Исследование работы биполярного транзистора в схеме усилителя низкой частоты
Параметры биполярного транзистора, определяющие работу линейного усилителя на основе математических моделей и экспериментальных измерений. Амплитудная характеристика работы усилителя низкой частоты. Расчет и экспериментальная проверка рабочей точки.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 20.09.2014 |
Размер файла | 259,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Государственное образовательное учреждение высшего профессионального образования
«Санкт-Петербургский государственный электротехнический университет (ЛЭТИ)»
Курсовая работа
по дисциплине Твердотельная электроника
на тему: Исследование работы биполярного транзистора в схеме усилителя низкой частоты
Санкт-Петербург 2005
Введение
Цель работы: изучение и исследование основных параметров биполярного транзистора, определяющих работу линейного усилителя на основе математических моделей и экспериментальных измерений.
транзистор биполярный усилитель линейный
1. Исходные данные и значения параметров усилителя
Объект исследования: биполярный транзистор П306А с p-n-p переходом и линейный усилитель низкой частоты на его основе.
Транзистор П306А - полупроводниковый элемент с тремя электродами, который служит для усиления или переключения сигнала.
р-п-р- транзистор и его диодная эквивалентная схема
Транзистор состоит из двух противоположно включенных диодов, которые обладают одним общим п или р- слоем. Электрод, связанный с ним, называется базой В. Два других электрода называются эмиттером Е и коллектором С. Диодная эквивалентная схема, приведенная рядом с условным обозначением, поясняет структуру включения переходов транзистора. Хотя эта схема не характеризует полностью функции транзистора, она дает возможность представить действующие в нем обратные и прямые напряжения. Обычно переход эмиттер-база смещен в прямом направлении, а переход база-коллектор в обратном. Поэтому источники напряжения должны быть включены, как показано на рисунке:
Полярность включения р-п-р- транзистора
Основная особенность транзистора состоит в том, что коллекторный ток Ic является кратным базовому току Iв. Их отношение B = Ic/ Iв называют коэффициентом усиления по току.
Исходные данные:
2. Принципиальная схема усилителя
Имеются три основные схемы включения транзистора в усилительные цепи. В зависимости от того, присоединен ли эмиттер, коллектор или база к общей точке, различают соответственно схемы с общим эмиттером, коллектором или базой. Исследуется схема с общим эмиттером.
- выходное напряжение
- выходной ток
- входное напряжение
- выходное напряжения
- коллекторное сопротивление, используется для получения выходного напряжения
- сопротивление, с помощью которого реализуется схема с отрицательной обратной связью. Схема вводиться для уменьшения нелинейных искажений. Вследствие отрицательной обратной связи по току выходное сопротивление растет незначительно и стремится (в случае глубокой отрицательной обратной связи) к Rc.
- сопротивления, с помощью которых устанавливается рабочая точка (представляет собой делитель напряжения).
- разделительные емкости. Емкость выбирается так, что бы за время прохождения сигнала напряжение не изменялось.
- конденсатор, шунтирующий переменное напряжение в требуемой области частот (определяет “глубину” отрицательной обратной связи по переменному напряжению).
Емкости ограничивают влияние обратной связи на переменном сигнале.
Линейный усилитель - устройство, в котором осуществляется увеличение амплитуды сигнала низкой частоты за счет энергии вспомогательного источника.
Принцип действия:
Пусть приложено такое входное напряжение Uе0,6В, чтобы мог протекать коллекторный ток порядка миллиампер.
Схема с общим эмиттером
Упрощенное изображение
Коэффициент усиления по напряжению:
A = Ua/Ue = -S(Rc rCE)
Входное сопротивление rE = rBE;
Выходное сопротивление ra = Rc rCE.
