Разработка радиопередатчика
Ознакомление с обоснованием структурной схемы разрабатываемого радиопередатчика. Расчет электронного режима транзистора, кварцевого автогенератора, элементов схемы усилителя и согласующих цепей, параметров элементов цепи питания, умножителя частоты.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 23.08.2014 |
Размер файла | 291,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Постановка задачи (задание)
Введение
1. Выбор и обоснование структурной схемы
2. Расчет выходного усилителя мощности
2.1 Расчет электронного режима транзистора
2.1.1 Коллекторная цепь
2.1.2 Базовая цепь
2.2 Расчет элементов схемы усилителя и согласующих цепей
2.2.1 Расчет цепей питания
2.2.2 Расчет входной согласующей цепи
2.2.3 Расчет выходной согласующей цепи
3. Расчет кварцевого автогенератора
3.1 Выбор кварцевого резонатора и транзистора
3.2 Расчет параметров колебательной системы АГ
3.3 Расчет параметров режима работы транзистора
3.4 Расчет параметров элементов цепи питания и смещения
3.5 Расчет варикапа
3.6 Расчет элементов цепи генератора
4. Расчет умножителя частоты
4.1 Выбор типа транзистора и расчет его режима работы
4.2 Расчет элементов схемы
5. Описание конструкции
1. Постановка задачи (задание)
Радиопередатчик с ЧМ
1. Назначение устройства: связной.
2. Мощность: Рвых=1,3 Вт
3. Диапазон волн (частот): fвых=310 МГц
4. Модуляция ЧМ
5. Место установки: носимый
6. Нестабильность частоты
7. Сопротивление нагрузки: 50 Ом
8. Питание батарейное.
Структурная схема
Введение
Разрабатываемый передатчик (носимый) будет использоваться для связи между группами людей. Например, между поисковыми отрядами и координационным центром, так и между отрядами, для уточнения действий, получения заданий, сообщения об окружающей обстановке. Поэтому передатчик должен обладать следующими качествами: быть достаточно простым и надежным в использовании, иметь достаточно низкие массогабаритные характеристики, иметь продолжительный ресурс работы и возможность замены элементов питания. Исходя из условий эксплуатации (вне помещений) передатчик должен быть защищен от воздействий окружающей среды и устойчив к перепадам температур.
1. Выбор и обоснование структурной схемы
Исходя из требований к передатчику, выбираем наиболее простую и экономичную в реализации схему: один генератор, умножительные и усилительные каскады. Частотную модуляцию будем осуществлять простым в реализации прямым методом, когда изменение частоты производится в задающем генераторе. Т.к. заданы высокие требования к допустимой нестабильности частоты , в качестве задающего генератора будем использовать автогенератор с кварцевым резонатором, в котором кварц работает на основной гармонике. Поэтому для получения на выходе заданной частоты fвых=310 МГц будем использовать каскады умножения частоты. Использование транзисторных умножителей частоты позволяет, как повысить частоту (и девиацию частоты) в "n" раз, так и увеличить мощность входного сигнала, но с ростом коэффициента умножения частоты "n" падает выходная мощность и КПД, поэтому возьмем два каскада умножения частоты на 2 и на 3. Таким образом, кварцевый резонатор будет работать на частоте основной гармоники МГц. Т.к. оконечный каскад- усилитель мощности (УМ) потребляет больше всего энергии, то будем его проектировать с высоким КПД. Для возбуждения оконечного каскада и получения требуемой мощности применим цепочку каскадов УМ. В передатчике используется батарейное питание, поэтому нужно стремиться получить высокие значения КПД каскадов. Расчет начнем с оконечного каскада УМ. Примем КПД согласующих цепей зСЦ=0.8, тогда мощность на выходе каскада , задаем его коэффициент усилением по мощности KP=9, тогда мощность возбуждения на входе должна быть . Задаем мощность на выходе кварцевого генератора: . Далее зададим усиление по мощности каждого из каскадов на основе инженерного опыта. С учетом согласующих цепей получаем следующие значения:
Оконечный каскад УМ KP=7.5, .
Буферный усилитель мощности, для усиления мощности после кварцевого генератора: KP=5,
Умножитель частоты на 2, , KP=5,
Умножитель частоты на 2, , KP=5,
Умножитель частоты на 3 KP=3,
Получаем, что промежуточный усилитель должен обеспечить . Тогда мощность на входе оконечного каскада .
