Проектирование сети беспроводного широкополосного доступа на основе технологии mobile WiMAX
Сравнение существующих систем радиодоступа и обоснование выбора для проектируемой сети. Описание и технические характеристики аппаратуры WiMAX. Антенные системы и абонентское оборудование. Структура сети mobile WiMAX и базовая станция BreezeMAX 4Motion.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 14.11.2014 |
Размер файла | 51,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
Существующие системы проводной цифровой связи уже не могут в полной мере удовлетворять растущим потребностям высокоскоростного широкополосного доступа. Важнейшими их недостатками являются длительные сроки прокладки, сложности расширения, высокие затраты, проблема "последней мили". Основной является так называемая проблема "последней мили". Высокоскоростные цифровые соединительные линии DSL (Digital Subscriber Line) не снимают этой проблемы.
Целью курсового проекта является проектирование сети беспроводного широкополосного доступа на основе технологии mobile WiMAX.
WiMAX -- одна из технологий, призванных решить проблему широкополосного доступа к транспортным сетям, а вдобавок избавить пользователей от необходимости проводного подключения. WiMAX должен обеспечить высокоскоростной, защищенный беспроводной доступ с поддержкой контроля над качеством на периферии сети.
Эта технология не является воплощением принципиально новой концепции. Скорее, ее стоит рассматривать как эволюционное развитие появившихся ранее технологий широкополосного беспроводного доступа (ШБД). радиодоступ сеть антенный абонентский
Основное достоинство WiMAX?-- наличие общепринятого стандарта, который позволяет производителям работать над одной технологией, обеспечивая взаимную совместимость оборудования.
Цель технологии WiMAX заключается в том, чтобы предоставить универсальный беспроводный доступ для широкого спектра устройств (рабочих станций, бытовой техники "умного дома", портативных устройств и мобильных телефонов) и их логического объединения - локальных сетей.
Надо отметить, что технология имеет ряд преимуществ:
ь По сравнению с проводными (xDSL, T1), беспроводными или спутниковыми системами сети WiMAX должны позволить операторам и сервис-провайдерам экономически эффективно охватить не только новых потенциальных пользователей, но и расширить спектр информационных и коммуникационных технологий для пользователей, уже имеющих фиксированный (стационарный) доступ.
ь Стандарт объединяет в себя технологии уровня оператора связи (для объединения многих подсетей и предоставления им доступа к Интернет), а также технологии "последней мили" (конечного отрезка от точки входа в сеть провайдера до компьютера пользователя), что создает универсальность и, как следствие, повышает надёжность системы.
ь Беспроводные технологии более гибки и, как следствие, более просты в развёртывании, так как по мере необходимости могут масштабироваться.
ь Простота установки как фактор уменьшения затрат на развертывание сетей в развивающихся странах, малонаселённых или удалённых районах.
ь Дальность охвата является существенным показателем системы радиосвязи. На данный момент большинство беспроводных технологий широкополосной передачи данных требуют наличия прямой видимости между объектами сети. WiMAX благодаря использованию технологии OFDM создает зоны покрытия в условиях отсутствия прямой видимости от клиентского оборудования до базовой станции, при этом расстояния исчисляются километрами.
ь Технология WiMAX изначально содержит в себе протокол IP, что позволяет легко и прозрачно интегрировать её в локальные сети.
ь Технология WiMAX подходит для фиксированных, перемещаемых и подвижных объектов сетей на единой инфраструктуре.
Глава 1. Сравнение существующих систем радиодоступа и обоснование выбора для проектируемой сети
В рамках рынка, основная конкуренция WiMAX приходит из существующих, широко развернуты беспроводные системы, такие как UMTS и CDMA2000, а также ряд интернет-ориентированных систем, таких как HiperMAN и большой дальности мобильного Wi-Fi Mesh и сетей.
Основные стандарты сотовой связи в настоящее время развивались так называемые 4G, высокой пропускной способностью и низкой латентностью, все IP-сетей с голосовыми услугами построены на вершине. Во всем мире перейти на 4G для GSM/UMTS и AMPS/TIA (включая CDMA2000) является 3GPP Long Term Evolution усилий. Планируется замена CDMA2000 называемых, Ultra Mobile Broadband была прекращена. Для 4G систем, существующих интерфейсов воздуха, выбрасываемых в пользу OFDMA по нисходящей и различные OFDM методик по Uplink, похожие на WiMAX.
