Анализ сети Global System for Mobile Communications
Главные части системы GSM и взаимодействие их друг с другом. Характеристика маршрутизации вызовов. Суть проектирования сетей радиосвязи. Анализ параметров источников полезного и мешающего сигналов. Потери энергии на трассе распространения радиоволн.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 13.09.2014 |
Размер файла | 955,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Пакет в 260 кодированных бит подвергается перемежению, принцип которого иллюстрируется рис. 10. Речевой фрагмент Y разбивается на две части. Одна часть передается в окне 1, вторая часть - в окне 4. Следующий фрагмент речи Z, длительностью 20 мс, передается в окне 4 и окне 1 в следующем кадре.
Для передачи сообщений по радиоканалу используется спектрально-эффективная n/4 DQPSK модуляция, реализуемая квадратурной схемой с прямым переносом на несущую частоту.
В целом, потенциальные характеристики стандарта IS-54 уступают характеристикам стандарта GSM. Для примера, на рис. 11 показаны графики зависимостей вероятности ошибки от отношения сигнал/помеха (C/I) в сетях стандартов GSM и D-AMPS (ADC) с учетом замираний сигнала при скорости перемещения подвижной станции 55 миль в час. Стандарт GSM обладает также преимуществами по отношению к стандарту IS-54 в части обеспечения безопасности связи функциональных возможностей. Кроме того, распространение GSM в глобальном масштабе (Европа, Азия, Африка, Австралия) позволяет абонентам этих сетей путешествовать по всему миру своим радиотелефоном в рамках автоматического международного роуминга. Стандарт D-AMPS принят в Европе и России, где он ориентирован на региональное использование.
3.4 Характеристики стандарта DAMPS
Метод доступа - TDMA
Количество радиоканалов на несущую - 3
Рабочий диапазон частот: 824-840 МГц 869-894 МГц
Разнос каналов: 30 кГц
Эквивалентная полоса частот на один разговорный канал-10 кГц
Вид модуляции - n/4 DQPSK
Скорость передачи информации - 48 кбит/с
Скорость преобразования речи - 8 кбит/с
Алгоритм преобразования речи - VSELP
Как следует из графиков рис. 11, в реальных каналах связи для одинаковых значений вероятности ошибки в D-AMPS требуется отношение сигнал/помеха на 6-10 дБ больше, чем в GSM.
На рис. 12 показана зависимость качества приема речи от отношения сигнал/помеха (C/I) в аналоговых и цифровых (ADC и GSM) сетях сотовой связи. Как следует из этих графиков, Для обеспечения "приемлемого качества речи" энергетические затраты в каналах D-AMPS должны быть на 6-7 дБ выше, чем в GSM.
Худшие энергетические характеристики радиоканалов D-AMPS по отношению к GSM сказываются также и при планировании сети. Для размещения сот с одинаковыми частотами в D-AMPS требуются большие координационные расстояния, что снижает эффективность повторного использования радиочастот.
4. Особенности проектирования сетей радиосвязи
Оценка ЭМС сетей радиосвязи
В настоящее время ввиду массового роста числа пользователей радиочастотным спектром, проблема ЭМС РЭС приобретает весьма важное значение не только в рамках отдельных служб радиосвязи, но и между разными службами. Успешное решение этой проблемы необходимо связывать прежде всего с развитием новых спектрально эффективных радиотехнологий, позволяющих при ограниченном частотном ресурсе существенно повышать потенциальную емкость сетей радиосвязи общего пользования. Эта комплексная проблема объединяет все элементы радиоинтерфейса современных сетей связи, включая радиосигналы как носители информации, средства их генерации, обработки и излучения (приема) и способы организации радиосвязи, - все в совокупности определяющее множественный (многостанционный) доступ в сети на основе методов частотного, временного, кодового и пространственного (или их совокупности) разделения каналов пользователей.
Под электромагнитной совместимостью РЭС понимается их способность одновременно функционировать в реальных условиях эксплуатации с требуемым качеством при воздействии на них непреднамеренных радиопомех, не создавая недопустимых радиопомех другим радиосредствам. Другими словами, ЭМС РЭС - это свойство РЭС функционировать без ухудшения качественных показателей ниже допустимого в заданной электромагнитной обстановке. Под электромагнитной обстановкой будем понимать совокупность электромагнитных полей РЭС различных служб радиосвязи в рассматриваемой области пространства. Оценка ЭМС РЭС является общей задачей и неотъемлемой частью процесса согласования условий совместной работы РЭС. В ходе оценки ЭМС РЭС вырабатываются условия, удовлетворяющие критерию ЭМС в данной электромагнитной обстановке. Эти условия могут включать: территориальные ограничения на размещение станции - источника помех; ограничение ЭИИМ станции - источника мешающих сигналов в направлении на станцию, подверженную помехе; защитные полосы и частотные ограничения РЭС; значение необходимого подавления боковых лепестков диаграмм направленности передающей и приёмной антенн; оптимизацию параметров расположения РЭС и ориентации антенн и др.
За критерий обеспечения ЭМС обычно принимают защитное отношение радиоприемника - минимальное допустимое отношение сигнал/радиопомеха на входе приемника, обеспечивающее требуемое качество функционирования в условиях воздействия непреднамеренных радиопомех. Численное значение защитного отношения, как правило, зависит от типа помехового сигнала. Иногда значение защитного отношения радиоприемника приводят к полосе пропускания его линейной части (совмещенный канал), т.е. не учитывают ослабление помехи за счет избирательных свойств приемника.
Для решения проблемы ЭМС РЭС используются организационные и технические меры. Технические меры обеспечения ЭМС обусловлены изменением технических параметров РЭС (например, снижение уровней внеполосных и побочных излучений передатчиков, повышение избирательных свойств приемников, снижение уровней боковых лепестков диаграмм направленности антенн и др.). Они достаточно эффективны, но могут быть применимы в основном при разработке новых типов оборудования. Для РЭС, находящихся в эксплуатации, наиболее приемлемыми и действенными мерами обеспечения ЭМС являются организационные меры. Они включают рациональное назначение рабочих частот, сочетаемое с введением частотных, территориальных, временных и пространственных ограничений, накладываемых на РЭС, - все вместе представляющее собой основу частотно-территориального планирования (ЧТП) сетей сухопутной подвижной связи, отвечающее требованиям эффективного использования спектра.
