Разработка радиопередатчика

Ознакомление с обоснованием структурной схемы разрабатываемого радиопередатчика. Расчет электронного режима транзистора, кварцевого автогенератора, элементов схемы усилителя и согласующих цепей, параметров элементов цепи питания, умножителя частоты.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 23.08.2014
Размер файла 291,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Постановка задачи (задание)

Введение

1. Выбор и обоснование структурной схемы

2. Расчет выходного усилителя мощности

2.1 Расчет электронного режима транзистора

2.1.1 Коллекторная цепь

2.1.2 Базовая цепь

2.2 Расчет элементов схемы усилителя и согласующих цепей

2.2.1 Расчет цепей питания

2.2.2 Расчет входной согласующей цепи

2.2.3 Расчет выходной согласующей цепи

3. Расчет кварцевого автогенератора

3.1 Выбор кварцевого резонатора и транзистора

3.2 Расчет параметров колебательной системы АГ

3.3 Расчет параметров режима работы транзистора

3.4 Расчет параметров элементов цепи питания и смещения

3.5 Расчет варикапа

3.6 Расчет элементов цепи генератора

4. Расчет умножителя частоты

4.1 Выбор типа транзистора и расчет его режима работы

4.2 Расчет элементов схемы

5. Описание конструкции

1. Постановка задачи (задание)

Радиопередатчик с ЧМ

1. Назначение устройства: связной.

2. Мощность: Рвых=1,3 Вт

3. Диапазон волн (частот): fвых=310 МГц

4. Модуляция ЧМ

5. Место установки: носимый

6. Нестабильность частоты

7. Сопротивление нагрузки: 50 Ом

8. Питание батарейное.

Структурная схема

Введение

Разрабатываемый передатчик (носимый) будет использоваться для связи между группами людей. Например, между поисковыми отрядами и координационным центром, так и между отрядами, для уточнения действий, получения заданий, сообщения об окружающей обстановке. Поэтому передатчик должен обладать следующими качествами: быть достаточно простым и надежным в использовании, иметь достаточно низкие массогабаритные характеристики, иметь продолжительный ресурс работы и возможность замены элементов питания. Исходя из условий эксплуатации (вне помещений) передатчик должен быть защищен от воздействий окружающей среды и устойчив к перепадам температур.

1. Выбор и обоснование структурной схемы

Исходя из требований к передатчику, выбираем наиболее простую и экономичную в реализации схему: один генератор, умножительные и усилительные каскады. Частотную модуляцию будем осуществлять простым в реализации прямым методом, когда изменение частоты производится в задающем генераторе. Т.к. заданы высокие требования к допустимой нестабильности частоты , в качестве задающего генератора будем использовать автогенератор с кварцевым резонатором, в котором кварц работает на основной гармонике. Поэтому для получения на выходе заданной частоты fвых=310 МГц будем использовать каскады умножения частоты. Использование транзисторных умножителей частоты позволяет, как повысить частоту (и девиацию частоты) в "n" раз, так и увеличить мощность входного сигнала, но с ростом коэффициента умножения частоты "n" падает выходная мощность и КПД, поэтому возьмем два каскада умножения частоты на 2 и на 3. Таким образом, кварцевый резонатор будет работать на частоте основной гармоники МГц. Т.к. оконечный каскад- усилитель мощности (УМ) потребляет больше всего энергии, то будем его проектировать с высоким КПД. Для возбуждения оконечного каскада и получения требуемой мощности применим цепочку каскадов УМ. В передатчике используется батарейное питание, поэтому нужно стремиться получить высокие значения КПД каскадов. Расчет начнем с оконечного каскада УМ. Примем КПД согласующих цепей зСЦ=0.8, тогда мощность на выходе каскада , задаем его коэффициент усилением по мощности KP=9, тогда мощность возбуждения на входе должна быть . Задаем мощность на выходе кварцевого генератора: . Далее зададим усиление по мощности каждого из каскадов на основе инженерного опыта. С учетом согласующих цепей получаем следующие значения:

Оконечный каскад УМ KP=7.5, .

Буферный усилитель мощности, для усиления мощности после кварцевого генератора: KP=5,

Умножитель частоты на 2, , KP=5,

Умножитель частоты на 2, , KP=5,

Умножитель частоты на 3 KP=3,

Получаем, что промежуточный усилитель должен обеспечить . Тогда мощность на входе оконечного каскада .

