Электрические параметры антенн

Основные электрические параметры передающих антенн. Рассмотрение направления напряжённости магнитного поля излученной волны. Применение принципа суперпозиции к расчету электрических токов передающих антенн. Определение поля излучения элемента Гюйгенса.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид лекция
Язык русский
Дата добавления 08.07.2014
Размер файла 376,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Электрические параметры антенн. Основные электрические параметры передающих антенн

антенна электрический гюйгенс ток

Классификация антенн

1. Антенна бегущей волны

2. Волновой канал

3. Диэлектрическая антенна

4. Зеркальные антенны

4.1. Зеркальная апланатическая антенна

4.2. Параболическая антенна

4.3. Антенна Коссегрен

4.4. Рупорная антенна

4.5. Перескопическая антенна

5. Линзовая антенна

6. Магнитная антенна

6.1. Ферритовая антенна

7. Мачта-антенна

8. Антенна поверхностной волны

9. Рамочная антенна

10. Ромбическая антенна

11. Синфазная антенна

12. Спиральная антенна 14

13. Телевизионная антенн 14

14. Телескопическая антенна

15. Турникетная антенн 15

16. Штыревая антенна 15

17. ФАР

Основные характеристики и параметры антенн. У большинства передающих антенн интенсивность излучения зависит от направления или, как говорят, А. обладает направленностью излучения. Это свойство антенны графически изображается диаграммой направленности, показывающей зависимость от направления напряжённости электрического поля излученной волны (измеренной на большом и одинаковом расстоянии от А.). Направленность излучения А. приводит к повышению напряжённости поля волны в направлении максимального излучения и таким образом создаёт эффект, эквивалентный эффекту, вызываемому увеличением излучаемой мощности. Для количественной оценки эквивалентного выигрыша в излучаемой мощности введено понятие коэффициента направленного действия (КНД), показывающего, во сколько раз нужно увеличить мощность излучения при замене данной реальной А. гипотетической ненаправленной А.(изотропным излучателем), чтобы напряжённость электромагнитного поля осталась неизменной. Не вся подводимая к А. мощность излучается. Часть мощности теряется в проводах и изоляторах А., а также в окружающей А. среде (земле, поддерживающих А. конструкциях и др.). Отношение излучаемой мощности ко всей подводимой называется к.п.д. А. Произведение КНД на к.п.д. называется коэффициентом усиления (КУ) А.

Приёмная А. также характеризуется формой диаграммы направленности, КНД, к.п.д. и КУ. Её диаграмма направленности изображает зависимость э. д. с., создаваемой А. на входе приёмника, от направления прихода волны. При этом предполагается, что напряжённость поля в точке приёма не зависит от направления прихода волны. КНД показывает, во сколько раз вводимая А. во входную цепь приёмника мощность при приходе волны с направления максимального приёма больше среднего (по всем направлениям) значения мощности, при условии, что напряжённость поля не зависит от направления прихода волны. КНД приёмной А. характеризует её пространственную избирательность, определяющую возможность выделения принимаемого сигнала на фоне помех, создаваемых радиосигналами, идущими с разных направлений и порождаемых различными источниками. Под к.п.д приёмной А. подразумевают к.п.д. этой же А. при использовании её для передачи. КУ приёмной А. определяется как произведение КНД на кпд. Форма диаграмм направленности, КНД и КУ любой А. одинаковы в режиме передачи и в режиме приёма. Это свойство взаимности процессов передачи и приёма позволяет ограничиться описанием характеристик А. только в режиме передачи.

Теория и методы построения А. базируются на теории излучения элементарного электрического вибратора, опубликованной Г. Герцем в 1889. Под элементарным электрическим вибратором подразумевают проводник, длиной во много раз меньшей длины излучаемой волны л, обтекаемый током высокой частоты с одинаковой амплитудой и фазой на всей его длине. Его диаграмма направленности в плоскости, проходящей через ось, имеет вид восьмёрки. В плоскости, перпендикулярной оси, направленность излучения отсутствует, и диаграмма имеет форму круга. КНД элементарного вибратора равен 1,5. Примером практического выполнения элементарного вибратора является вибратор Герца. Любая А. может рассматриваться как совокупность большого числа элементарных вибраторов.

2. Применение принципа суперпозиции к расчету поля излучения антенн

Свойства антенн принято изучать главным образом в передающем режиме, поскольку характеристики антенн в приемном режиме наиболее просто могут быть определены через характеристики тех же устройств в передающем режиме с помощью принципа взаимности.

Изучение свойств передающих антенн начнем с определения электромагнитного поля, созданного произвольной антенной, находящейся в свободном пространстве, при условии, что для этой антенны решена так называемая внутренняя задача. Для металлических антенн, это означает, что распределение электрических токов - источников электромагнитного поля - известно во всех точках антенны.