4.1 Уравнение ЭМС РЭС
Уравнение ЭМС РЭС устанавливает взаимосвязь энергетических, частотных и пространственных параметров РЭС полезного сигнала (рецептора радиопомех) и мешающих сигналов (источников непреднамеренных радиопомех), при которых обеспечивается требуемое качество функционирования РЭС. Обычно уравнение ЭМС составляют для "дуэльной" ситуации, когда оценка ЭМС производится для двух РЭС, одно из которых рассматривается в качестве приемника полезного сигнала, а второе РЭС является источником непреднамеренных радиопомех. В общем случае, возможно, учесть несколько источников непреднамеренных радиопомех.
Важнейшими факторами, которые необходимо учитывать при анализе ЭМС РЭС, являются потери при распространении радиоволн на трассе и флуктуации уровней принимаемых сигналов и радиопомех.
Считают, что качественная передача информации по радиоканалу обеспечивается в том случае, если выполняются следующие два условия:
флуктуации уровня полезного сигнала, обусловленные его замираниями как вследствие многолучевости, так и вследствие препятствий, возникающих на пути распространения радиоволн, приводят к уменьшению интенсивности полезного сигнала ниже чувствительности РПМ (определяемой требуемой вероятностью ошибочного приема цифровых сигналов на выходе решающего устройства радиоприемника) не более чем в заданном зs проценте времени;
флуктуации уровня полезного сигнала и непреднамеренной радиопомехи приводят к снижению отношения сигнал/помеха ниже защитного на входе радиоприемника не более чем в заданном зl проценте времени.
Флуктуации интенсивности полезного и мешающего сигналов в диапазонах волн, выделенных для подвижной связи, подчиняются логнормальному закону, т.е. мощность полезного PS и мешающего РI сигналов в месте приема (на входе приемника) может быть записана следующим образом:
Ps=Pos + XS,
PI = POI + XI.
где Pos, POI - медианные значения мощности сигнала и радиопомехи; XS, XI - случайные гауссовские величины с нулевым средним значением и с дисперсией у2, определяющей глубину флуктуации этих уровней (обычно принимают, что для городов с малой и средней этажностью застройки стандартное отклонение у = 6 дБ, а для пригородов и сельской местности у = 4 дБ).
Тогда зS и зI выраженные в процентах, определяются интегралами вероятности:
,
.
де Рмин - чувствительность радиоприемника; АВХ - защитное отношение на входе радиоприемника; kS, kI - коэффициенты, учитывающие допустимый процент времени ухудшения качества радиосвязи ниже заданного уровня.
Отметим, что если зS = зI = 5% (что обычно принимается в качестве вероятностного критерия оценки границы зоны покрытия сотовой сети), то kS, = kI = k = 1.65, которое характеризует пороговые уровни сигнала и отношения сигнал/помеха. Снижение пороговых уровней может привести к увеличению времени некачественного обслуживания абонентов.
Условия, указанные в формулах (3.2), выполняются в процентах времени зS и зI в том случае, если имеют место следующие соотношения:
РOS = РМИН + kу
.
где kу - запас на замирания полезного сигнала, обеспечиваемый в системе радиотелефонной связи на входе РПМ.
Баланс мощности в сетях подвижной связи должен быть выбран таким образом, чтобы на границе зоны обслуживания сети всегда выполнялось требуемое соотношение, а территориальный и/или частотный разнос между совмещаемыми сетями должен быть таким, чтобы выполнялось соотношение (3.4). Принятый выше запас на замирания полезного сигнала соответствует требованиям обеспечения минимальной напряженности поля сигнала для защиты мобильных станций цифровых и аналоговых систем сотовой связи, указанным в Рекомендации СЕРТ.
Необходимо учитывать, что энергетические параметры РЭС сотовых сетей связи должны выбираться из условия обеспечения требуемого радиуса зоны покрытия базовой станции (БС) каждой сети. Радиусы зон покрытия БС должны быть учтены при расчете величины территориального разноса между РЭС.
Таким образом на основании (3.3) и (3.4) уравнение ЭМС РЭС может быть записано в следующем виде:
где
РМИН - чувствительность РПМ (рецептора радиопомех), дБВт;
А - защитное отношение РПМ в совмещенном канале, дБ;
- запас на замирания сигнала и радиопомехи, дБ;
POI - мощность радиопомехи на входе РПМ, дБВт.
POI = PРПД + GРПД(цРПМ) + GРПМ(цРПД) + UРПД + UРПМ + N(дf) - L(R),
где
PРПД - мощность радиопередатчика источника радиопомех, дБВт;
GРПД(цРПМ) - к-нт усиления антенны РПД в направлении на РПМ, дБ;
GРПМ(цРПД) - к-нт усиления антенны РПМ в направлении на РПД, дБ;
UРПД, UРПМ -- затухание в антенно-фидерном тракте РПД и РПМ, дБ;
N(дf) - ослабление радиопомехи в линейном тракте РПМ, дБ;
дf =fрпд -fргм - частотная расстройка, МГц;
L(R) - потери на трассе распространения сигналов от РИД (в данном случае источника радиопомех) к РПМ (рецептору радиопомех), дБ. Эти потери принято называть основными потерями передачи, которые рассчитываются от входа передающей изотропной антенны до выхода приемной изотропной антенны. На рис. 13 показана структура линии радиосвязи и основные термины, используемые для представления о потерях передачи.
Рис. 7. Структура линии радиосвязи
Зависимость ослабления помехи от расстройки дf вычисляется по формуле
.
Здесь
С - нормировочный коэффициент;
S(f) - спектр сигнала радиопередатчика;
K(f) - нормированная функция избирательности радиоприемника (амплитудно-частотная характеристика)[32].
Спектр сигнала и функция избирательности являются важнейшими техническими характеристиками РЭС, существенно влияющими на условия их ЭМС. Поэтому к уровням внеполосных и побочных излучений радиопередатчиков предъявляются особые требования.
При оценке ЭМС РЭС с целью проверки соответствия параметров сигналов РЭС установленным требованиям необходимо руководствоваться едиными нормами на внеполосные и побочные излучения радиопередающих устройств гражданского назначения.
По мнению ERC рекомендации CEPT/ERC 74-01E для уровней побочных излучений РЭС сухопутной подвижной службы должны пересматриваться каждые три года в соответствии с изменениями технологий и регулирующих требований и должны быть использованы администрациями в качестве руководства для разработки соответствующих стандартов.
4.2 Нормы частотно-территориального разноса РЭС
В ходе оценки ЭМС РЭС необходимо определить требуемые удаления потенциально несовместимых РПД и РПМ при различных частотных расстройках и при различных вариантах взаимной ориентации их антенн. Полученные результаты для наземных РЭС с учетом принятой модели распространения радиоволн и без учета влияния рельефа местности представляют собой оценку сверху требуемых территориальных разносов.