Структурная схема передатчика:

Проведем расчет трех каскадов: выходной усилитель мощности, кварцевый генератор и умножителя частоты на 2.

2. Расчет выходного усилителя мощности

Расчет начинаем с выходного усилительного каскада, т.к. он обеспечивает необходимую выходную мощность передатчика: Рвых=1.3 Вт.

Исходные данные берем из предварительного расчета структурной схемы: радиопередатчик транзистор автогенератор частота

- выходная мощность каскада Рвых1=1.625 Вт,

- частота f=310 МГЦ,

- сопротивление нагрузки 50 Ом,

также выбираем транзистор 2Т925А. Его параметры приведены в таблицах:

Тип прибора

Предельные эксплуатационные данные

В

А

МГц

2Т925А

Э

36

4

1,0

0,5

1.8

20

150

85

13.5

200..400

Тип прибора

Типовой режим

МГц

Вт

%

В

2Т925А

320

>2

6...9.5

60…70

12.6

Тип прибора

Электрические параметры и параметры эквивалентной схемы

В

см

МГц

пФ

пФ

пФ

Ом

Ом

Ом

нГн

нГн

нГн

2Т925А

50

0.6

0.19

600…2400

4.5…15

5

110

1

0.4

1.5

2.4

1

2.4

Для получения высокого электронного КПД выберем угол отсечки коллекторного тока и=90о, тогда коэффициенты разложения для косинусоидального импульса:

Эквивалентная схема транзистора, включенного по схеме с общим эмиттером:

2.1 Расчет электронного режима транзистора

Рвых1=1.625 Вт на рабочей частоте f=310 МГЦ для граничного режима работы.

2.1.1 Коллекторная цепь

1. Напряженность граничного режима:

2. Амплитуда коллекторного напряжения и тока первой гармоники:

3. Постоянные составляющие коллекторного, базового и эмиттерного токов:

4. Максимальная величина коллекторного тока:

,

т.е. меньше максимально допустимой величины.

5. Мощности, потребляемые от источника коллекторного питания и рассеиваемая на коллекторе транзистора:

Рассеиваемая мощность меньше допустимой, транзистор выбран правильно:

6. Электронный КПД коллекторной цепи:

7. Эквивалентное сопротивление коллекторной нагрузки току первой гармоники:

8. Максимальная температура коллекторного перехода (радиатор отсутствует):

2.1.2 Базовая цепь

1. Дополнительной сопротивление в базовой цепи:

Так как , то в реальной схеме можно не ставить сопротивление , но оно остается в расчетных формулах.

2. Амплитуда базового тока составит:

,

где

3. Максимальное обратное напряжение на эмиттером переходе:

Условие выполняется и Rд не надо уменьшить.

4. Напряжение смещения на эмиттером переходе:

5. Активная и реактивная составляющая входного сопротивления транзистора .

Для этого рассчитаем элементы в эквивалентной схеме входного сопротивления транзистора: rвх, Rвх, Lвх, Cвх.

, тогда

6. Мощность возбуждения и коэффициент усиления по мощности:

2.2 Расчет элементов схемы усилителя и согласующих цепей

2.2.1 Расчет цепей питания

1. Блокировочная индуктивность во входной цепи автосмещения:

2. Блокировочная индуктивность, развязывающая цепь источника питания по высокой частоте:

3. Для исключения прохождения постоянной составляющей тока в нагрузку:

4. Для исключения прохождения постоянной составляющей тока в источник питания (примем RИП=10 Ом ):

2.2.2 Расчет входной согласующей цепи

Требуется согласовать выходное сопротивление транзистора УМ по первой гармонике Rн1 = 50(Ом) и входное сопротивление транзистора оконечного каскада .

Т.к. согласовываем каскад мощного усилителя (возбуждение током) с малым входным сопротивлением и , то можно использовать простую входную ВЧ цепь, представляющую ячейку ФНЧ Г- образного реактивного четырехполюсника, его эквивалентная схема представлена на рисунке:

Обозначим: R1=R`н1=50 (Ом), R2= rвх1, X2= xвх1.

Рассчитываем необходимую величину добротности Г-звена

-достаточно мала, следовательно, цепь не превратится в колебательный контур и ее можно использовать для согласования.

Рассчитаем цепь с емкостью в параллельной ветви, т.к. она имеет лучшие фильтрующие свойства в отношении высших гармоник, чем цепь с параллельной индуктивностью:

Определяем реактивные сопротивления

Ом; Ом.