Структурная схема передатчика:
Проведем расчет трех каскадов: выходной усилитель мощности, кварцевый генератор и умножителя частоты на 2.
2. Расчет выходного усилителя мощности
Расчет начинаем с выходного усилительного каскада, т.к. он обеспечивает необходимую выходную мощность передатчика: Рвых=1.3 Вт.
Исходные данные берем из предварительного расчета структурной схемы: радиопередатчик транзистор автогенератор частота
- выходная мощность каскада Рвых1=1.625 Вт,
- частота f=310 МГЦ,
- сопротивление нагрузки 50 Ом,
также выбираем транзистор 2Т925А. Его параметры приведены в таблицах:
Тип прибора |
Предельные эксплуатационные данные |
|||||||||||
В |
А |
МГц |
||||||||||
2Т925А |
Э |
36 |
4 |
1,0 |
0,5 |
1.8 |
20 |
150 |
85 |
13.5 |
200..400 |
Тип прибора |
Типовой режим |
|||||
МГц |
Вт |
% |
В |
|||
2Т925А |
320 |
>2 |
6...9.5 |
60…70 |
12.6 |
Тип прибора |
Электрические параметры и параметры эквивалентной схемы |
|||||||||||||
В |
см |
МГц |
пФ |
пФ |
пФ |
Ом |
Ом |
Ом |
нГн |
нГн |
нГн |
|||
2Т925А |
50 |
0.6 |
0.19 |
600…2400 |
4.5…15 |
5 |
110 |
1 |
0.4 |
1.5 |
2.4 |
1 |
2.4 |
Для получения высокого электронного КПД выберем угол отсечки коллекторного тока и=90о, тогда коэффициенты разложения для косинусоидального импульса:
Эквивалентная схема транзистора, включенного по схеме с общим эмиттером:
2.1 Расчет электронного режима транзистора
Рвых1=1.625 Вт на рабочей частоте f=310 МГЦ для граничного режима работы.
2.1.1 Коллекторная цепь
1. Напряженность граничного режима:
2. Амплитуда коллекторного напряжения и тока первой гармоники:
3. Постоянные составляющие коллекторного, базового и эмиттерного токов:
4. Максимальная величина коллекторного тока:
,
т.е. меньше максимально допустимой величины.
5. Мощности, потребляемые от источника коллекторного питания и рассеиваемая на коллекторе транзистора:
Рассеиваемая мощность меньше допустимой, транзистор выбран правильно:
6. Электронный КПД коллекторной цепи:
7. Эквивалентное сопротивление коллекторной нагрузки току первой гармоники:
8. Максимальная температура коллекторного перехода (радиатор отсутствует):
2.1.2 Базовая цепь
1. Дополнительной сопротивление в базовой цепи:
Так как , то в реальной схеме можно не ставить сопротивление , но оно остается в расчетных формулах.
2. Амплитуда базового тока составит:
,
где
3. Максимальное обратное напряжение на эмиттером переходе:
Условие выполняется и Rд не надо уменьшить.
4. Напряжение смещения на эмиттером переходе:
5. Активная и реактивная составляющая входного сопротивления транзистора .
Для этого рассчитаем элементы в эквивалентной схеме входного сопротивления транзистора: rвх, Rвх, Lвх, Cвх.
, тогда
6. Мощность возбуждения и коэффициент усиления по мощности:
2.2 Расчет элементов схемы усилителя и согласующих цепей
2.2.1 Расчет цепей питания
1. Блокировочная индуктивность во входной цепи автосмещения:
2. Блокировочная индуктивность, развязывающая цепь источника питания по высокой частоте:
3. Для исключения прохождения постоянной составляющей тока в нагрузку:
4. Для исключения прохождения постоянной составляющей тока в источник питания (примем RИП=10 Ом ):
2.2.2 Расчет входной согласующей цепи
Требуется согласовать выходное сопротивление транзистора УМ по первой гармонике Rн1 = 50(Ом) и входное сопротивление транзистора оконечного каскада .
Т.к. согласовываем каскад мощного усилителя (возбуждение током) с малым входным сопротивлением и , то можно использовать простую входную ВЧ цепь, представляющую ячейку ФНЧ Г- образного реактивного четырехполюсника, его эквивалентная схема представлена на рисунке:
Обозначим: R1=R`н1=50 (Ом), R2= rвх1, X2= xвх1.
Рассчитываем необходимую величину добротности Г-звена
-достаточно мала, следовательно, цепь не превратится в колебательный контур и ее можно использовать для согласования.