В случае, если реальные значения территориальных разносов больше чем требуемые, то считается, что ЭМС РЭС обеспечивается. В противном случае может потребоваться введение дополнительных ограничений на мощность излучения, частотную расстройку и (или) пространственную ориентацию и высоту расположения антенн РЭС.
Одним из эффективных способов согласования условий совместной работы РЭС является разработка и реализация норм частотно-территориального разноса (ЧТР) между взаимовлияющими РЭС.
Нормы ЧТР представляют собой совокупность взаимообусловленных значений территориального и частотного разноса РЭС с учетом ориентации их антенн, при которых обеспечивается их ЭМС. На основе норм ЧТР определяются или конкретные рабочие частоты, которые могут быть использованы в сетях подвижной связи, или необходимый для обеспечения ЭМС территориальный разнос для заявленных рабочих частот. Кроме того, нормы ЧТР позволяют установить требования к характеристикам направленности и ориентации антенных систем РЭС в пространстве при заданных рабочих частотах и расстояниях между РЭС.
Нормы ЧТР определяются для конкретных типов РЭС с учетом их энергетических, частотных и пространственных характеристик. В случае удовлетворения требованиям норм ЧТР, ЭМС между РЭС считается обеспеченной.
Нормы ЧТР рассчитываются на основании уравнения ЭМС РЭС (3.5). Часто основные потери передачи L(R) при распространении на трассе протяженностью R от радиопередатчика к радиоприемнику представляют функцией, которую в относительных единицах (дБ) можно записать следующим образом:
.
Для примера, приведем известную формулу основных потерь передачи в свободном пространстве (без учета влияния земной поверхности, атмосферы и других факторов):
.
Здесь
f -рабочая частота, МГц,
R - расстояние, км.
На рис. 14 показана зависимость ослабление радиоволн от расстояния в свободном пространстве для трех диапазонов частот. Наклон данной характеристики составляет 20 дБ на декаду. Модели ослабления радиоволн в приземном слое, соответствующие условиям сухопутной подвижной связи, будут иметь более сложную зависимость и более высокий показатель ослабления, а значит и более крутой спад характеристики ослабления по сравнению с приведенной.
Рис. 7 - Зависимость ослабление радиоволн от расстояния в свободном пространстве для трех диапазонов частот.
На основании (3.5), (3.6) и (3.8) формула для расчета требуемых значений территориального разноса РЭС будет иметь вид:
,
где
D - требуемый территориальный разнос, км;
Z - обобщенный энергетический параметр, дБ.
.
Физический смысл параметра Z заключается в том, что он характеризует отношение минимально допустимой мощности полезного сигнала на входе приемника (чувствительность РПМ) к мощности излучаемого помехового сигнала в полосе РПМ с учетом защитного отношения приемника, а также замирания сигнала и помехи на трассе распространения. Чем больше эта разность, тем ближе могут быть установлены РПД мешающего и РПМ полезного сигналов c сохранением условий обеспечения ЭМС. Необходимо отметить, что при реальном планировании систем радиосвязи обычно к чувствительности добавляют еще некоторый запас по полезному сигналу для устойчивой работы системы.
Параметр Z объединяет все основные ЭМС - характеристики двух потенциально несовместимых РЭС. Это обстоятельство позволяет получить обобщенную зависимость требуемого территориального разноса РЭС, работающих в заданном диапазоне частот.
Частные решения для норм частотно-территориального разноса РЭС могут быть получены из общего на основе вычисления значений Z, соответствующих конкретным значениям параметров (энергетических, частотных и пространственных), входящих в выражение.
Обычно нормы ЧТР представляют в виде:
- табличных данных дискретных значений изменяемых параметров РЭС (мощности радиопередатчиков, суммарного взаимного коэффициента усиления антенн РПД и РПМ, чувствительности РПМ, высоты расположения антенн над земной поверхностью, требований к устойчивости обеспечения радиосвязи и др.) и соответствующих им значений частотно-территориальных разносов РЭС;
- графических зависимостей (номограмм) территориальных разносов РЭС от частотной расстройки при заданных типовых значениях других исходных параметров, которые позволяют более гибко определять условия согласования работы РЭС по сравнению с табличной формой.
Особенности применения норм ЧТР:
1. Необходимо помнить, что нормы ЧТР обычно характеризуют «дуэльную» ситуацию и позволяют определить условия совместной работы для пары РЭС при тех или иных ограничениях и моделях распространения. В некоторых случаях нормы ЧТР могут учитывать группу РЭС - источников непреднамеренных помех с заданной плотностью их расположения на местности.
2. Нормы ЧТР целесообразно рассчитывать с некоторым запасом, учитывая несовершенство прежде всего математических моделей распространения сигналов вдоль земной поверхности.
3. При проектировании сетей сухопутной подвижной связи, которые содержат большое количество РЭС, сосредоточенных на ограниченной территории, пользоваться нормами ЧТР бывает нецелесообразно, т.к. необходимо учитывать, что непреднамеренные системные радиопомехи будут представлять собой сумму
большого числа пространственно разнесенных источников излучения с различными рабочими частотами. В этой ситуации необходимо проводить более детальную оценку ЭМС РЭС (учитывая наличие и других систем связи) на основе вычислительных программных комплексов с использованием цифровых карт местности.
4.3 Модели распространения сигналов, используемые при анализе ЭМС и проектировании сетей подвижной связи
Задачи, связанные с распространением радиоволн в приземной зоне, весьма сложны, поскольку поле около антенны радиоприемника как абонента, так и базовой станции представляет собой суперпозицию, полученную при многолучевом распространении сигнала в условиях данной местности. Проблема осложняется влиянием на условия распространения радиоволн подвижных объектов, рассеивающих радиоволны, так и перемещением самих абонентов в зоне неравномерного поля. Уровень сигнала может изменяться от пиковых значений, превышающих средний уровень на несколько единиц и даже десятков децибел, до десятков децибел ниже среднего в зонах сильного замирания.
Для расчета ослабления сигналов при анализе ЭМС и проектировании сетей сухопутной подвижной связи наиболее широко пользуются моделированием, основанным на результатах статистической обработки экспериментальных исследований распространения сигналов вдоль земной поверхности. Такие исследования проводились во многих странах мира для различных условий местности. Некоторые из этих моделей являются общепризнанными и рекомендованы МСЭ для использования при проектировании сетей подвижной связи.