Вычисляем величины индуктивности и емкости с учетом реактивностей выходного сопротивления транзистора УМ и входного сопротивления транзистора рассчитываемого каскада

2.2.3 Расчет выходной согласующей цепи

1. Находим действующее сопротивление:

,

проверяем выполнение условия иначе, согласование было бы невозможным.

2. Определим реактивные сопротивления:

3. Рассчитываем необходимую величину добротности второго Г-звена:

4. Определяем реактивное сопротивление:

5. Находим последовательное реактивное сопротивление П-цепи:

.

6. Вычислим величину индуктивностей и емкостей:

С учетом емкости СК, стоящей параллельно С1 пересчитаем:

С1'=C1-CК=5.17пФ-4.5пФ=0.67пФ.

.

Основные параметры каскада:

Напряжения питанияUКо=12.6 В

Выходная мощность(до согласующей цепи)РВЫХ = 1.625 Вт

Рабочая частотаf = 310 МГц

Коэффициент усиления по мощностиKp = 9.229

КПДз = 73%

Мощность, потребляемая от источникаР0 = 3 Вт

Мощность, рассеиваемая на коллекторе РК = 1.39 Вт

3. Расчет кварцевого автогенератора

3.1 Выбор кварцевого резонатора и транзистора

Исходными данными для расчета:

рабочая частота f=51.333 МГц,

мощность в нагрузке РН=0.4 мВт.

Приняв частоту fкв=f, выбираем КР желательно с меньшим значением rкво и выписываем его справочные параметры:

Тип резонатора

Частота fКВ,

Мгц

Сопротивление rКВ,

Ом

Статическая емкость СО, пФ

Добротность

QКВ

Допустимая мощность рассеяния РКВ_ДОП, мВт

РВ-59

51.667

40

1.25

1

Колебательная мощность генератора с КР невелика, поэтому АГ будем выполнять на маломощном транзисторе КТ306Б, с граничной частотой . Его параметрами:

Тип транзистора

Структура

транзистора

КТ306Б

500

40

40

0,6

7

4

0,03

0,15

1.5

n-p-n

Для расчета выбираем схему частотно модулируемого автогенератора с кварцем, включенным в контур:

Схема с КР в контуре удобна тем, что возбуждение может происходить как на основной частоте, так и на механических гармониках. Так же схема позволяет включить в колебательный контур варикап, для осуществления прямой частотной модуляции.

1. Вычислим нормированную статическую емкость КР:

2. Коэффициенты разложения косинусоидального импульса при угле отсечки и=60 градусов:

, ,,,

3. Режим автогенератора выбираем недонапряженным для уменьшения тока во входной цепи:

, возьмем

4. Сопротивление резистора R и коэффициент m:

5. Определим мощности, рассеиваемые на кварце и отдаваемая транзистором:

возьмем

6. Параметр

удовлетворяет рекомендованному значению а ? 0.25.

7. Максимальное значение импульсного коллекторного тока:

где

Условие выполняется.

8. Рассчитаем аппроксимированные параметры транзистора:

- крутизна по переходу,

- сопротивление рекомбинации,

- крутизна,

- граничная частота по крутизне,

- нормированная частота по ,

- модуль крутизны на частоте , а

3.2 Расчет параметров колебательной системы АГ

Рассчитываем параметры колебательной системы АГ (при условии самофазирования):

1) Сопротивление ветвей контура:

2) Ёмкости контура:

3) Эквивалентное реактивное сопротивление КР с учетом резистора R:

Тогда сопротивление плеча контура между коллектором и базой:

4) Оценим индуктивность:

для этого возьмем характеристическое сопротивление

Из условия найдем :

3.3 Расчет параметров режима работы транзистора

Параметры режима работы транзистора:

1) Постоянная составляющая и первая гармоника коллекторного тока:

2) Постоянная составляющая тока базы:

3) Амплитуда напряжения возбуждения:

Модуль коэффициента обратной связи:

4) Амплитуда коллекторного напряжения:

5) Напряжение смещения на базе:

6) Мощности, потребляемая в цепи коллектора, колебательная и рассеиваемая транзистором:

3.4 Расчет параметров элементов цепи питания и смещения

Параметры цепи элементов питания и смещения:

1) Выбираем значения сопротивлений Rэ и Rб из соотношений:

и

2) Напряжение источников коллекторного питания:

3) Начальное напряжение смещения:

4) Сопротивление делителя в цепи питания базы:

Ток делителя выбирается из соотношения

5) Мощность источника питания:

КПД цепи коллектора:

КПД АГ:

3.5 Расчет варикапа

Для осуществления частотной модуляции в АГ будем использовать варикап КВ109В с параметрами:

Тип варикапаа

Q

КВ109В

1.9-3.1

25

50

160

Так как он обладает высокой добротностью на рабочей частоте.