В некоторых районах мира, широкая доступность UMTS и общее стремление к стандартизации означает спектр не были выделены на WiMAX: в июле 2005 года ЕС-широким распределением частот для WiMAX была заблокирована.
Одним из значительных преимуществ передовых беспроводных систем, таких как WiMAX является спектральной эффективности. Например, 802.16-2004 (фиксированный) имеет спектральную эффективность 3,7 (бит / с) / Hertz, а другие 3,5-4G беспроводных систем предлагают спектральной эффективности, которые схожи с точностью до десятых долей процента. Заметным преимуществом WiMAX исходит от объединения SOFDMA со смарт-технологии антенны.
Это увеличивает эффективную спектральной эффективности за счет многократного использования и смарт-топологиях развертывания сети. Прямое использование частот организация домена облегчает проекты с использованием MIMO-AAS по сравнению с CDMA / WCDMA методами, в результате чего более эффективных систем.
1.1 Сравнение ключевых технологий WiMAX и HSPA
Системы с технологией HSPA (3GPP релиз 6) коммерчески доступны с 2007 года. Технология предусматривает частотное дуплексирование (FDD) с шириной каждого дуплексного канала 5МГц. В нисходящем канале используется модуляция QPSK, либо 16-QAM, потоковая скорость 14 Мбит/с. В восходящем канале модуляция BPSK, пиковая скорость 5,8 Мбит/с.
В то же время на рынке были системы WiMAX (релиз 1.0) с временным дуплексированием (TDD). При аналогичной ширине полосы 10 МГц они обеспечивали скорость в нисходящем канале в 2-3 раза более высокую, чем у HSPA (поскольку WiMAX при TDD общая пропускная способность динамически распределяется между нисходящими и восходящими каналами).
Развитие технологии создало HSPA+ (HSPA релиз 7 и отдельные поправки релиза 8). В нисходящем канале их отличает модуляция 64-QAM c SIMO (1х2) или 64-QAM c SIMO (2х2). В восходящем канале добавлена модуляция 64-QAM и улучшены возможности для VoIP. Поправки в соответствии с релизом 8 позволяют использовать в нисходящем канале режим МIМО (2x2) с модуляцией 64-QAM, рассматривается возможность использования МIМОбольших порядков в нисходящем канале и МIМО (2х2) - в восходящем канале.
При сравнении мобильных WiMAX и HSPA+ можно сделать следующий выводы:
- мобильный WiMAX (релиз 1.5) имеет сравнимые с HSPA+ (релиз 8) пиковые скорости в нисходящем канале при одинаковой модуляции, скорости кодирования и ширине канала. При этом у мобильного WiMAX в восходящем канале пиковая скорость выше в 2-3 раза.
- Система HSPA+ ограничены шириной канала 2х5 МГц в традиционных спектральных условиях сетей 3G. Мобильный WiMAX поддерживает ширину канала до 20 МГц, как частотное, так и временное дуплексирование. Его частотные профили планируются в диапазонах 700, 1700, 2300, 2500 и 3500 МГц. Мобильный WiMAX обеспечивает «гладкую IP - сеть» (из конца в конец).
1.2 Сравнение ключевых технологий WiMAX и LTE
Следующим шагом эволюции систем 3GPP, являются системы Long Term Evolution (LTE). Их отличает технология OFDMA в нисходящем канале и SC-FDMA - в восходящем. Модуляция - до 64-QAM, ширина канала - до 20 МГц, дуплексирование TDD и FDD. Применены адаптивные антенные системы, гибкая сеть доступа. Сетевая архитектура полностью IP - сеть. В системе LTE применяются технологии и методы, уже применяемые в мобильном WiMAX, поэтому следует ожидать схожей эффективности систем LTE.
Системы LTE - это революционное улучшение 3G. LTE представляет переход от систем CDMA к системам OFDMA, а также переход к полностью IP - системе к коммуникацией пакетов. Поэтому внедрение этой технологии на существующих сетях сотовой связи означает необходимость новых радиочастотных ресурсов для получения преимущества от широкого канала. Для обеспечения обратной совместимости необходимы двухрежимные абонентские устройства. Поэтому плавный переход от систем 3G к LTE весьма сложен.
Отметим, что преимущество в спектральной эффективности означает выигрыш в стоимости развертывания сети (в том числе в удельной стоимости по отношению к пропускной способности сети). Кроме того, возрастает канальная емкость, что позволяет операторам вводить дополнительные сервисы. Мобильный WiMAX представляет гладкую IP-сеть, сеть LTE более сложна.
