения между базой и эмиттером Т3, которое является приращением входного напряжения для транзистора Т4. Таким образом в цепи «эмиттер - коллектор» Т4 возникает приращение тока, практически равное ?Iк1, поскольку в ДУ плечи симметричны. Структуру, основой которой являются транзисторы Т3 и Т4, принято называть отражателем тока, или токовым зеркалом. Отражатели тока находят широкое применение в современных ИС непрерывного действия.
Итак, в рассматриваемый момент на базу транзистора Т2 приложена отрицательная полуволна Uвх2. Следовательно, в цепи его коллектора появилось отрицательное приращение тока (?Iк2), протекающего в направлении, указанном стрелкой (см. рис. 7.10). При этом приращение тока нагрузки для ДУ равно:
?Iк1 + ?Iк2,
т.е. ДУ с отражателем тока обеспечивает большее усиление дифференциального сигнала. В данном случае
Кuдиф = вRн / (Rг + Rвх).
Необходимо также отметить, что для рассматриваемого варианта ДУ в режиме покоя ток нагрузки равен нулю.
В многокаскадных УПТ Rн является входным сопротивлением последующего каскада, значение которого, как было показано ранее, может быть очень большим. Таким образом, ДУ с отражателем тока является усилителем с большим Кu диф и, естественно, обладает всеми преимуществами дифференциальных усилителей.
8. ОПРЕДЕЛЕНИЕ И ОСНОВНЫЕ ХАРАКТЕРИСТИКИ операционных услителей
Свое название операционные усилители (ОУ) получили из-за того, что первоначально применялись для выполнения математических операций сложения, вычитания, умножения и деления. Первые ОУ, использующиеся в аналоговых вычислительных машинах на лампах, работали с напряжениями порядка 100 В.
Интегральные ОУ унаследовали прежнее название от своих предшественников и очень широко распространены в аналоговой схемотехнике. В настоящее время ОУ выполняются, как правило, в виде монолитных интегральных микросхем и по своим размерам и цене практически не отличаются от отдельно взятого транзистора. Операционные усилители занимают особое место среди аналоговых интегральных микросхем, предназначенных для усиления, преобразования и обработки сигналов, изменяющихся по закону непрерывной функции.
Операционные усилители являются наиболее универсальным многофункциональным базовым элементом для построения многих узлов, используемых не только для линейного преобразования, усиления и обработки сигналов, но и для нелинейного преобразования. Благодаря практически идеальным характеристикам операционных усилителей реализация различных схем на их основе оказывается значительно проще, чем на отдельных транзисторах.
Операционный усилитель - это высококачественный универсальный многокаскадный УПТ с дифференциальным входом, по своим характеристикам приближающийся к идеальному усилителю.
Считают, что коэффициент усиления дифференциального напряжения бесконечно велик и не зависит от частоты сигнала, коэффициент усиления синфазного сигнала равен нулю; сопротивление по обоим входам бесконечно велико, отсутствует сдвиг нуля выходного напряжения и его дрейф, скорость изменения выходного напряжения бесконечно велика, выходное сопротивление равно нулю.
Эти свойства даже теоретически полностью не могут быть достигнуты, так как большая часть из них требует бесконечной мощности выходного сигнала при малых геометрических размерах полупроводниковой структуры. Поэтому в каждом случае можно говорить лишь о доступной степени приближения к идеальным свойствам.
8.1 Устройство операционных усилителей
Операционный усилитель (рис. 8.1), выполненный в виде интегральной микросхемы, имеет в своем составе: дифференциальный входной каскад (ДВК), промежуточные каскады усиления (ПКУ) и выходной каскад (ОК).
Размещено на http://www.allbest.ru/
Рис. 8.1. Структурная схема ОУ
Дифференциальный каскад обеспечивает: большой коэффициент усиления по отношению к разности входных сигналов (дифференциальному сигналу), малый коэффициент усиления относительно синфазных помех, малый дрейф нуля и большое входное сопротивление.
За входными каскадами следует один или несколько промежуточных, они обеспечивают уменьшение напряжения покоя на выходе каскада до близкого к нулю значения и большое усиление по напряжению и по току. Усиление по напряжению необходимо для получения высокого общего коэффициента усиления по напряжению, а усиление по току - для обеспечения тока, достаточного для работы оконечного каскада. В качестве промежуточных каскадов используют дифференциальные или однополюсные каскады.
Оконечный (выходной) каскад обеспечивает: малое выходное сопротивление и достаточную мощность сигнала для низкоомной нагрузки, большое входное сопротивление каскада. Последнее необходимо для сохранения большого коэффициента усиления напряжения промежуточных каскадов. В качестве оконечного каскада обычно используют сложный эмиттерный повторитель.