Можно выделить два основных типа моделей, используемых в сухопутной связи. Первый тип, где в качестве основных параметров, характеризующих местность и условия распространения сигналов, являются эффективная высота расположения антенны и эффективная высота неровностей местности (перепад высот земной поверхности). Второй тип - модели ослабления сигналов в городских условиях, где рельеф местности обычно не учитывается. Кроме того целесообразно выделить в особую категорию модели распространения в пределах зданий.
Статистические методы по своей сути не учитывают индивидуальных особенностей конкретных трасс распространения радиоволн и поэтому позволяют оценить средние или медианные уровни сигналов для территории, где проводились испытания. Все методы расчета должны давать в принципе одинаковые результаты для одинаковых условий. К сожалению, различные рекомендации и модели часто дают разные результаты расчетов. Однако некоторые математические модели распространения радиоволн, построенные на основе эспериментальных данных и описывающие поле в статистически однородной среде (городская территория, пригород, сельская местность, открытое пространство), являются общепризнанными, о чем свидетельствуют Рекомендации ITU и СЕРТ, и могут быть использованы как достаточное приближение для расчета зон покрытия сетей сухопутной подвижной связи и оценки их ЭМС.
4.4 Модели распространения, рекомендованные МСЭ
Для расчета напряженности поля РЭС различных служб в диапазоне от 30 МГц до 1000 МГц в МСЭ была разработана рекомендация ITU-R P.370. Кроме того имеется рекомендация непосредственно для сухопутной подвижной службы ITU-R Р.529, разработанная на основе ITU-R P.370 (в эту рекомендацию включены кривые Okumura) и рекомендация ITU-R P.1146, которая явилась следствием расширения результатов ITU-R P.370 на диапазон волн до 3 ГГц. маршрутизация вызов радиосвязь сигнал
Рекомендация ITU-R P.370 является наиболее ранней и наиболее разработанной рекомендацией для расчета напряженности поля радиоволн в диапазоне от 30 до 1000 МГц. Она основана на огромном экспериментальном материале, полученном в основном в Западной Европе и Северной Америке. Рекомендация предоставляет возможность определять напряженность поля на расстояниях от 10 км до 1000 км. Эта рекомендация позволяет учесть высоту передающей антенны в пределах от 37 м до 1200 м и приемной антенны от 1,5 м до 40 м, а также неровности земли от 25 м до 400 м. Кроме того, в рекомендации имеется возможность определения параметров пространственных и временных флуктуаций напряженности поля, а также могут учитываться углы закрытия со стороны приемной и передающей антенн и климатические особенности регионов.
Сфера действия рекомендации ITU-R P.529, предназначенной для расчета напряженности поля применительно к сухопутным подвижным системам связи, практически совпадает с частью сферы действия рекомендации ITU-R P.370, но она не учитывает многих особенностей распространения радиоволн, которые учитываются в рекомендации ITU-R P.370. Расчеты напряженности поля, проведенные по методам рекомендаций ITU-R P.370 и ITU-R P.529 для высоты приемной антенны 1,5 м на частоте 900 МГц примерно совпадают для городской местности до 100 км. Для других частот и больших расстояний рекомендация ITU-R P.529 не содержит никаких данных. Высотная зависимость в рекомендации ITU-R Р.529 приведена лишь в пределах 1…10 м и несколько отличается от данных рекомендации ITU-R P.370.
Рекомендация ITU-R Р.1146 предназначена для расчета напряженности поля в диапазоне от 1 ГГц до 3 ГГц. На частоте 1 ГГц расчеты по этой рекомендации должны были бы совпадать с расчетом по методу рекомендаций ITU-R P.370 и ITU-R P.529. Однако, различие в расчетах достигает 20 дБ для расстояний в области 25-120 км. Это вызвано, по-видимому, тем, что в рекомендации ITU-R Р. 1146 выбран неудачный метод классификации трасс по числу препятствий, дающий возможность произвольного выбора того или иного варианта расчета без надлежащего учета условий распространения радиоволн.
По-видимому, методы рекомендации ITU-R P.370 следует в большинстве случаев считать более предпочтительными по сравнению с другими методами ввиду того, что эта рекомендация основана на очень большом экспериментальном материале и учитывает большее число факторов, влияющих на распространение радиоволн. Однако для условий городской местности и для малых расстояний (менее 10 км) целесообразно пользоваться рекомендацией ITU-R Р.529.
4.5 Модель Okumura-Hata
Среди многочисленных экспериментальных исследований, связанных с прогнозом распространения радиоволн для мобильных систем, исследования Okumura считаются наиболее исчерпывающими. На основе измерений им построены кривые напряженности поля сигналов для различных условий городской и пригородной местности. Эмпирические формулы, аппроксимирующие кривые Okumura для медианного значения ослабления радиосигнала между двумя изотропными антеннами (передающей и приемной), были получены Hata и известны как эмпирическая модель Hata для ослабления.
Модель Hata описывает особенности распространения радиоволн над квазиплоской местностью и не учитывает особенности рельефа. Кроме того предполагается, что антенны базовых станций расположены выше окружающих строений, а размер ячеек при формировании макросотовой структуры сети составляет около 1 км и более. В этом случае потери распространения определяются главным образом процессом дифракции и рассеяния радиоволн на высоте крыш зданий, окружающих абонентскую станцию. Распространение основных лучей от базовой станции происходит выше крыш строений.
Область применения формулы Hata ограничена следующими значениями параметров:
рабочая частота f, МГц 150... 1000;
высота антенны базовой станции hБС, м 30...200;
высота антенны абонентской станции hАС, м 1... 10;
протяженность трассы R, км 1 ...20.
В рекомендации ITU-R Р.529 дано уравнение Hata для напряженности поля в следующем виде
,
где f - рабочая частота РЭС в МГц; hБС, hAC - высота расположения антенн БС и АС в метрах.
В формуле (3.12) используется поправочный коэффициент на высоту абонентской станции.
.
Коэффициент к в (3.12) позволяет расширить действие модели для протяженности трассы до 100 км:
к = 1 для R < 20 км,
для 20 км <R< 100 км.
Формула (3.12) может быть использована и в диапазоне от 1 ГГц до 2 ГГц с ограничением по дальности до 20 км.
Основные потери передачи L(R) [дБ] при распространении на трассе протяженностью R [км] от радиопередатчика к радиоприемнику в соответствии с этой моделью определяются формулой
,
где б, в -- коэффициенты, зависящие от типа местности, рабочей частоты и высоты расположения антенн РЭС. Формулы для расчета L(R) для различных типов местности представлены ниже.