Если сеть WiMAX основывается полностью на IP-протоколах IEEE, то сеть LTE более сложна, включает больше протоколов, в том числе проприетарные протоколы 3G. Немаловажно, что интеллектуальная собственность в области технологий WiMAX, соответствующие патенты распределены среди многих компаний, создан открытый патентный альянс, что позволяет снижать цены абонентских устройств.
Выводы сравнения WiMAX и LTE:
- WiMAX, и LTE отвечают целям IMT-Advanced;
- спецификации IMT-Advancedеще не полностью определены;
- стандарт IEEE802.16m будет полностью отражать спецификации и требования IMT-Advanced;
- мобильный WiMAX релиз 1.5 и LTE имеют похожие характеристики. В обоих на линии от базы используется OFDMAс многоуровневой модуляцией и кодированием. Пиковые скорости практически одинаковы при одинаковых кратностях модуляции и скоростях корректирующего кода. В обоих используется и FDD, и TDD дуплексированиепри ширине канала до 20 МГц. В обоих используется MIMO большой кратности и уменьшение задержки;
- мобильный WiMAX имеет двухлетний выигрыш по времени выхода на рынок и гладкую e2e IP архитектуру сети;
- пропускная способность и спектральная эффективность мобильного WiMAX по релизу 2.0 имеет лучшие параметры, чем LTE;
- мобильный WiMAX релиз 2.0 совместим с релизами 1.0 и 1.5;
- инвестиции для преобразования сетей из 2G/3Gв LTEи в мобильный WiMAXпримерно одинаковы;
- и для сетей LTE, и для сетей WiMAX необходим новый спектр;
- для обоих сетей нужны многорежимные абонентские приборы;
1.3 Сравнение ключевых технологий WiMAX и Wi-Fi
Сравнения и путаница между WiMAX и Wi-Fi являются частыми, поскольку оба они связаны с беспроводной связью и доступом в Интернет.
WiMAX использует спектр, чтобы доставить "точка-точка подключения к Интернету. Различные 802,16 стандарты предусматривают различные виды доступа с портативных коммутаторов (по аналогии с беспроводным телефоном) для фиксированного (альтернатива проводного доступа, где беспроводные точки подключения конечных пользователей зафиксирована в регионе.)
Wi-Fi использует нелицензионное спектр для предоставления доступа к сети. Wi-Fi более популярна в устройствах конечных пользователей.
WiMAX и Wi-Fi имеют совершенно различные качества обслуживания (QoS) механизмов. WiMAX использует механизм, основанный на связи между базовой станцией и устройством пользователя. Каждое соединение основано на конкретных алгоритмов планирования. Wi-Fi имеет механизм QoS аналогичные фиксированной Ethernet, где пакеты могут получать различные приоритеты на основе их тегов.
Wi-Fi работает на Media Access Control 'S CSMA / CA протокол, который не гарантирует доставку и утверждения основаны, в то время как WiMAX работает ориентированный на соединение ПДК.
Стандарт 802,16 распространяется через широкую полосу в спектре РФ и WiMAX может функционировать на любых частотах ниже 66 ГГц, (более высоких частотах, привело бы к уменьшению диапазона действия базовой станции до нескольких сот метров в городской среде).
WiMAX профили определения размера канала, TDD / FDD и другими необходимыми атрибутами для того, чтобы иметь Inter-операционных продуктов. Нынешний фиксированный профили определяются как для FDD и TDD профилей. На данный момент, все мобильные профиль TDD только. Профили имеют фиксированные размеры канала 3,5 МГц, 5 МГц, 7 МГц и 10 МГц. Мобильные профили 5 МГц, 8,75 МГц и 10 МГц. (Примечание: 802,16 стандарт позволяет гораздо более широкий круг каналов, но только выше подмножества поддерживаются профили WiMAX.)
Ожидается, что WiMAX сможет обеспечить высокоскоростной беспроводной доступ проще и дешевле, чем существующие технологии сотовой связи. Эта технология также имеет возможности масштабирования, благодаря которым можно организовать недорогой широкополосный доступ по всей Индии. Беспроводная инфраструктура WiMAX может расширяться, чтобы обеспечить поддержку карманных и мобильных устройств, которые появятся в будущем. Это дает дополнительные преимущества для стран с развивающейся экономикой, подобным Индии, которые пока не имеют развитой широкополосной инфраструктуры.