Рассчитаем цепь с емкостью в параллельной ветви, т.к. она имеет лучшие фильтрующие свойства в отношении высших гармоник, чем цепь с параллельной индуктивностью:
Определяем реактивные сопротивления
Ом; Ом.
Вычисляем величины индуктивности и емкости с учетом реактивностей выходного сопротивления транзистора УМ и входного сопротивления транзистора рассчитываемого каскада
2.2.3 Расчет выходной согласующей цепи
1. Находим действующее сопротивление:
,
проверяем выполнение условия иначе, согласование было бы невозможным.
2. Определим реактивные сопротивления:
3. Рассчитываем необходимую величину добротности второго Г-звена:
4. Определяем реактивное сопротивление:
5. Находим последовательное реактивное сопротивление П-цепи:
.
6. Вычислим величину индуктивностей и емкостей:
С учетом емкости СК, стоящей параллельно С1 пересчитаем:
С1'=C1-CК=5.17пФ-4.5пФ=0.67пФ.
.
Основные параметры каскада:
Напряжения питанияUКо=12.6 В
Выходная мощность(до согласующей цепи)РВЫХ = 1.625 Вт
Рабочая частотаf = 310 МГц
Коэффициент усиления по мощностиKp = 9.229
КПДз = 73%
Мощность, потребляемая от источникаР0 = 3 Вт
Мощность, рассеиваемая на коллекторе РК = 1.39 Вт
3. Расчет кварцевого автогенератора
3.1 Выбор кварцевого резонатора и транзистора
Исходными данными для расчета:
рабочая частота f=51.333 МГц,
мощность в нагрузке РН=0.4 мВт.
Приняв частоту fкв=f, выбираем КР желательно с меньшим значением rкв*Со и выписываем его справочные параметры:
Тип резонатора |
Частота fКВ, Мгц |
Сопротивление rКВ, Ом |
Статическая емкость СО, пФ |
Добротность QКВ |
Допустимая мощность рассеяния РКВ_ДОП, мВт |
|
РВ-59 |
51.667 |
40 |
1.25 |
1 |
Колебательная мощность генератора с КР невелика, поэтому АГ будем выполнять на маломощном транзисторе КТ306Б, с граничной частотой . Его параметрами:
Тип транзистора |
Структура транзистора |
||||||||||
КТ306Б |
500 |
40 |
40 |
0,6 |
7 |
4 |
0,03 |
0,15 |
1.5 |
n-p-n |
Для расчета выбираем схему частотно модулируемого автогенератора с кварцем, включенным в контур:
Схема с КР в контуре удобна тем, что возбуждение может происходить как на основной частоте, так и на механических гармониках. Так же схема позволяет включить в колебательный контур варикап, для осуществления прямой частотной модуляции.
1. Вычислим нормированную статическую емкость КР:
2. Коэффициенты разложения косинусоидального импульса при угле отсечки и=60 градусов:
, ,,,
3. Режим автогенератора выбираем недонапряженным для уменьшения тока во входной цепи:
, возьмем
4. Сопротивление резистора R и коэффициент m:
5. Определим мощности, рассеиваемые на кварце и отдаваемая транзистором:
возьмем
6. Параметр
удовлетворяет рекомендованному значению а ? 0.25.
7. Максимальное значение импульсного коллекторного тока:
где
Условие выполняется.
8. Рассчитаем аппроксимированные параметры транзистора:
- крутизна по переходу,
- сопротивление рекомбинации,
- крутизна,
- граничная частота по крутизне,
- нормированная частота по ,
- модуль крутизны на частоте , а
3.2 Расчет параметров колебательной системы АГ
Рассчитываем параметры колебательной системы АГ (при условии самофазирования):
1) Сопротивление ветвей контура:
2) Ёмкости контура:
3) Эквивалентное реактивное сопротивление КР с учетом резистора R:
Тогда сопротивление плеча контура между коллектором и базой:
4) Оценим индуктивность:
для этого возьмем характеристическое сопротивление
Из условия найдем :
3.3 Расчет параметров режима работы транзистора
Параметры режима работы транзистора:
1) Постоянная составляющая и первая гармоника коллекторного тока:
2) Постоянная составляющая тока базы:
3) Амплитуда напряжения возбуждения:
Модуль коэффициента обратной связи:
4) Амплитуда коллекторного напряжения:
5) Напряжение смещения на базе:
6) Мощности, потребляемая в цепи коллектора, колебательная и рассеиваемая транзистором:
3.4 Расчет параметров элементов цепи питания и смещения
Параметры цепи элементов питания и смещения:
1) Выбираем значения сопротивлений Rэ и Rб из соотношений:
и
2) Напряжение источников коллекторного питания:
3) Начальное напряжение смещения:
4) Сопротивление делителя в цепи питания базы:
Ток делителя выбирается из соотношения
5) Мощность источника питания:
КПД цепи коллектора:
КПД АГ:
3.5 Расчет варикапа
Для осуществления частотной модуляции в АГ будем использовать варикап КВ109В с параметрами:
Тип варикапаа |
Q |
||||
КВ109В |
1.9-3.1 |
25 |
50 |
160 |
Так как он обладает высокой добротностью на рабочей частоте.