Возьмем показатель , зависящий от технологии изготовления варикапа. Для максимального изменения емкости варикапа величину целесообразно принимать из соотношения :

В режиме запертого p-n перехода емкость варикапа СВ зависит от напряжения модулирующего сигнала. Средняя емкость варикапа, соответствующая равна , тогда:

при U0=12,5 В.

Обозначим емкость . Так как < то из схемы исключается

Рассчитаем амплитуды высокочастотного и модулирующего напряжений на варикапе, для этого вычислим коэффициент включения варикапа в контур:

, где

Амплитуда модулирующего напряжения, подаваемого на варикап:

Так как условие: выполняется, то продолжаем расчет.

Рассчитаем значения и :

Частота девиации будет определяться формулой:

Так как требования к величине коэффициента нелинейных искажений не предъявляются, то оставляем его в пределах рассчитанного значения.

Данный варикап обеспечивает заданную величину девиации частоты.

Основные параметры автогенератора:

Pвых = 0,4 мВт

3.6 Расчет элементов цепи генератора

Расчет блокировочных элементов:

Выбор , включенной параллельно сопротивлению Rэ. Блокировочные функции этой емкости осуществляются при условии . Но при большой может возникнуть прерывистоая автогенерация. Условием ее отсутствия будет , где Q - добротность колебательной системы АГ (примем Q=100).

,

,

отсюда , примем .

Полагая, что внутреннее сопротивление источника питания мало(10 Ом):

Блокировочная индуктивность предотвращает заземление транзистора по высокой частоте:

Блокировочные индуктивности развязывающие по частоте и частоту модуляции : и

Примем , тогда:

Блокировочная емкость выбирается из соотношения:

Рассчитаем резистивный делитель в цепи смещения варикап:

-напряжение источника питания варикапа.

максимальная частота в спектре модулирующего сигнала.

Зададимся R4=500 Ом, тогда найдем значение R3 из соотношения :

Откуда

4. Расчет умножителя частоты

Генераторные каскады малой мощности РПУ могут выполнять функции умножителей частоты, в основе которых лежит принцип выделения гармоники нужной частоты из импульсов коллекторного тока.

Выходная мощность умножителя ограничена несколькими факторами. К ним относятся предельно допустимые значения обратного напряжения на эмиттерном переходе и мощности рассеяния , а также критический коллекторный ток .

При выборе угла отсечки надо учитывать следующее. Пиковое обратное напряжение увеличивается при уменьшении угла отсечки , что может ограничить мощность, отдаваемую умножителем частоты. При больших углах отсечки уменьшается КПД и растет мощность РК, что может привести к нереализуемости режима транзистора. Если при оптимизации мощности УЧ опираться только на ограничения по коллекторному току, считая , то оптимальный угол отсечки равен . При n=2 - , а при n=3 - . При этих углах отсечки КПД будет достаточно высоким, но надо не допустить превышение . Поэтому часто угол отсечки и для n=2, и для n=3 выбирают равным .

Расчет режима транзистора ведут на заданную мощность транзистора на рабочей частоте n*f, определенную по выходной мощности умножителя , , ,.

4.1 Выбор типа транзистора и расчет его режима работы

Исходя из заданных и n*f, по справочнику выбирается транзистор с учетом выполнений и . Вследствие больших потерь в материале коллектора на верхних частотах транзистора целесообразно выбирать транзистор с запасом по выходной мощности примерно в 2..2.5 раза. Выберем транзистор 1Т330А, со следующими параметрами и характеристиками:

Тип прибора

Электрические параметры и параметры эквивалентной схемы

В

см

МГц

В

А

Вт

Ом

КТ340А

125

0.6

0.05

300

10

0,05

0,15

30

Расчет транзистора будем вести по безынерционной методике , т.к. граничная частота значительно выше заданной частоты.

Режим транзистора полагаем граничным.