Благодаря тому, что технология WiMAX основана на стандартах, она допускает положительный эффект масштаба, который сможет уменьшить стоимость широкополосного доступа, обеспечить возможность взаимодействия и упростить реализацию. В случае отсутствия стандартов производители специализированного оборудования предлагают полный комплекс аппаратных и программных компонентов, и из-за ограничительного лицензирования увеличиваются расходы. Поставщикам услуг выгоднее работать со стандартной продукцией, т.к. совместимость различных устройств и большие объемы выпуска позволяют сократить стоимость оборудования.
На сегодняшний день существует огромное количество технологий беспроводной передачи данных, такие как Bluetooth, UWB, Wi-Fi, DECT и др.
Эти технологии имеют различные области применения. Они предназначены для организации небольших беспроводных сетей внутри помещений и построения беспроводных мостов. Технология WiMAX, в свою очередь, предназначена для организации широкополосной связи вне помещений и для организации крупномасштабных сетей. WiMAX разрабатывался как городская вычислительная сеть (MAN).
В рамках рынка, основная конкуренция WiMAX приходит из существующих, широко развернуты беспроводные системы, такие как UMTS и CDMA2000, а также ряд интернет-ориентированных систем, таких как HiperMAN и большой дальности мобильного Wi-Fi Mesh и сетей.
Основные стандарты сотовой связи в настоящее время развивались так называемые 4G, высокой пропускной способностью и низкой латентностью, все IP-сетей с голосовыми услугами построены на вершине. Во всем мире перейти на 4G для GSM/UMTS и AMPS/TIA (включая CDMA2000) является 3GPP Long Term Evolution усилий. Планируется замена CDMA2000 называемых, Ultra Mobile Broadband была прекращена. Для 4G систем, существующих интерфейсов воздуха, выбрасываемых в пользу OFDMA по нисходящей и различные OFDM методик по Uplink, похожие на WiMAX.
В некоторых районах мира, широкая доступность UMTS и общее стремление к стандартизации означает спектр не были выделены на WiMAX: в июле 2005 года ЕС-широким распределением частот для WiMAX была заблокирована.
Одним из значительных преимуществ передовых беспроводных систем, таких как WiMAX является спектральной эффективности. Например, 802.16-2004 (фиксированный) имеет спектральную эффективность 3,7 (бит / с) / Hertz, а другие 3,5-4G беспроводных систем предлагают спектральной эффективности, которые схожи с точностью до десятых долей процента. Заметным преимуществом WiMAX исходит от объединения SOFDMA со смарт-технологии антенны. Это увеличивает эффективную спектральной эффективности за счет многократного использования и смарт-топологиях развертывания сети. Прямое использование частот организация домена облегчает проекты с использованием MIMO-AAS по сравнению с CDMA / WCDMA методами, в результате чего более эффективных систем.
Глава 2. Проектирование WiMAX
2.1 Расчет зоны обслуживания с использованием модели Окамуры-Хата
Исходные данные:
ь тип местности: Город средних размеров;
ь тип стандарта: IEEE802.16е - Mobile WiMAX;
ь вид модуляции принимающей стороны: 64QAM;
ь коэффициент усиления антенны:
БС: 14 дБ;
МС: 18 дБ;
ь высота антенны:
БС: 40 м,
МС: 1,5 м;
ь мощность передатчика БС: 40 Вт;
ь потери в фидере антенны БС: 4,4 дБ;
ь потери в дуплексере - 1 дБ;
ь потери в комбайнере - 3 дБ;
ь К мшу = 25 дБ.
В соответствии с этой моделью величина затухания сигнала при распространении в городских районах определяется по формуле 4.1:
, (4,1)
Где - частота излучения, МГц;
- расстояние между БС и МС, км;
- высота антенны БС, м;
- высота антенны МС, м;
-поправочный коэффициент, учитывающий высоту антенны МС в зависимости от размеров города, дБ.
Частоту излучения выбираем из диапазона стандарта (2495 - 2690) МГц равной 2500МГц.
Расстояние между БС и МС выбираем равным 2км.
Высота антенн БС и МС над землей по заданию равно 40 и 1,5 метров соответственно.