Потери в городе:
.
Потери в пригороде;
.
Потери в сельской местности:
.
Потери на открытом пространстве:
.
В формулах (3.15)-(3.18) используются те же поправочные коэффициенты, что и в (3.12). Для больших городов с плотной городской застройкой коэффициент a(hAC) равен:
для < 200 МГц,
для > 400 МГц
Для корректного использования формул Hata необходимо придерживаться следующего соответствия между типами моделей и характеристиками местности:
Плотная городская застройка (большой город) - плотная застройка восновном высокими зданиями (выше 20 этажей) с малой площадью зеленых насаждений. Покрытие ячеек в значительной мере определяется дифракцией и рассеянием сигнала на ближайших к абоненту зданиях.
Городская застройка - многоэтажная административная и жилая застройка, индустриальные районы. Плотность зданий достаточно высокая, но может быть разбавлена зелеными насаждениями, небольшими скверами.
Пригород - одиночные жилые дома, административные здания, магазины высотой 1-3 этажа. Большие площади зеленых насаждений (деревьев), парковые зоны с отдельными группами зданий плотной застройки.
Сельская местность - открытое пространство с несколькими зданиями, фермы, кустарниковые насаждения, шоссе.
Открытое пространство - озера, водохранилища, открытые участки без насаждений, неплодородные земли.
На представлены графики для медианного значения ослабления радиоволн по модели Hata и свободного пространства в диапазонах 450 МГц и 850 МГц. Значения параметров hБС, hАС, указаны на рисунках. Цифрами обозначены: 1 - свободное пространство; 2 - открытая местность; 3 - пригород; 4 - город; 5 - большой город.
Рис. 8 - Графики для медианного значения ослабления радиоволн по модели Hata в диапазонах 450 МГц и 850 МГц
Рис. 9 - Графики для медианного значения ослабления радиоволн свободного пространства в диапазонах 450 МГц и 850 МГц
Как видно из анализа формул (3.15) - (3.20) для модели Okumura-Hata спад функции основных потерь передачи L(R) существенно зависит от высоты расположения антенны БС и может составлять 30...35 дБ на декаду для R< 20 км и более 50 дБ при 20 км < R< 100 км.
4.6 Некоторые аспекты и тенденция увеличения емкости сетей подвижной связи
Число пользователей сотовых сетей мобильной связи растет значительно быстрее, чем могли себе представить изобретатели этой технологии. Каждый год количество абонентов возрастает на 40%, и предполагается, что данная тенденция сохранится до конца десятилетия. Резкое увеличение числа абонентов и растущая коммерциализация технологии обуславливают новые требования к сети; в частности, довольно остро стоит задача увеличения емкости ячеек и повышения качества передачи звука при телефонных переговорах.
С одной и той же базовой станцией сотовой сети может взаимодействовать большое число абонентов. Такой режим работы называется множественным доступом (multiple access) к базовой станции. Для обеспечения множественного доступа общий ресурс базовой станции подразделяется на определенное количество "каналов", к которым получают доступ пользователи. В одно и то же время абонент может использовать только один канал. Захват канала происходит при подсоединении к данной базовой станции (при переходе к ней из зоны действия другой базовой станции или инициализации вызова), освобождение канала - при переходе в зону действия другой базовой станции или окончании переговоров.
Разные стандарты организации множественного доступа по-разному "упаковывают" каналы в наличный диапазон частот; от способа этой упаковки зависит емкость ячейки сети.
Первыми появились методы множественного доступа, основанные на разделении каналов по частотам (FDMA, frequency division multiple access). Каждый канал занимает определенную частотную полосу в отведенном для ячейки частотном диапазоне. В настоящее время используются стандарты AMPS (Advanced Mobile Phone Service, ширина канала 30 кГц), NAMPS (Narrowband Advanced Multiple Phone Service, ширина канала 10 кГц), TACS (Total Access Communications System, ширина канала 25 кГц). Все эти стандарты основаны на передаче аналогового сигнала. После установления соединения вся соответствующая каналу полоса частот используется для обслуживания диалога только между одним абонентским телефоном и базовой станцией, какое-либо совместное применение одной полосы частот несколькими абонентами невозможно.
Емкость ячейки сети определяется тем, сколько частотных каналов "умещается" в частотном диапазоне, отведенном для данной ячейки. Величина этого диапазона обычно составляет одну седьмую часть от общего диапазона частот, отведенного для конкретной сотовой сети, что необходимо для "разнесения" по частотам соседних ячеек сети. Благодаря этому можно повторно использовать одни и те же частоты в отдаленных друг от друга ячейках сети, а значит, строить сети неограниченных географических масштабов, применяя конечный диапазон частот.
Большей емкости сети можно достичь с помощью одного из многочисленных методов множественного доступа с временным разделением каналов (Time Division Multiple Access, TDMA). Весь диапазон частот, выделенный для данной ячейки, сначала подразделяется на определенное число несущих частот (как в методах множественного доступа), после чего каждая из несущих делится еще на некоторое число временных слотов, и именно эти слоты представляют собой каналы. Под термином "временной слот" понимается следующее. Базовая станция, работая на данной частоте, какую-то часть времени использует для связи с одним абонентом, какую-то - с другим и так далее. По существу, временной слот здесь мало чем отличается от применяемого при мультиплексировании с разделением по времени. Речь обычно передается в оцифрованном виде с компрессией. В качестве примеров TDMA можно привести следующие стандарты: IS-54 (частотные каналы AMPS шириной 30 кГц делятся на три временных слота), PDC (каналы на 25 кГц по три слота в каждом) и усиленно продвигаемый в настоящее время GSM (восемь временных слотов при несущем диапазоне 200 кГц).
Существенное увеличение емкости сети обеспечивает не так давно появившийся в технике сотовых сетей метод CDMA (Code Division Multiple Access). Как и метод множественного доступа, он подразумевает передачу голосовой информации только в оцифрованном виде. Мы не случайно подчеркиваем, что этот метод возник недавно именно в телефонии, - в основе его лежит давно применяемый в военной радиосвязи метод модуляции с использованием шумоподобного или широкополосного сигнала (ШПС; в англоязычной литературе используется термин spread spectrum, что часто переводится на русский язык как "растянутый" или "размытый" спектр). Полезная информация как бы "размазывается" по частотному диапазону, существенно более широкому, чем при традиционных способах модуляции сигнала (в данном контексте такой сигнал часто называют узкополосным). Осуществляется это за счет перемножения последовательности полезных битов информации на псевдослучайную последовательность более коротких импульсов. В результате получается сигнал, который занимает больший частотный диапазон и имеет значительно меньшую интенсивность, чем получаемый при узкополосной модуляции. CDMA как метод множественного доступа аналогичен методу модуляции DSSS (direct-sequence spread spectrum), используемому в беспроводных локальных сетях.