Наиболее просто и наглядно поле таких антенн рассчитывается с использованием принципа суперпозиции. Ввиду линейности уравнений Максвелла проволочную антенну длиной можно разбить на элементарные участки , каждый из которых при малой толщине провода можно рассматривать как элементарный электрический вибратор (ЭЭВ), и далее найти результирующее поле путем суммирования всех элементарных полей с учетом их поляризации, амплитуд и фаз.

Рис 1 К расчету поля антенны

В локальной сферической системе координат r', ', ', связанной с элементом и декартовой системой x', у', z', ось z' которой совпадает с осью элементарного вибратора (рис. 1.1), комплексная амплитуда напряженности электрического поля имеет вид

, (1.1)

где - линейная координата, отсчитываемая вдоль провода и характеризующая положение рассматриваемого элемента; - комплексная амплитуда тока в выделенном элементе; - длина ЭЭВ;

;

длина волны в свободном пространстве;

характеристическое сопротивление среды; - орт сферической системы координат.

В (1.1) и далее индекс т в обозначении комплексной амплитуды опущен. Выражение (1.1) справедливо в дальней зоне выделенного элемента, т. е. при условии r' » (реально, достаточно условия r' > 1,5, при этом погрешность по амплитуде не превосходит 1%). Напряженность магнитного поля в дальней зоне ЭЭВ связана с (1.1) выражением

(1.2)

где - орт сферической системы координат. Результирующее поле определяется путем геометрического суммирования (интегрирования) полей всех элементарных участков:

, . (1.3)

Принцип суперпозиции используется при расчете поля излучения и магнитных токов, каждый из элементарных участков которых можно рассматривать как излучение элементарных магнитных вибраторов (ЭМВ). Хотя магнитные токи в природе не существуют, их формальное ведение оказывается чрезвычайно полезным при анализе, например, антенн, выполненных в виде длинной узкой щели в металлическом экране.

В ряде случаев, когда распределение тока по антенне либо неизвестно, либо слишком сложно, однако из каких-либо априорных соображений известно распределение поля вблизи антенны (например, для апертурных антенн, в частности для антенн параболического типа), найти излучаемое антенной поле можно с помощью принципа эквивалентности. Согласно этому принципу излучение реальных электрических токов заменяется излучением эквивалентных поверхностных электрических и магнитных токов, распределенных в точках воображаемой произвольной поверхности S, окружающей антенну. Плотность этих токов

, , (1.5)

где n0 - единичная нормаль к поверхности S, внешняя по отношению к области, занятой антенной; , - поле в точках на поверхности S.

Разобьем поверхность S на элементарные площадки dS, тогда, рассматривая каждую площадку как совокупность двух элементарных излучателей - электрического и магнитного, можно найти полное поле во внешней области, суммируя поля, созданные отдельными элементами. Обычно учитывают токи только на части замкнутой поверхности S, где они наиболее существенны, причем эту часть поверхности выбирают совпадающей с фронтом волны, излучаемой антенной. В данном случае каждую элементарную площадку можно рассматривать как элемент волнового фронта - элемент Гюйгенса, электрическое поле которого и локальной системе координат r', ', ', связанной с декартовой системой x', у', z', ось z' которой совпадает с внешней нормалью (см. рис. 1.2), при r' « можно представить в виде

, (1.6)

Рис. 2 К расчету поля элемента Гюйгенса

, (1.7)

. (1.8)

Размещено на Allbest.ru

...

Подобные документы

  • Понятие и принцип работы передающих антенн и их диаграммы направленности. Расчет размеров и резонансных частот для фрактальных антенн. Проектирование печатной микрополосковой антенны на основании фрактала Коха и 10 макетов антенн проволочного типа.

    дипломная работа [450,6 K], добавлен 02.02.2015

  • Применение антенн как для излучения, так и для приема электромагнитных волн. Существование большого многообразия различных антенн. Проектирование линейной решетки стержневых диэлектрических антенн, которая собрана из стержневых диэлектрических антенн.

    курсовая работа [1,6 M], добавлен 03.12.2010

  • Схематические изображения конструкции однозеркальных антенн. Схемы расположения лучей в двузеркальных антеннах. Проектирование параболических зеркальных антенн, методы расчета поля излучения. Конструктивные особенности основных типов облучателей.

    курсовая работа [1,3 M], добавлен 11.01.2013

  • Антенно-фидерное устройство как неотъемлемая часть любой радиотехнической системы. Основные электрические и геометрические параметры линейной решётки рупорных антенн и её элементов. Диаграмма направленности, поляризация и полоса пропускания антенны.

    курсовая работа [408,8 K], добавлен 28.11.2010

  • Антенны в современной радиоэлектронике. Электрические параметры антенн. Общие сведения и принцип действия зеркальной антенны. Геометрические характеристики параболоидного зеркала. Методика моделирования ближнего поля. Конструирование зеркальных систем.