Поправочный коэффициент, учитывающий высоту антенны МС, рассчитаем для городов средних размеров в дБ, определяется по формуле 4.2:
, (4,2)
Таким образом, с учетом данных:
радиодоступ сеть станция базовый
Определяем величину затухания сигнала по формуле 4.1:
Размеры зоны покрытия базовой станции будут определяться дальностью связи между базовой и мобильной станциями. Дальность связи будет определяться путем решения первого уравнения связи по формуле 4.3:
, (4,3)
где РПС[дБм] - уровень мощности полезного сигнала на входе приемной антенны в дБм;
РИЗЛ [дБм] - уровень эффективной изотропно излучаемой мощности передатчика в дБм;
L(R, hБС, hMC) [дБ] - затухание сигнала при распространении в небольшом городе;
ВТ [дБ] - дополнительные потери сигнала при работе с портативной абонентской станцией, которые составляют величину около 3 дБ;
ВЭ [дБ] - дополнительные потери сигнала при работе с портативной абонентской станцией в здании или автомобиле (для автомобиля около 8 дБ, для здания -15 дБ ).
Уровень эффективной изотропно излучаемой мощности передатчика определяется по формуле 4.4:
, (4,4)
где - уровень мощности передатчика в дБ/мВт;
Р'ПРД - мощность передатчика в Вт = 40 Вт;
[дБ] = - потери в фидере антенны передатчика;
[дБ/м] - погонное затухание в фидере антенны передатчика;
[м] - длина фидера антенны передатчика;
=
ВД ПРД [дБ] - потери в дуплексере на передачу = 1 дБ;
ВК [дБ] - потери в комбайнере (устройстве сложения) = 3 дБ;
GПРД [дБ] - коэффициент усиления антенны передатчика = 15 дБ.
С учетом приведенных выше данных определяется по формуле 4.4:
Тогда уровень мощности полезного сигнала на входе приемной антенны находим по формуле 4.3:
Основным условием обеспечения связи будет необходимость превышения уровня мощности полезного сигнала на входе приемной антенны минимально необходимого уровня мощности (РПСмин), определяемого техническими характеристиками приемника согласно формуле 4.5:
, (4,5)
где - чувствительность приемника в дБм
Р'ПРМ - чувствительность приемника в мкВт (в случае, если чувствительность приемника задается в дБм, то в качестве РПРМ используется именно это значение);
РПРМ = - 98, дБм;
RПРМ [Ом] - входное сопротивление приемника; - потери в фидере антенны приемника;
ВД ПРМ [дБ] - потери в дуплексном фильтре на прием = 1 дБ;
КМШУ [дБ] - коэффициент усиления антенного тракта приема (МШУ) =25 дБ;
GПРМ [дБ] - коэффициент усиления антенны приемника =17 дБи.
С учетом всех данных находим минимальную мощность полезного сигнала по формуле 4.5:
Величина дополнительного запаса уровня мощности сигнала определяется статистическими параметрами сигнала на трассах подвижной связи, а именно стандартными отклонениями сигнала по месту (d[дБ]) и по времени (t[дБ]). При этом многочисленные экспериментальные исследования показали, что значение d зависит в основном от степени неровности местности и диапазона частот, а t - от дальности связи.
На расстояниях меньше 10 км значение стандартного отклонения зависит от дальности связи (r).Для практических вычислений эти данные с высокой степенью точности в диапазоне 300...3000 МГц аппроксимируются формулой 4,6:
(4,6)
Подставляя данные, получаем:
Стандартное отклонение сигнала по времени уt зависит от дальности связи и для точек приема, расположенных на расстоянии менее 100 км от передатчиков, определяется формулой 4,7:
(4,7)
Обобщенное значение стандартного отклонения сигнала по месту и по времени вычисляется по формуле 4,8:
(4,8)
Подставляя рассчитанные значения, получаем:
Дополнительный запас уровня сигнала рассчитывается по формуле 4,9:
РПСдоп= kтр , (4,9)
где kтр - коэффициент логнормального распределения, обеспечивающий требуемую надежность связи.
Подставляя данные, получаем:
РПСдоп= 1,645*6,3= 10,4;
Таким образом, для того чтобы мощность сигнала на входе приемной антенны РПС, превышала минимальную мощность сигнала на входе приемной антенны РПСмин исходя из чувствительности приемника, с заданной вероятностью, необходимо, чтобы выполнялось условие 4,10:
РПС РПСмин + РПСдоп (4,10)
Значение требуемого уровня мощности сигнала на входе приемной антенны, обеспечивающей необходимую надежность связи
,
РПСтр = -141+10,4 = -130,6 дБм
-150 - 130,6;
-112 - 130,6.