Ясно, что в этом случае можно принять информацию, только зная последовательность, на которую был перемножен полезный сигнал при передаче, в противном случае он будет выглядеть как шум (отсюда и название). В военных приложениях данный метод используется в первую очередь для защиты от помех (широкополосный сигнал очень устойчив к узкополосным помехам) и подслушивания. Для нас же сейчас более важно следующее: если два абонентских телефона, находящихся в зоне действия одной базовой станции, работают на общей частоте, но с разными кодирующими последовательностями, то эти сигналы практически не будут создавать помех друг для друга.
Все абонентские телефонные аппараты, работающие в зоне действия одной базовой станции, используют одну и ту же несущую частоту. Для передачи информации отводятся частотный диапазон шириной 1,25 МГц и фрагменты общей "большой" псевдослучайной последовательности, по-разному смещенные от условно выбранного начала этой последовательности. Емкость ячейки сети CDMA определяется тем, насколько независимы друг от друга коды, используемые абонентскими аппаратами. При работе по этой технологии размер ячейки, качество звука и емкость оказываются тесно взаимосвязанными, поэтому при проектировании сети следует выбирать некое оптимальное решение; улучшить одну из этих характеристик можно только за счет ухудшения другой. Дело тут в следующем. Чем больше CDMA-каналов в данной ячейке сети, тем выше уровень взаимных помех из-за неполной независимости кодовых последовательностей. Отсюда ясно, что чем более низкое качество передачи звука считается приемлемым, тем больше каналов можно разместить в ячейке сети. Взаимная зависимость между размерами ячейки и емкостью сети обусловлена тем, что можно обеспечить заданное качество передачи речи, только если соотношение сигнал/шум оказывается выше определенного значения. Чем слабее сигнал (а при заданной мощности оборудования с увеличением размера ячейки сигнал становится слабее), тем меньшим должен быть уровень помех - а он, как мы знаем, зависит от числа используемых каналов. (Строго говоря, в последнем случае все несколько сложнее, однако сейчас мы не станем в это углубляться.)
По данным компании Motorola, одного из ведущих производителей аппаратуры для CDMA в одном несущем диапазоне шириной 1.25 МГц можно разместить до 18 каналов для сетей мобильной связи и около 30 - для фиксированных сетей (где абонентские терминалы не перемещаются в пространстве в процессе вызова). Много это или мало? Попробуем сравнить емкость сети CDMA с емкостью сети на базе AMPS. На первый взгляд, кажется, что для такого сравнения надо ширину несущего диапазона CDMA (1,25 МГц) поделить на ширину одного частотного канала AMPS (30 кГц) и выяснить, не больше ли получившееся число, чем 18.
(1,25 : 0,03=42 > 18).
Выходит, что сравнение не в пользу CDMA? Однако это неверный вывод, поскольку, как уже говорилось выше, при работе в стандарте AMPS каналы, организованные в семи соседствующих между собой ячейках (см. рис. 17), должны различаться по частотам, а в CDMA во всех ячейках можно использовать один и тот же несущий диапазон. Поэтому полученный результат надо разделить на семь (42 : 7 = 6). Получаем, что емкость CDMA втрое выше, чем AMPS. Но и этот результат нельзя считать окончательным, поскольку и в CDMA, и в AMPS ячейку сети обычно делят на три сектора по 120° в каждом - это позволяет увеличить радиус ячейки сети, используя направленные антенны, и, таким образом, снизить число базовых станций, необходимых для покрытия определенной площади. Так вот, при работе по стандарту AMPS в разных секторах одной и той же ячейки приходится использовать разные частотные каналы (иначе неизбежны взаимные помехи, поскольку секторы ограничены не линиями, а, скорее, областями постепенного спадания мощности сигнала), а в CDMA можно применять одни и те же. Соответственно, полученную выше цифру 6 надо поделить на три - получим двойку. В итоге оказывается, что при использовании одного и того же частотного диапазона шириной 1,25 МГц емкость сети CDMA в девять раз выше, чем емкость AMPS. При сравнении CDMA с другими стандартами выигрыш в емкости получается меньшим; конкретное число можно узнать путем аналогичных расчетов.
Возможность использования в двух соседних ячейках сети одной и той же несущей частоты значительно упрощает так называемое частотное планирование, которое является весьма сложной операцией при развертывании сети. Если же применяется частотное разделение каналов, необходимо расписать все используемые в ячейках сети частоты так, чтобы ни в одной паре соседних ячеек не оказалось двух одинаковых частотных каналов. Это совсем не просто и часто связано со значительными материальными затратами.
5. Качество связи
Общеизвестно, что мобильный телефон обеспечивает не слишком высокое качество связи. Причин тому много. В городах, где обычно и развертываются сети мобильной связи, имеется много индустриальных помех. Распространяясь между базовой станцией и мобильным аппаратом, радиоволна многократно отражается от препятствий; в результате интерференции сигналов, прошедших разными путями, интенсивность принимаемого сигнала может внезапно упасть. Такие явления, называемые в радиотехнике федингами (fading), обычно наблюдаются в ограниченных пространственных областях, чьи форма и расположение определяются расположением зданий и длиной волны, на которой ведется передача. Наконец, качество связи заметно снижается при переходах мобильного абонента от одной ячейки сети к другой: в обычных стандартах осуществляется так называемое "жесткое переключение" (hard handoff), при котором сначала разрывается связь с покидаемой ячейкой и только после этого устанавливается связь с новой.
Конечно, сравнивать качество связи, устанавливаемой с фиксированных телефонов, с качеством мобильной связи не вполне корректно: в последнем случае действует значительно больше факторов, обуславливающих ухудшение связи. Тем не менее факт остается фактом - CDMA позволяет получить значительно более высокое качество связи, чем стандарты, основанные на FDMA и TDMA. Причины этого следующие: во-первых, CDMA - чисто цифровая связь (аналоговый сигнал попросту невозможно передавать тем способом, какой принят в CDMA), а во-вторых, в CDMA используется широкополосная модуляция сигнала.