Размещено на http://www.allbest.ru/
Любой ОУ (рис. 8.2) имеет не менее пяти выводов: два входных (инвертирующий и неинвертирующий), два вывода для подключения питания и один выходной вывод. Многие ОУ дополнительно имеют несколько выводов, не несущих функциональной нагрузки (вспомогательные), к которым подключаются цепи коррекции АЧХ (метки FC), цепи для подключения элементов балансировки по постоянному току (метки NC), а также вывод металлического корпуса () для соединения с общим проводом устройства, в которое входит в ОУ.
Питание схемы осуществляется от двух источников +Uп и -Uп с одинаковым напряжением. Источники питания имеют общую точку. При двух источниках питания упрощается схемотехника и технология изготовления не только выходного каскада, но и входного. Два источника питания позволяют увеличить входное сопротивление дифференциального каскада, так как при двух источниках питания можно обойтись без резисторных делителей в базовых цепях или цепях затворов входных транзисторов, уменьшающих входное сопротивление каскада.
Рассмотрим устройство операционного усилителя на примере усилителя К140УД1 (рис. 8.3). Для К140УД1 характерно наличие двух дифференциальных усилительных каскадов. Первый: на транзисторах Т1, Т2 и Т3, вход (Вх 1) - неинвертирующий, вход (Вх 2) - инвертирующий. При этом если используется только один вход, второй соединяется с выводом 4 через сопротивление R = Rист. сиг., так как R1 вх.= R2 вх.
Пара Т3 - R3 выполняет роль стабилизатора тока, подавляя синфазные сигналы усилителя. Второй дифференциальный каскад на транзисторах Т5 и Т6 имеет несимметричный выход с коллектора Т6, а транзистор Т4 включается по схеме диода. Он стабилизирует общую работу обоих каскадов. Схема сдвига уровня построена на транзисторах Т7 Т8 и резисторах R10, R9, R12.
Сдвиг уровня выполняется делителем, состоящим из резистора R9 и цепи Т8, R10, R12. Схема сдвига уровня подключена к несимметричному выходу второго каскада. Подключение выполняется через эмиттерный повторитель на базе Т7. Такое построение схемы сдвига уровня имеет не только большое входное сопротивление, но и малый входной ток, равный току базы Т7. Из этого получается, что можно увеличивать R5. В результате получаем высокий коэффициент усиления на втором каскаде.
Выходной каскад построен на эмиттерном повторителе на базе Т9. С помощью резистора R10 и транзистора Т8 вводится положительная обратная связь для компенсации ослабления сигнала, которое вносится схемой сдвига. Диод Д1 защищает оконечные транзисторы от перегрузки при высоком значении входного сигнала. Питание подается от двух источников по 6,3 В, включенных последовательно, или от одного источника 12,6 В.
Размещено на http://www.allbest.ru/
Рис. 8.3. Микросхема операционного усилителя К140УД1
Операционные усилители этой серии используются как усилители постоянного и переменного тока в полосе частот от 0 до 20 МГц. Когда требуется усиление широкополосного сигнала, этот усилитель охватывается глубокой обратной связью. При этом коэффициент усиления практически не зависит от параметров усилителя, и определяется лишь характеристиками обратной связи. Это верно лишь в данном диапазоне частот.
8.2 Характеристики операционных усилителей
ОУ характеризуются усилительными, входными, выходными, энергетическими, дрейфовыми, частотными и скоростными характеристиками.
Усилительные характеристики
Коэффициент усиления (KU) равен отношению приращения выходного напряжения к вызвавшему это приращение дифференциальному входному напряжению при отсутствии обратной связи (ОС). Он изменяется в пределах от 103 до 106.
Важнейшими характеристиками ОУ являются амплитудные (передаточные) характеристики (рис. 8.4). Их представляют в виде двух кривых, относящихся соответственно к инвертирующему и неинвертирующему входам. Характеристики снимают при подаче сигнала на один из входов при нулевом сигнале на другом. Каждая из кривых состоит из горизонтального и наклонного участков.
Размещено на http://www.allbest.ru/
Горизонтальные участки кривых соответствуют режиму полностью открытого (насыщенного), либо закрытого транзисторов выходного каскада. При изменении входного напряжения на этих участках выходное напряжение усилителя остается постоянным и определяется напряжениями +Uвых max) -Uвых max. Эти напряжения близки к напряжению источников питания.