Возьмем показатель , зависящий от технологии изготовления варикапа. Для максимального изменения емкости варикапа величину целесообразно принимать из соотношения :
В режиме запертого p-n перехода емкость варикапа СВ зависит от напряжения модулирующего сигнала. Средняя емкость варикапа, соответствующая равна , тогда:
при U0=12,5 В.
Обозначим емкость . Так как < то из схемы исключается
Рассчитаем амплитуды высокочастотного и модулирующего напряжений на варикапе, для этого вычислим коэффициент включения варикапа в контур:
, где
Амплитуда модулирующего напряжения, подаваемого на варикап:
Так как условие: выполняется, то продолжаем расчет.
Рассчитаем значения и :
Частота девиации будет определяться формулой:
Так как требования к величине коэффициента нелинейных искажений не предъявляются, то оставляем его в пределах рассчитанного значения.
Данный варикап обеспечивает заданную величину девиации частоты.
Основные параметры автогенератора:
Pвых = 0,4 мВт
3.6 Расчет элементов цепи генератора
Расчет блокировочных элементов:
Выбор , включенной параллельно сопротивлению Rэ. Блокировочные функции этой емкости осуществляются при условии . Но при большой может возникнуть прерывистоая автогенерация. Условием ее отсутствия будет , где Q - добротность колебательной системы АГ (примем Q=100).
,
,
отсюда , примем .
Полагая, что внутреннее сопротивление источника питания мало(10 Ом):
Блокировочная индуктивность предотвращает заземление транзистора по высокой частоте:
Блокировочные индуктивности развязывающие по частоте и частоту модуляции : и
Примем , тогда:
Блокировочная емкость выбирается из соотношения:
Рассчитаем резистивный делитель в цепи смещения варикап:
-напряжение источника питания варикапа.
максимальная частота в спектре модулирующего сигнала.
Зададимся R4=500 Ом, тогда найдем значение R3 из соотношения :
Откуда
4. Расчет умножителя частоты
Генераторные каскады малой мощности РПУ могут выполнять функции умножителей частоты, в основе которых лежит принцип выделения гармоники нужной частоты из импульсов коллекторного тока.
Выходная мощность умножителя ограничена несколькими факторами. К ним относятся предельно допустимые значения обратного напряжения на эмиттерном переходе и мощности рассеяния , а также критический коллекторный ток .
При выборе угла отсечки надо учитывать следующее. Пиковое обратное напряжение увеличивается при уменьшении угла отсечки , что может ограничить мощность, отдаваемую умножителем частоты. При больших углах отсечки уменьшается КПД и растет мощность РК, что может привести к нереализуемости режима транзистора. Если при оптимизации мощности УЧ опираться только на ограничения по коллекторному току, считая , то оптимальный угол отсечки равен . При n=2 - , а при n=3 - . При этих углах отсечки КПД будет достаточно высоким, но надо не допустить превышение . Поэтому часто угол отсечки и для n=2, и для n=3 выбирают равным .
Расчет режима транзистора ведут на заданную мощность транзистора на рабочей частоте n*f, определенную по выходной мощности умножителя , , ,.
4.1 Выбор типа транзистора и расчет его режима работы
Исходя из заданных и n*f, по справочнику выбирается транзистор с учетом выполнений и . Вследствие больших потерь в материале коллектора на верхних частотах транзистора целесообразно выбирать транзистор с запасом по выходной мощности примерно в 2..2.5 раза. Выберем транзистор 1Т330А, со следующими параметрами и характеристиками:
Тип прибора |
Электрические параметры и параметры эквивалентной схемы |
||||||||
В |
см |
МГц |
В |
А |
Вт |
Ом |
|||
КТ340А |
125 |
0.6 |
0.05 |
300 |
10 |
0,05 |
0,15 |
30 |
Расчет транзистора будем вести по безынерционной методике , т.к. граничная частота значительно выше заданной частоты.