Цифровой сигнал значительно меньше уязвим для помех, чем аналоговый. Кроме того, в CDMA применяются новейшие алгоритмы коррекции ошибок передачи, а в аппаратуре обычно используются самые современные методы сжатия голосового сигнала. Это позволяет достигнуть большой степени сжатия голоса при достаточно высоком качестве связи.
Очень большие преимущества с точки зрения качества связи дает применение широкополосной модуляции сигнала (рис. 18). Широкополосный сигнал значительно меньше страдает от помех, особенно узкополосных. Узкополосная помеха способна "испортить" широкополосный сигнал только в каком-то относительно узком частотном диапазоне, и полезная информация может быть восстановлена по неповрежденным участкам несущего диапазона. Это относится и к федингам, о которых говорилось выше: интерференция прошедших разными путями сигналов приводит к снижению суммарной интенсивности лишь в достаточно узком частотном диапазоне, и снова полезную информацию можно восстановить по неповрежденной части сигнала. Конечно, сигнал несколько ухудшается, однако это несопоставимо с потерями качества связи при использовании обычных методов модуляции.
Рис. 10 - Воздействие узкополосных помех (а) и федингов (б) на широкополосный сигнал
Помимо повышения качества связи, устойчивость CDMA к федингам приводит к значительной экономии ресурса источников питания и улучшению экологических параметров мобильных телефонов. В других сетях мобильные телефоны обычно работают на более высокой мощности, чем это нужно для устойчивой связи с базовой станцией, что позволяет при внезапном возникновении фединга не потерять связь (происходит лишь значительное снижение ее качества). В CDMA же такой резерв не нужен, поэтому телефон может работать с меньшей мощностью передаваемого сигнала.
Этим не ограничиваются преимущества технологии CDMA, связанные с использованием широкополосной модуляции сигнала. Вместо жесткого переключения (hard handoff или break before make) от ячейки к ячейке, принятого во всех прочих сотовых сетях, в CDMA можно использовать мягкий переход (soft handoff или make before break): мобильный аппарат сначала устанавливает связь с базовой станцией, в зону действия которой он переходит, и только после этого освобождает канал в покидаемой ячейке. Это возможно за счет того, что и в покидаемой, и в новой ячейке используется одна и та же несущая частота. Данное преимущество заметнее всего сказывается на работе телефонов, находящихся в пограничной зоне между двумя ячейками, где уровни сигналов от базовых станций примерно одинаковы. Тогда выбор базовой станции в значительной степени определяется случайными причинами, и абонент подключается то к одной, то к другой станции. При жестком переходе частые переключения значительно ухудшают качество связи и даже могут привести к ее обрыву, а при мягком переходе ничего подобного не происходит.
Далее, для работы системы CDMA необходимо, чтобы все приходящие на базовую станцию сигналы имели одинаковую интенсивность, - в противном случае возникнут проблемы с декодировкой информации. Ясно, что чем дальше телефон от базовой станции, тем выше должна быть мощность передаваемого им сигнала. Базовая станция следит за тем, чтобы сигналы, приходящие к ней от разных телефонов, были строго одинаковой интенсивности, и дает указания индивидуальным телефонам о повышении или понижении мощности передаваемого сигнала. Такая схема управления мощностью реализована во многих стандартах мобильной связи, однако в CDMA удается управлять мощностью передатчиков мобильных телефонов с очень высокой точностью. Мощность удерживается на том минимальном уровне, который обеспечивает уверенный прием сигнала базовой станцией. При этом снижается общий уровень взаимных помех в системе, что повышает качество связи. Кроме того, точное управление мощностью позволяет продлить срок службы аккумуляторов мобильных телефонов и улучшить экологические параметры технологии.
Недостатков у CDMA относительно немного. Главный из них - новизна технологии. Стандартизирована она была лишь в 1994 г. (соответствующий документ называется IS-95), поэтому значительно менее устоялась, чем другие технологии мобильной связи.
Другими недостатками являются большая сложность оборудования и, как следствие, довольно ограниченный круг производителей. В настоящее время базовые станции для этой технологии выпускают фирмы QUALCOMM, Samsung, Motorola, Lucent Technologies, Nortel и некоторые другие. Намного больше компаний выпускают абонентское оборудование, однако их тоже меньше, чем аналогичных производителей для других технологий.
Определенные проблемы вызывает и использование "мягкого переключения". В частности, если абонент находится в зоне действия нескольких базовых станций, то правило make before break может привести к тому, что для работы с ним будут одновременно резервироваться каналы в нескольких ячейках сети, что приведет к снижению эффективной емкости сети. В настоящее время разрабатываются различные способы, позволяющие избежать такой ситуации.
Помимо своего, так сказать, основного амплуа, сети CDMA могут обеспечивать целый ряд других функций. Прежде всего, следует упомянуть приложения так называемой "беспроводной последней мили" (Wireless Local Loop, WLL). Такое приложение реализуется в "фиксированных" сетях, не поддерживающих мобильных абонентов. Следует, впрочем, подчеркнуть, что совершенно неподвижными абоненты таких сетей быть не обязаны, - допускается, например, перемещение с места на место в пределах территории, на которой развернута сеть.
Наибольший интерес к фиксированным сетям проявляют компании-операторы из развивающихся стран, где необходимо быстро обеспечить связь на большой территории, и на прокладку разветвленной кабельной сети просто нет времени. Помимо недостаточно развитой коммуникационной инфраструктуры, существует и еще одна причина интереса к беспроводным технологиям "последней мили" - большие расстояния. Этот фактор не зависит от уровня экономического развития страны - проложить кабель к удаленному ранчо в Соединенных Штатах ничуть не дешевле (а скорее всего, значительно дороже), чем к какой-нибудь глухой российской деревушке на десять домов. Переход от мобильной связи к фиксированной сопряжен со значительным повышением качества передачи голоса и увеличением емкости сети. По данным корпорации QUALCOMM, максимальная емкость ячейки сети в этом случае возрастает до 45 каналов на одну несущую частоту.
В настоящее время испытания систем WLL на базе CDMA проходят в Канаде, Бразилии, Индии, России, Китае, Польше.