Наклонному (линейному) участку кривых соответствует пропорциональная зависимость выходного напряжения от входного. Этот диапазон называется областью усиления. Угол наклона участка определяется коэффициентом усиления ОУ:
KU = Uвых / Uвх.
Большие значения коэффициента усиления ОУ позволяют при охвате таких усилителей глубокой отрицательной обратной связью получать схемы со свойствами, которые зависят только от параметров цепи отрицательной обратной связи.
Амплитудные характеристики (см. рис. 8.4), проходят через нуль. Состояние, когда Uвых = 0 при Uвх = 0,называется балансом ОУ. Однако для реальных ОУ условие баланса обычно не выполняется. При Uвх = 0 выходное напряжение ОУ может быть больше или меньше нуля:
Uвых = + Uвых или Uвых = - Uвых).
Дрейфовые характеристики
Напряжение (Uсмо), при котором Uвых = 0, называется входным напряжением смещения нуля (рис. 8.5). Оно определяется значением напряжения, которое необходимо подавать на вход ОУ для получения нуля на выходе ОУ. Обычно составляет не более единиц милливольт. Напряжения Uсмо и ?Uвых (?Uвых = Uсдв - напряжение сдвига) связаны соотношением:
Uсмо = ?Uвых / КU.
Основной причиной появления напряжения смещения является существенный разброс параметров элементов дифференциального усилительного каскада.
Зависимость параметров ОУ от температуры вызывает температурный дрейф входного напряжения смещения. Дрейф входного напряжения смещения - это отношение изменения входного напряжения смещения к изменению окружающей температуры:
Eсмо = Uсмо / Т.
Обычно Eсмо составляет 1...5 мкВ / °С.
Размещено на http://www.allbest.ru/
Передаточная характеристика ОУ для синфазного сигнала показана на (рис. 8.6). Из него видно, что при достаточно больших значениях Uсф (соизмеримых с напряжением источника питания) коэффициент усиления синфазного сигнала (Ксф) резко возрастает.
Размещено на http://www.allbest.ru/
Используемый диапазон входного напряжения называется областью ослабления синфазного сигнала. Операционные усилители характеризуется коэффициентом ослабления синфазного сигнала (Косс) - отношением коэффициента усиления дифференциального сигнала (Кuд) к коэффициенту усиления синфазного сигнала (Кu сф).
Косс = Кuд / Кu сф.
Коэффициент усиления синфазного сигнала определяется как отношение изменения выходного напряжения к вызвавшему его изменению синфазного входного сигнала). Коэффициент ослабления синфазного сигнала обычно выражается в децибелах.
Входные характеристики
Входное сопротивление, входные токи смещения, разность и дрейф входных токов смещения, а также максимальное входное дифференциальное напряжение характеризуют основные параметры входных цепей ОУ, которые зависят от схемы используемого дифференциального входного каскада.
Входной ток смещения (Iсм) - ток на входах усилителя. Входные токи смещения обусловлены базовыми токами входных биполярных транзисторов и токами утечки затворов для ОУ с полевыми транзисторами на входе. Другими словами, Iсм - это токи, потребляемые входами ОУ. Они обуславливается конечным значением входного сопротивления дифференциального каскада. Входной ток смещения (Iсм), приводимый в справочных данных на ОУ, определяется как средний ток смещения:
...Подобные документы
Рассмотрение принципов работы полупроводников, биполярных и полевых транзисторов, полупроводниковых и туннельных диодов, стабилитронов, варикапов, варисторов, оптронов, тиристоров, фототиристоров, терморезисторов, полупроводниковых светодиодов.
реферат [72,5 K], добавлен 14.03.2010Принципы работы полупроводниковых приборов. Физические основы электроники. Примесная электропроводность полупроводников. Подключение внешнего источника напряжения к переходу. Назначение выпрямительных диодов. Физические процессы в транзисторе, тиристоры.
лекция [4,4 M], добавлен 24.01.2014Физические принципы функционирования электронных приборов. Дефекты реальных кристаллов. Искажение кристаллической решетки в твердых растворах внедрения и замещения. Принцип работы биполярных транзисторов. Поверхностные явления в полупроводниках.
контрольная работа [3,1 M], добавлен 04.10.2010Физические основы полупроводниковых приборов. Принцип действия биполярных транзисторов, их статические характеристики, малосигнальные параметры, схемы включения. Полевые транзисторы с управляющим электронно-дырочным переходом и изолированным затвором.