Возьмем Uк0=5 В, SГР=0.05, тогда:

- напряженность граничного режима работы транзистора.

- амплитуда второй гармоники коллекторного напряжения

- амплитуда второй гармоники коллекторного тока

- постоянная составляющая коллекторного тока

- мощность, подводимая к транзистору от источника питания в коллекторной цепи

- мощность, рассеиваемая коллектором транзистора

- эквивалентное сопротивление коллекторной цепи для второй гармоники коллекторного тока

- электронный КПД

- амплитуда первой гармоники напряжения на базе

- напряжение смещения на базе

Постоянная составляющая тока базы:

Параметры цепей элементов питания и смещения:

Сопротивление делителя в цепи питания базы:

Ток делителя выбирается из соотношения

- мощность возбуждения

Тогда коэффициент усиления по мощности составит:

4.2 Расчет элементов схемы

Расчет элементов контура:

Зададимся характеристическим сопротивлением контура:

Найдем добротность ненагруженного контура:

Добротность нагруженного составит:

Тогда сопротивление потерь составит:

Сопротивление связи:

Емкость связи:

Индуктивность контура:

Общая емкость контура:

Делитель емкости

Расчет блокировочных элементов:

Блокировочные емкости выбираются из принципа:

и

Сопротивления источников питания полагаем равным 10 Ом.

Основные параметры умножителя:

Pвых = 10 мВт

Kp=5

5. Описание конструкции

Передатчик выполнен в виде отдельных каскадов, расположенных на разных платах: плата задающего генератора, плата модулятора, плата маломощного усилителя (буферный каскад) и первого умножителя частоты, плата второго умножителя частоты, усилителя мощности и выходного каскада . Поэтому для соединения отдельных составных частей в единое целое, а также подключение источника питания ко всем каскадам, необходимо использование проводов. Все каскады питаются от аккумулятора 14(В), напряжение к ним подается через низкоомные маломощные резисторы - R8, R11 и R12. Питание автогенератора поступает от аккумулятора через делитель напряжения и стабилизируется стабилитроном КС133А с параллельно включенным конденсатором, шунтирующим его по переменному току. Толщина проводов будет зависеть от протекающих по ним токов.

Питание цепей передатчика обеспечим с помощью аккумулятора на 14(В). Напряжение на отдельные каскады будет подавать непосредственно с аккумулятора, а для задающего генератора - через делитель напряжения, для обеспечения 5-и вольтового напряжения.

Размещено на Allbest.ru

...

Подобные документы

  • Расчёт передатчика и цепи согласования. Расчёт структурной схемы и каскада радиопередатчика, величин элементов и энергетических показателей кварцевого автогенератора. Нестабильность кварцевого автогенератора и проектирование радиопередающих устройств.

    курсовая работа [291,9 K], добавлен 03.12.2010

  • Принципы выбора необходимого числа транзисторов и каскадов и их энергетический расчёт. Составление структурной и электрической принципиальной схем радиопередатчика. Расчёт умножителя частоты, LC-автогенератора с параметрической стабилизацией частоты.

    курсовая работа [3,0 M], добавлен 26.05.2014

  • Разработка структурной схемы радиопередатчика. Расчет режима работы выходного каскада и цепей согласования. Выбор стандартных элементов. Конструктивное вычисление катушки индуктивности. Основные требования к синтезатору частот и к источнику питания.

    курсовая работа [454,2 K], добавлен 08.01.2012

  • Разработка структурной и принципиальной схемы устройства. Расчет двухкаскадной схемы усилителя низкой частоты с использованием полевого и биполярного транзисторов. Выбор навесных элементов и определение конфигурации пленочных элементов усилителя частоты.

    курсовая работа [220,7 K], добавлен 22.03.2014

  • Радиопередающие устройства, их назначение и принцип действия. Разработка структурной схемы радиопередатчика, определение его элементной базы. Электрический расчет и определение потребляемой мощности радиопередатчика. Охрана труда при работе с устройством.

    курсовая работа [1,8 M], добавлен 11.01.2013

  • Проектирование усилителя мощности: выбор режима работы транзистора, синтез согласующих цепей. Конструирование фильтра и направленного ответвителя. Анализ, настройка схемы и характеристика автогенератора с замкнутой и разомкнутой цепью обратной связи.