Другим весьма перспективным применением технологии CDMA будет, как предполагается, начинающая развиваться в США система сотовой связи в диапазоне 1900 МГц под названием PCS (Personal Communications Services). Идея PCS состоит в том, чтобы превратить сотовую связь во всепроникающую телекоммуникационную технологию. Ожидается, что ячейки такой сети будут мельче, мобильные аппараты - легче и дешевле и что эта система позволит связываться с абонентами в любое время и из любого места. Согласно прогнозам, одно из наиболее эффективных решений для организации PCS - применение технологии CDMA, в первую очередь благодаря большей емкости таких сетей, более высокому качеству связи (в частности, малый размер ячеек означает частые переключения, а они, как мы помним, в CDMA происходят менее болезненно, чем при использовании других технологий), а также малой стоимости в расчете на одного абонента. В настоящее время в США уже развернуты первые системы PCS на базе CDMA.
...Подобные документы
Прогнозирование электромагнитной совместимости радиорелейной линии и радиолокационной станции. Параметры источников полезного и мешающего сигналов. Потери энергии на трассе распространения радиоволн. Электромагнитная совместимость сотовых систем связи.
реферат [641,9 K], добавлен 05.05.2014Общая классификация радиоволн по диапазонам и областям применения. Диапазоны радиочастот и радиоволн, установленные международным регламентом радиосвязи. Механизмы и зоны распространения. Особенности распространения устройства декаметрового диапазона.
контрольная работа [29,1 K], добавлен 02.04.2014Общая характеристика моделей распространения радиоволн. Основные проблемы распространения и методы их решения. Моделирование распространения радиоволн в городе с помощью эмпирических моделей. Экспериментальное исследование уровня сигнала базовой станции.
дипломная работа [3,7 M], добавлен 07.07.2012Исследование и анализ беспроводных сетей передачи данных. Беспроводная связь технологии wi–fi. Технология ближней беспроводной радиосвязи bluetooth. Пропускная способность беспроводных сетей. Алгоритмы альтернативной маршрутизации в беспроводных сетях.
курсовая работа [825,8 K], добавлен 19.01.2015Устройство общих схем организации радиосвязи. Характеристика радиосистемы передачи информации, в которой сигналы электросвязи передаются посредством радиоволн в открытом пространстве. Особенности распространения и области применения декаметровых волн.
реферат [1,3 M], добавлен 10.07.2010Системы передачи информации с помощью радиотехнических и радиоэлектронных приборов. Понятие, классификация радиоволн, особенности их распространения и диапазон. Факторы, влияющие на дальность и качество радиоволн. Рефракция и интерференция радиоволн.
реферат [81,5 K], добавлен 27.03.2009Распространение цифровых стандартов в области сотовых сетей подвижной радиосвязи. Максимальное число обслуживаемых абонентов как основная характеристика системы подвижной радиосвязи. Достоинствами транкинговых сетей. Европейский проект стандарта W-CDMA.
контрольная работа [26,3 K], добавлен 18.09.2010Особенности распространения радиоволн в системах мобильной связи. Разработка и моделирование программного обеспечения для изучения моделей распространения радиоволн в радиотелефонных сетях для городских условий. Потери передачи в удаленных линиях.
дипломная работа [5,1 M], добавлен 20.10.2013Анализ оснащенности участка проектирования системами связи. Требования к стандартам радиосвязи. Преимущества GSM-R, принципы построения, организация каналов доступа, особенности базовой структуры. Энергетический расчет проектируемой системы радиосвязи.
дипломная работа [4,5 M], добавлен 24.06.2011Анализ оснащенности участка проектирования системами поездной радиосвязи, требования к их стандартам. Принципы построения, организация каналов доступа и особенности базовой структуры сети GSM-R. Выбор и описание оборудования, энергетический расчет.
дипломная работа [5,2 M], добавлен 24.06.2011Общественные сети передачи данных: общее понятие, виды и краткая характеристика. Радио и телевизионные сети, их особенности. Разновидности виртуальных частных сетей. Назначение и структура сотовой радиосвязи, принципы действия мобильной коммуникации.
презентация [1,7 M], добавлен 10.05.2013Обоснование структурной схемы системы радиосвязи. Предварительные расчеты основных параметров передающей и приемной частей радиоканала. Расчет наземного затухания напряженности поля радиоволны. Оценка дальности прямой видимости при заданных параметрах.
курсовая работа [632,6 K], добавлен 21.02.2014Понятие о разделении целей радиолокационной системы. Совместная разрешающая способность по дальности. Принцип неопределенности сигналов в радиолокации. Тело неопределенности и его эквивалент. Разрешающая способность по скорости распространения радиоволн.
реферат [605,2 K], добавлен 13.10.2013Особенности распространения радиоволн, основной источник помех. Определение вида радиотрассы Моршанск-Рязань. Методика расчета напряженности поля в точке приема при высоко или низко расположенных антеннах. Выбор и расчет параметров радиостанции.
курсовая работа [5,3 M], добавлен 30.04.2016Перспективы мобильности беспроводных сетей связи. Диапазон частот радиосвязи. Возможности и ограничения телевизионных каналов. Расчет принимаемого антенной сигнала. Многоканальные системы радиосвязи. Структурные схемы радиопередатчика и приемника.
презентация [2,9 M], добавлен 20.10.2014Создание нового информационно-вычислительного комплекса, обеспечивающего проверку состояния поездной радиосвязи. Распространение радиоволн. Способы расчета антенн. Модуляция сигналов. Рекомендации по применению стационарных антенн в поездной радиосвязи.
дипломная работа [410,2 K], добавлен 08.03.2016Организация сетей радиосвязи. Частотно-территориальное планирование. Модель сотовой сети связи. Применение кластеров минимального размера. Интерференция частотных каналов в сети. Сота-ретранслятор, ее предназначение. Функции одночастотных ретрансляторов.
презентация [1,5 M], добавлен 16.03.2014Анализ технологий беспроводной связи в городе Алматы. Технология проектирования сети WiMAX. Базовая станция Aperto PacketMax-5000 на объекте ЦА АО "Казахтелеком" (ОПТС-6). Расчет параметров сети и оптимизации пакета. Финансовый план построения сети.
дипломная работа [3,0 M], добавлен 01.04.2014Характеристика и сущность беспроводной системы охранной сигнализации "Spread Net". Особенности алгоритмов построения оптимальных и квазиоптимальных сигналов. Составление матрицы кодов и протокола обмена. Моделирование характера распространения радиоволн.
дипломная работа [500,5 K], добавлен 20.10.2011Методика расчета дальности связи с подвижными объектами в гектометровом диапазоне при использовании направляющих линий. Базовые кривые распространения радиоволн. Коэффициенты, учитывающие флуктуации сигнала. Расчет дальности связи между локомотивами.
методичка [595,7 K], добавлен 14.10.2009