Если входное напряжение повысить на небольшую величину Uе, то коллекторный ток увеличится. Поскольку выходные характеристики проходят почти горизонтально, можно сделать допущение о том, что ток Ic зависит только от UВЕ , но не зависит от UCЕ . Тогда увеличение Ic составит:
ДIc ? S·ДUbe = S·ДUe
Так как коллекторный ток источника напряжения протекает через сопротивление Rc, то падение напряжения на Rc тоже повышается и выходное напряжение Ua возрастает на величину:
ДUa = - ДIc·Rc ? -S·Rc ·ДUe
Таким образом, схема обеспечивает коэффициент усиления по напряжению:
A = ДUa/ДUe ? -S·Rc
3. Расчет положения рабочей точки
Расчет сопротивлений, обеспечивающих положение рабочей точки
Учитывая, что получаем:
Для используемых транзисторов типичное значение , следовательно получаем:
Ток делителя вычисляется из условия , отсюда
,
тогда:
Получаем:
Входное сопротивление по переменному току составляет
, где
Для коллекторного тока 10 мА сопротивление rCE15 кОм. Тогда найдем коэффициент усиления по напряжению для ненагруженного каскада
, где
Таким образом, усиление э.д.с. генератора сигнала при RL = 10 кОм составит
Это значение должно сохраняться до нижней частоты fмин = 20 Гц. Поскольку схема содержит три фильтра верхних частот, то нужно выбрать частоты среза fg этих фильтров в пределах до fмин. Положим, что эти частоты равны; используя формулу для n фильтров с равными частотами среза, найдем
При этом получим
Схема с учетом номиналов:
4. Экспериментальная проверка работы усилителя
Параметры рабочей точки, полученные при эксперименте:
напряжение коллектор-земля
напряжение база-земля
напряжение эммитор-земля
Амплитудная характеристика в режиме без обратной связи по току имеет нелинейный характер и большую крутизну (крутизна определяет коэффициент усиления), чем в режиме с обратной связью. Характеристика усилителя с обратной связью практически линейна. Обе зависимости сняты при Uвых<3В, это условие определяет линейный режим. Выше 3В - нелинейный.
Причина нелинейности амплитудной зависимости заключается в нелинейности передаточной характеристики. Если амплитуда входного сигнала не достаточно велика, то из-за нелинейности передаточной характеристики возникают искажения.
Обратная связь вносит отрицательный эффект в усиление сигнала, т.к. уменьшается коэффициент усиления, вследствие того, что часть выходного сигнала подается обратно на вход для противодействия входному сигналу. Таким образом, в режиме без обратной связи получили коэффициент нелинейных искажений больше, чем в режиме с обратной связью.
C другой стороны, при использовании обратной связи по току уменьшаются нелинейные искажения. Режим без обратной связи, характеризуется большим коэффициентом усиления и достигается использованием разделительной емкости.
Вывод: в работе был исследован биполярный транзистор П306А и линейный усилитель на его основе. Определены параметры рабочей точки, в которой транзистор можно рассматривать как линейный усилитель и осуществлять управление малым сигналом.
Расчет рабочей точки был проверен экспериментально. Выяснено, что при использовании сопротивлений номиналам первого класса точности напряжение коллектор-земля, база-земля, эмиттер-земля отличается от рассчитанного значения (соответственно 4,3В; 1,3В; 0,6В), не более чем на 25%. Таким образом, можно сделать вывод, что расчет рабочей точки с определенной долей погрешности рассчитан правильно.
Значение коэффициента усиления А=10 достигнуто в режиме с обратной связью на частотах порядка 0,7-8 кГц, а в режиме без обратной связи на частотах 150-2000 Гц. В режиме с обратной связью амплитудная характеристика линейна.
При анализе статических характеристик транзистора была найдена допустимая амплитуда входного и выходного напряжений: Uвх = 0,25В и Uвых = 2,5В, в пределах которой сигнал не искажается. Эти значения подтвердились при снятии амплитудной и амплитудно-частотной характеристик усилителя. При снятии характеристик на более высоких напряжениях наблюдалось сильное искажение сигнала, что связано с интенсивной рекомбинацией носителей заряда, которая обуславливает область насыщения на статических характеристиках транзистора.
Таким образом, поставленная задача решена - получен и исследован усилитель низкой частоты на основе биполярного транзистора, а также определены его основные параметры.
Размещено на Allbest.ru
...Подобные документы
Расчёт параметров усилителя низкой частоты на биполярном транзисторе. Схема транзисторного усилителя низкой частоты. Выбор биполярного транзистора, расчет элементов схемы. Аналитический расчёт параметров усилительного каскада на полевом транзисторе.
курсовая работа [381,5 K], добавлен 03.12.2010Составление структурной схемы усилителя низкой частоты радиоприемника и принципиальной схемы выходного каскада. Расчет входного сопротивления плеча. Основные параметры биполярного транзистора. Расчет двухтактного транзисторного каскада мощного усиления.
курсовая работа [1,0 M], добавлен 07.12.2012Разработка структурной и принципиальной схемы устройства. Расчет двухкаскадной схемы усилителя низкой частоты с использованием полевого и биполярного транзисторов. Выбор навесных элементов и определение конфигурации пленочных элементов усилителя частоты.
курсовая работа [220,7 K], добавлен 22.03.2014Понятие и назначение усилителя низкой частоты. Разработка и расчет принципиальной схемы. Проектирование усилителя низкой частоты, состоящего из двух каскадов и RC-цепочки связи. Анализ работы схемы при помощи программы Electronics Workbench Version 5.12.
курсовая работа [1,0 M], добавлен 27.08.2010Расчет номинальных значений резисторов однокаскадного усилителя. Построение передаточной характеристики схемы на участке база-коллектор биполярного транзистора. Принципиальная электрическая схема усилителя, схема для нахождения потенциалов на эмиттере.