    дипломная работа [1,6 M], добавлен 08.08.2013

  • Использование радиопередатчика с частотной модуляцией для связи между группами людей и обоснование его структурной схемы: один генератор, умножительные и усилительные каскады. Расчет электронного режима транзистора и выбор типа кварцевого резонатора.

    курсовая работа [1,9 M], добавлен 21.02.2011

  • Проект коротковолнового радиопередающего устройства с амплитудной модуляцией. Расчёт усилителя мощности, кварцевого автогенератора и цепи согласования активного элемента с нагрузкой. Выбор конденсаторов, резисторов, составление схемы радиопередатчика.

    курсовая работа [4,6 M], добавлен 19.09.2019

  • Разработка структурной схемы передатчика с базовой модуляцией, числа каскадов усиления мощности, оконечного каскада, входной цепи транзистора, кварцевого автогенератора, эмиттерного повторителя. Эквивалентное входное сопротивление и емкость транзистора.

    курсовая работа [691,9 K], добавлен 17.07.2010

  • Расчёт выходного каскада радиопередатчика на биполярных транзисторах на заданную мощность; выбор схем, транзисторов, элементов колебательных систем, способа модуляции. Расчёт автогенератора, элементов эмиттерной коррекции; выбор варикапа и его режима.

    курсовая работа [206,4 K], добавлен 11.06.2012

  • Расчёт параметров усилителя низкой частоты на биполярном транзисторе. Схема транзисторного усилителя низкой частоты. Выбор биполярного транзистора, расчет элементов схемы. Аналитический расчёт параметров усилительного каскада на полевом транзисторе.

    курсовая работа [381,5 K], добавлен 03.12.2010

  • Структурная и принципиальная схемы приемника второй группы сложности. Расчет параметров входного устройства, усилителя радиочастоты, преселектора, гетеродина, элементов цепей питания, преобразователя частоты, автогенератора, диодного детектора АМ сигнала.

    курсовая работа [431,5 K], добавлен 05.08.2011

  • Структурная схема реального радиопередающего устройства с пояснениями. Электрические расчеты режимов и элементов оконечного каскада. Конструкторский расчет элементов оконечной ступени. Назначение всех элементов принципиальной схемы радиопередатчика.

    курсовая работа [928,2 K], добавлен 24.04.2009

  • Структурная схема передатчика. Электрические расчеты режимов и элементов оконечного каскада. Расчет параметров штыревой антенны. Конструкторский расчет элементов оконечной ступени. Назначение всех элементов принципиальной схемы радиопередатчика.

    курсовая работа [5,3 M], добавлен 24.04.2009

  • Обзор литературы по усилителям мощности. Описание электрической схемы проектируемого устройства - усилителя переменного тока. Разработка схемы вторичного источника питания. Выбор и расчет элементов схемы электронного устройства и источника питания.

    реферат [491,0 K], добавлен 28.12.2014

  • Разработка структурной схемы передатчика. Расчёт усилителя мощности, цепи согласования, амплитудного модулятора, частотного модулятора, возбудителя частоты (автогенератора), колебательной системы, цепи питания и смещения, ёмкости связи с нагрузкой.

    курсовая работа [1,8 M], добавлен 03.07.2015

  • Описание работы каскада с указанием назначения элементов, построением токов и напряжений на вольт-амперных характеристиках транзистора. Обоснование выбора элементов схемы каскада по типу, допуску номинала, мощности, напряжению. Расчет элементов схемы.

    курсовая работа [693,5 K], добавлен 09.02.2014

  • Методика и основные этапы разработки схемы усилителя низкой частоты с заданными в техническом задании параметрами. Формирование и синтез структурной схемы. Разработка и расчет принципиальной схемы. Анализ данного спроектированного устройства на ЭВМ.

    контрольная работа [122,8 K], добавлен 09.10.2010

  • Проектирование радиоприемника, обоснование выбора гетеродинной схемы с разделенными каналами изображения и звука. Выбор и обоснование структурной схемы приемника, расчет его электрической схемы, цепи контроля и питания, элементов усилителя радиочастоты.

    курсовая работа [750,4 K], добавлен 07.07.2009

  • Расчет цепей смещения и питания транзистора. Выбор радиодеталей для цепей связи, фильтрации, питания для схемы оконечного каскада. Расчет принципиальной схемы передатчика. Электрический расчет генератора, управляемого напряжением с частотной модуляцией.

    курсовая работа [461,5 K], добавлен 04.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.