Режим транзистора полагаем граничным.
Возьмем Uк0=5 В, SГР=0.05, тогда:
- напряженность граничного режима работы транзистора.
- амплитуда второй гармоники коллекторного напряжения
- амплитуда второй гармоники коллекторного тока
- постоянная составляющая коллекторного тока
- мощность, подводимая к транзистору от источника питания в коллекторной цепи
- мощность, рассеиваемая коллектором транзистора
- эквивалентное сопротивление коллекторной цепи для второй гармоники коллекторного тока
- электронный КПД
- амплитуда первой гармоники напряжения на базе
- напряжение смещения на базе
Постоянная составляющая тока базы:
Параметры цепей элементов питания и смещения:
Сопротивление делителя в цепи питания базы:
Ток делителя выбирается из соотношения
- мощность возбуждения
Тогда коэффициент усиления по мощности составит:
4.2 Расчет элементов схемы
Расчет элементов контура:
Зададимся характеристическим сопротивлением контура:
Найдем добротность ненагруженного контура:
Добротность нагруженного составит:
Тогда сопротивление потерь составит:
Сопротивление связи:
Емкость связи:
Индуктивность контура:
Общая емкость контура:
Делитель емкости
Расчет блокировочных элементов:
Блокировочные емкости выбираются из принципа:
и
Сопротивления источников питания полагаем равным 10 Ом.
Основные параметры умножителя:
Pвых = 10 мВт
Kp=5
5. Описание конструкции
Передатчик выполнен в виде отдельных каскадов, расположенных на разных платах: плата задающего генератора, плата модулятора, плата маломощного усилителя (буферный каскад) и первого умножителя частоты, плата второго умножителя частоты, усилителя мощности и выходного каскада . Поэтому для соединения отдельных составных частей в единое целое, а также подключение источника питания ко всем каскадам, необходимо использование проводов. Все каскады питаются от аккумулятора 14(В), напряжение к ним подается через низкоомные маломощные резисторы - R8, R11 и R12. Питание автогенератора поступает от аккумулятора через делитель напряжения и стабилизируется стабилитроном КС133А с параллельно включенным конденсатором, шунтирующим его по переменному току. Толщина проводов будет зависеть от протекающих по ним токов.
Питание цепей передатчика обеспечим с помощью аккумулятора на 14(В). Напряжение на отдельные каскады будет подавать непосредственно с аккумулятора, а для задающего генератора - через делитель напряжения, для обеспечения 5-и вольтового напряжения.
Размещено на Allbest.ru
...Подобные документы
Расчёт передатчика и цепи согласования. Расчёт структурной схемы и каскада радиопередатчика, величин элементов и энергетических показателей кварцевого автогенератора. Нестабильность кварцевого автогенератора и проектирование радиопередающих устройств.
курсовая работа [291,9 K], добавлен 03.12.2010Принципы выбора необходимого числа транзисторов и каскадов и их энергетический расчёт. Составление структурной и электрической принципиальной схем радиопередатчика. Расчёт умножителя частоты, LC-автогенератора с параметрической стабилизацией частоты.
курсовая работа [3,0 M], добавлен 26.05.2014Разработка структурной схемы радиопередатчика. Расчет режима работы выходного каскада и цепей согласования. Выбор стандартных элементов. Конструктивное вычисление катушки индуктивности. Основные требования к синтезатору частот и к источнику питания.
курсовая работа [454,2 K], добавлен 08.01.2012Разработка структурной и принципиальной схемы устройства. Расчет двухкаскадной схемы усилителя низкой частоты с использованием полевого и биполярного транзисторов. Выбор навесных элементов и определение конфигурации пленочных элементов усилителя частоты.
курсовая работа [220,7 K], добавлен 22.03.2014Радиопередающие устройства, их назначение и принцип действия. Разработка структурной схемы радиопередатчика, определение его элементной базы. Электрический расчет и определение потребляемой мощности радиопередатчика. Охрана труда при работе с устройством.
курсовая работа [1,8 M], добавлен 11.01.2013Проектирование усилителя мощности: выбор режима работы транзистора, синтез согласующих цепей. Конструирование фильтра и направленного ответвителя. Анализ, настройка схемы и характеристика автогенератора с замкнутой и разомкнутой цепью обратной связи.