курсовая работа [975,5 K], добавлен 13.01.2014Принципиальная схема предварительного каскада с источником сигнала и последующим каскадом. Выбор типа транзистора, исходя из заданного режима его работы и частоты верхнего среза усилителя. Расчет параметров малосигнальной модели биполярного транзистора.
контрольная работа [208,8 K], добавлен 21.10.2009Проектирование бестрансформаторного усилителя низкой частоты, расчет коэффициента усиления и диапазона возможных значений. Определение схемы выходного каскада и типов транзисторов каскадов усиления. Расчет электрической принципиальной схемы усилителя.
курсовая работа [138,4 K], добавлен 29.06.2015Расчет мощности сигнала на входе усилителя низкой частоты, значения коллекторного тока оконечных транзисторов, емкости разделительного конденсатора, сопротивления резистора, напряжения на входе усилителя. Разработка и анализ принципиальной схемы.
курсовая работа [111,1 K], добавлен 13.02.2015Описание блок–схемы транзисторного двухкаскадного усилителя мощности низких частот. Вычисление мощности, потребляемой цепью коллектора транзистора от источника питания. Расчёт выходного и предварительного каскадов усилителя, фильтра нижних частот.
контрольная работа [323,8 K], добавлен 18.06.2015Основные параметры усилителей низкой частоты. Усилитель электрических сигналов - устройство, обеспечивающее увеличение амплитуды тока и напряжения. Дифференциальный коэффициент усиления. Особенности схемотехники интегральных усилителей низкой частоты.
лекция [621,3 K], добавлен 29.11.2010Выбор структурной схемы многокаскадного усилителя низкой частоты. Расчет показателей выходного, предокочечного и входного каскадов электронного устройства. Оценка параметров частотного искажения, фазовых сдвигов и усиления по напряжению, мощности и току.
курсовая работа [220,0 K], добавлен 03.12.2010Методы измерения параметров и характеристик усилителей низкой частоты. Изменение входного сигнала в заданных пределах, частоты генератора. Выходное напряжение при закороченном и включенном сопротивлении на входе усилителя. Входная емкость усилителя.
лабораторная работа [21,8 K], добавлен 19.12.2014Обоснование технических решений, проектирование усилителя низкой частоты, назначение и условия эксплуатации, описание существующих конструкций и электрических схем. Расчет параметров усилителя, выбор электронных компонентов схемы, входящих в состав.
курсовая работа [303,6 K], добавлен 14.03.2011Особенности современных электронных усилителей. Разработка электрической принципиальной схемы УНЧ. Амплитудные значения тока и напряжения на входе каскада. Расчет усилителя переменного тока на примере бестрансформаторного усилителя низкой частоты.
курсовая работа [542,2 K], добавлен 02.02.2014Выбор типа выходного каскада исходя из необходимой величины напряжения питания. Расчет цепей фильтрации по питанию. Выбор выходных транзисторов, необходимых для усилителя низкой частоты. Расчет фазоинверсного каскада и каскада предварительного усиления.
курсовая работа [476,7 K], добавлен 29.11.2011Разработка структурной схемы усилителя низкой частоты. Расчет структурной схемы прибора для усиления электрических колебаний. Исследование входного и выходного каскада. Определение коэффициентов усиления по напряжению оконечного каскада на транзисторах.
курсовая работа [1,1 M], добавлен 01.07.2021Общие сведения об усилителях звуковой частоты. Электрический расчет схемы прибора. Разработка узлов радиоэлектронной аппаратуры. Определение номиналов пассивных и активных элементов схемы усилителя низкой частоты, которые обеспечивают работу устройства.
курсовая работа [355,0 K], добавлен 13.10.2017Основные особенности групповых усилителей. Принципиальная схема усилителя. Расчет рабочих частот. Выбор и обоснование схемы выходного каскада усилителя (ВКУ). Выбор режима работы транзистора ВКУ. Расчет стабилизации режима работы транзистора ВКУ.
курсовая работа [582,6 K], добавлен 28.01.2015Основные понятия и определения важнейших компонентов усилителя. Проектирование и расчет усилителя низкой частоты (УНЧ) с заданными параметрами. Выбор и обоснование принципиальной электрической схемы выходного каскада, изучение его основных свойств.
курсовая работа [864,0 K], добавлен 13.01.2014Определение параметров работы двухкаскадного усилителя тока с непосредственной связью, выполненного на германиевых (Ge) транзисторах структуры n-p-n по заданным показателям. Основные расчеты показателей преобразования напряжения, коэффициентов усиления.
практическая работа [70,3 K], добавлен 04.01.2011