    реферат [706,1 K], добавлен 28.01.2009

  • Особенность теории спиральных антенн, их типы, свойства, сложность расчета поля и виды волн в них. Широкополосность и моделирование антенн. Теоретический анализ спиральной антенны сотового телефона. Расчёт диаграммы направленности плоских антенн.

    дипломная работа [4,5 M], добавлен 08.03.2011

  • Элементы стержневых диэлектрических антенн и их преимущество. Теория диэлектрических волноводов, антенн бегущей волны. Выбор волновода, диэлектрика и геометрии стержня. Расчет одиночного излучателя и антенной решетки. Схема питания строки излучателей.

    курсовая работа [1,3 M], добавлен 03.12.2010

  • Применение линзовых антенн. Формирование различных диаграмм направленности. Выбор функции амплитудного распределения поля в раскрыве зеркала. Зависимость толщины линзы от фокусного расстояния. Расчет размеров облучателя. Выбор фидерного тракта.

    курсовая работа [643,7 K], добавлен 18.12.2011

  • Порядок и этапы конструирования антенн СВЧ. Особенности применения ФАР для построения сканирующих остронаправленных антенн, методика подбора соответствующих параметров. Выбор и расчет схемы питания, фазовращателей. Определение кодов управления фазой.

    курсовая работа [66,2 K], добавлен 24.04.2009

  • Функциональные составляющие системы RFID. Основные параметры антенн. Передача и прием сигнала. Преимущества использования меандр-линии. Топология микрополоскового излучателя. Обзор методов расчета микрополосковых антенн. Аппаратная реализация меток.

    курсовая работа [3,7 M], добавлен 09.09.2016

  • Основные задачи теории антенн и характеристики данного приспособления. Уравнения Максвелла. Поле электрического диполя в неограниченном пространстве. Отличительные особенности вибраторных и апертурных антенн. Способы управления амплитудой решеток.

    учебное пособие [435,5 K], добавлен 27.04.2013

  • Форма, размеры, конструкция, направленность и разновидности антенн. Системы фиксированного радиодоступа. Персональные беспроводные сети. Практическое определение волнового сопротивления линии передачи. Закономерности излучения полуволнового вибратора.

    доклад [1,9 M], добавлен 30.05.2015

  • Проверка в вычислительных экспериментах схемы модельного синтеза дифракционных антенн с заданными электродинамическими характеристиками. Исследование физических особенностей в процессах излучения импульсных и монохроматических волн такими антеннами.

    презентация [464,9 K], добавлен 09.10.2015

  • Виды и классификация антенн систем сотовой связи. Технические характеристики антенны KP9-900. Основные потери эффективности антенны в рабочем положении аппарата. Методы расчета антенн для сотовых систем связи. Характеристики моделировщика антенн MMANA.

    курсовая работа [3,5 M], добавлен 17.10.2014

  • Знакомство с видами деятельности ООО "Антенн-Сервис": монтаж и ввод в эксплуатацию эфирных и спутниковых антенных комплексов, проектирование телекоммуникационных сетей. Общая характеристика основных свойств и области применения спутниковых антенн.

    дипломная работа [3,4 M], добавлен 18.05.2014

  • Определение вида радиосистемы. Особенности передающих и приемных антенн. Построение структурной схемы первичной магистральной телефонной сети. Принципы соединения станций на местных сетях. Характеристика сотовых систем связи, их достоинства и недостатки.

    контрольная работа [1,4 M], добавлен 18.04.2014

  • Выбор пар подвеса антенн на заданном участке в условиях средней рефракции в худший сезон и в условиях субрефракции. Оптимизация высот антенн на восьмиинтервальном участке радиорелейных линий при использовании метода динамического программирования.

    лабораторная работа [1,5 M], добавлен 15.05.2015

  • Расчет зеркальных параболических антенн, которые находят широкое применение в космических и радиорелейных линиях связи. Определение поля излучения параболической антенны апертурным методом. Шумовая температура фидерного тракта. Выбор конструкции зеркала.

    курсовая работа [1,1 M], добавлен 04.03.2011

  • Основные модификации зеркальных антенн, в которых для фокусирования высокочастотной электромагнитной энергии используется явление зеркального отражения от криволинейных металлических поверхностей (зеркал). Конструктивные особенности и типы антенн.

    курсовая работа [303,5 K], добавлен 25.12.2008

  • Обзор способов передачи сообщений и способов приёма сообщений. Тип антенн и их параметры. Обоснование структурной схемы системы. Вид модуляции и параметры радиосигнала. Способы синхронизации и выбор формы синхросигнала. Характеристика и параметры помех.

    курсовая работа [2,3 M], добавлен 23.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.