дипломная работа [1,6 M], добавлен 08.08.2013Использование радиопередатчика с частотной модуляцией для связи между группами людей и обоснование его структурной схемы: один генератор, умножительные и усилительные каскады. Расчет электронного режима транзистора и выбор типа кварцевого резонатора.
курсовая работа [1,9 M], добавлен 21.02.2011Проект коротковолнового радиопередающего устройства с амплитудной модуляцией. Расчёт усилителя мощности, кварцевого автогенератора и цепи согласования активного элемента с нагрузкой. Выбор конденсаторов, резисторов, составление схемы радиопередатчика.
курсовая работа [4,6 M], добавлен 19.09.2019Разработка структурной схемы передатчика с базовой модуляцией, числа каскадов усиления мощности, оконечного каскада, входной цепи транзистора, кварцевого автогенератора, эмиттерного повторителя. Эквивалентное входное сопротивление и емкость транзистора.
курсовая работа [691,9 K], добавлен 17.07.2010Расчёт выходного каскада радиопередатчика на биполярных транзисторах на заданную мощность; выбор схем, транзисторов, элементов колебательных систем, способа модуляции. Расчёт автогенератора, элементов эмиттерной коррекции; выбор варикапа и его режима.
курсовая работа [206,4 K], добавлен 11.06.2012Расчёт параметров усилителя низкой частоты на биполярном транзисторе. Схема транзисторного усилителя низкой частоты. Выбор биполярного транзистора, расчет элементов схемы. Аналитический расчёт параметров усилительного каскада на полевом транзисторе.
курсовая работа [381,5 K], добавлен 03.12.2010Структурная и принципиальная схемы приемника второй группы сложности. Расчет параметров входного устройства, усилителя радиочастоты, преселектора, гетеродина, элементов цепей питания, преобразователя частоты, автогенератора, диодного детектора АМ сигнала.
курсовая работа [431,5 K], добавлен 05.08.2011Структурная схема реального радиопередающего устройства с пояснениями. Электрические расчеты режимов и элементов оконечного каскада. Конструкторский расчет элементов оконечной ступени. Назначение всех элементов принципиальной схемы радиопередатчика.
курсовая работа [928,2 K], добавлен 24.04.2009Структурная схема передатчика. Электрические расчеты режимов и элементов оконечного каскада. Расчет параметров штыревой антенны. Конструкторский расчет элементов оконечной ступени. Назначение всех элементов принципиальной схемы радиопередатчика.
курсовая работа [5,3 M], добавлен 24.04.2009Обзор литературы по усилителям мощности. Описание электрической схемы проектируемого устройства - усилителя переменного тока. Разработка схемы вторичного источника питания. Выбор и расчет элементов схемы электронного устройства и источника питания.
реферат [491,0 K], добавлен 28.12.2014Разработка структурной схемы передатчика. Расчёт усилителя мощности, цепи согласования, амплитудного модулятора, частотного модулятора, возбудителя частоты (автогенератора), колебательной системы, цепи питания и смещения, ёмкости связи с нагрузкой.
курсовая работа [1,8 M], добавлен 03.07.2015Описание работы каскада с указанием назначения элементов, построением токов и напряжений на вольт-амперных характеристиках транзистора. Обоснование выбора элементов схемы каскада по типу, допуску номинала, мощности, напряжению. Расчет элементов схемы.
курсовая работа [693,5 K], добавлен 09.02.2014Методика и основные этапы разработки схемы усилителя низкой частоты с заданными в техническом задании параметрами. Формирование и синтез структурной схемы. Разработка и расчет принципиальной схемы. Анализ данного спроектированного устройства на ЭВМ.
контрольная работа [122,8 K], добавлен 09.10.2010Проектирование радиоприемника, обоснование выбора гетеродинной схемы с разделенными каналами изображения и звука. Выбор и обоснование структурной схемы приемника, расчет его электрической схемы, цепи контроля и питания, элементов усилителя радиочастоты.
курсовая работа [750,4 K], добавлен 07.07.2009Расчет цепей смещения и питания транзистора. Выбор радиодеталей для цепей связи, фильтрации, питания для схемы оконечного каскада. Расчет принципиальной схемы передатчика. Электрический расчет генератора, управляемого напряжением с частотной модуляцией.
курсовая работа [461,5 K], добавлен 04.11.2014