контрольная работа [637,3 K], добавлен 13.02.2015Понятие электронного усилителя, принцип работы. Типы электронных усилителей, их характеристики. Типы обратных связей в усилителях и результаты их воздействия на работу электронных схем. Анализ электронных усилителей на основе биполярных транзисторов.
курсовая работа [540,7 K], добавлен 03.07.2011Параметры интегральных полупроводниковых диодов и биполярных транзисторов в интервале температур 250-400К. Величина контактной разности потенциалов. Толщина квазинейтральной области. Глубина залегания эмиттерного перехода. Транзисторы с p-n переходом.
курсовая работа [270,1 K], добавлен 19.02.2013Изучение принципов работы жидкокристаллических дисплеев, плазменных панелей. Исследование характеристик полупроводниковых приборов и электронных устройств: полевых транзисторов, диодов, усилительных каскадов. Двоичные системы счисления в электронике.
курсовая работа [1,5 M], добавлен 24.10.2015Применение компьютерных программ моделирования для изучения полупроводниковых приборов и структур. Оценка влияния режимов работы и внешних факторов на их основные электрические характеристики. Изучение особенностей основных полупроводниковых приборов.
дипломная работа [4,8 M], добавлен 16.05.2013Конструктивные особенности и параметры полупроводниковых приборов для усиления, генерирования и преобразования электрических сигналов. Классификация диодов, транзисторов, тиристоров по основному рабочему материалу, принципу действия, частоте и мощности.
презентация [1,7 M], добавлен 03.05.2011Определение параметров структурно-физических математических моделей диодов и полевых транзисторов, малосигнальных и структурно-физических моделей биполярных транзисторов. Исследование элементов системы моделирования и анализа радиоэлектронных цепей.
курсовая работа [1,3 M], добавлен 17.03.2011Назначение и классификация полупроводниковых приборов, особенности их применения в преобразователях энергии и передаче информации. Система обозначений диодов и тиристоров, их исследование на стенде. Способы охлаждения расчет нагрузочной способности.
дипломная работа [3,9 M], добавлен 28.09.2014Виды транзисторных усилителей, основные задачи проектирования транзисторных усилителей, применяемые при анализе схем обозначения и соглашения. Статические характеристики, дифференциальные параметры транзисторов и усилителей, обратные связи в усилителях.
реферат [185,2 K], добавлен 01.04.2010Устройство плоскостного биполярного транзистора. Концентрация основных носителей заряда. Схемы включения биполярных транзисторов. Статические характеристики биполярных транзисторов. Простейший усилительный каскад. Режимы работы и область применения.
лекция [529,8 K], добавлен 19.11.2008Создание полупроводниковых приборов для силовой электроники. Транзисторы с изолированным затвором. Схемы включения полевых транзисторов. Силовые запираемые тиристоры. Устройство полевого транзистора с управляющим p-n переходом. Назначение защитной цепи.
реферат [280,5 K], добавлен 03.02.2011Разработка структурной, принципиальной и интегральной микросхем аналогового устройства на основе биполярных и полевых транзисторов. Выбор типов и структур биполярных и полевых транзисторов, навесных элементов и расчёт конфигурации плёночных элементов.
курсовая работа [241,0 K], добавлен 29.08.2014Физические основы и принцип работы светоизлучающих диодов как полупроводниковых приборов, излучающих некогерентный свет. Применение и анализ преимуществ и недостатков светоизлучающего диода. Стоимость светодиодных ламп и перспективы использования в ЖКХ.
реферат [22,8 K], добавлен 03.03.2011Типы биполярных транзисторов и их диодные схемы замещения. Кремниевые и германиевые транзисторы. Физические явления в транзисторах. Схемы включения и статические параметры. Влияние температуры на статистические характеристики, динамические параметры.
реферат [116,3 K], добавлен 05.08.2009Надежность электронных компонентов, туннельный пробой в них и методы его определения. Надежность металлизации и контактов интегральных схем, параметры их надежности. Механизм случайных отказов диодов и биполярных транзисторов интегральных микросхем.
реферат [420,4 K], добавлен 10.12.2009Понятие и принцип работы электронного усилителя. Типы электронных усилителей, их параметры и характеристики. Сравнительный анализ параметров усилителей с различным включением транзисторов в схемах. Расчет усилительного каскада на биполярном транзисторе.
курсовая работа [1,2 M], добавлен 03.07.2011Строение твердых тел, их энергетические уровни. Оптические и электрические свойства полупроводников. Физические эффекты в твердых и газообразных диэлектриках, проводниках, магнитных и полупроводниковых материалах. Токи в электронно-дырочном переходе.
курс лекций [1,7 M], добавлен 11.01.2013