Максимально допустимые потери при распространении сигнала на трассе:
LДОП = РИЗЛ - РПСтр - ВТ - ВЭ. (4,11)
LДОП1 = 52,6+130,6-3-8 = 172,2 дБм;
LДОП2 = 52,6+130,6-3-15 = 165,2 дБм.
Максимальная дальность связи решается уравнением:
L(R) = LДОП
Необходимо решить это уравнение графическим способом для этого найдем все необходимые параметры.
ь Расчет для R=4км:
, дБ
, дБ
, дБ
, дБ
РПСдоп= kтр
РПСдоп= 1.6457,5= 12,3;
;
;
РПС РПСмин + РПСдоп ,
LДОП1 = 52,6+128,7 -3-8 = 170,3 дБм;
LДОП2 = 52,6+128,7 -3-15 = 163,3 дБм.
-115,2 дБм ? -128,7 дБм
-122,2 дБм ? -128,7 дБм - условие выполняется.
ь Расчет для R=6 км:
, дБ;
, дБ;
;
РПСдоп= kтр
РПСдоп= 1,6458,3= 13,65;
,
РПСтр = -141+13,65 = -127,35 дБм;
;
РПС РПСмин + РПСдоп ,
LДОП1 = 52,6+127,35 -3-8 = 168,95 дБм;
LДОП2 = 52,6+127,35 -3-15 = 161,85 дБм.
-122,1 дБм ? -127,35 дБм - условие выполняется
-129,1 дБм ? -127,35 дБм - условие не выполняется => максимальный радиус действия для здания R=4 км.
ь Расчет для R=8 км:
, дБ;
, дБ;
;
РПСдоп= kтр
РПСдоп= 1,6458,9= 14,6;
РПСтр = -141+14,6= -125,4 дБм;
;
РПС РПСмин + РПСдоп ,
LДОП1 = 52,6+125,4 -3-8 = 167 дБм;
LДОП2 = 52,6+125,4 -3-15 = 160 дБм.
-125,4 дБм ? -125,4 дБм - условие выполняется, следовательно максимальная дальность связи для автомобиля R=8 км.
-132,4 дБм ? -125,4 дБм
К концу марта 2009 года WiMAX-форум зарегистрировал 94 модели сертифицированного WiMAX оборудования 36 различных производителей. Хотя в основном этот список содержит оборудование для фиксированного доступа, доля мобильного WiMAX постоянно растет. Широко представлено как базовое, так и абонентское оборудование.
Из наиболее значимых производителей оборудования для мобильного WiMAX отметим компании Alvarion (BreezeMAX 4Motion), Alcatel-Lucent (серия 97xx), Cisco System (BWX 8305 и BWX 2305), Huawei (DBTS 3900 и WASN9970), Motorola (wi4 WiMAX), Samsung (mobile WiMAX Udicell), ZTE и др. Оборудование большинства из них сертифицировано WiMAX-форумом.
Подробнее рассмотрим построение оборудования мобильного WiMAX на примере базовой и абонентской станций системы BreezeMAX 4Motion израильской компании Alvarion.
Система 4Motion - это полнофункциональное решение мобильного WiMAX операторского класса, с открытой архитектурой, позволяющее сопрягать оборудование различных производителей в одной сети.
Платформа BreezeMAX 4Motion включает четыре основные составляющие: абонентские и базовые станции, шлюзы сети доступа (ASN-шлюзы) и серверы системы управления авторизацией, аутентификацией и доступом (ААА-серверы). Последние представляют собой достаточно стандартные сетевые серверы (производители, которые не имеют своих AAA-серверов, обычно используют оборудование компаний Bridgewater и Cisco), вся их функциональность реализуется программно, поэтому я не буду рассматривать их. Остальные три элемента обеспечивают прохождение данных пользователя между оконечными устройствами (мобильными станциями, узлами IP-сетей и т.п.).
2.2 ASN шлюзы
Система BreezeMAX 4Motion может быть реализована с двумя типами ASN-шлюзов: распределенным и централизованным. В случае распределенной модели функции ASN-шлюзов реализуют устройства в составе БС (модуль устройства сетевой обработки NPU) для сетей с малой емкостью (рис.2.1.а). Централизованный ASN-шлюз предназначен для сетей большого масштаба с сотнями базовых станций и десятками тысяч абонентов внутри сети (рис.2.1.б). Шлюз ASN - это логическое устройство, связывающее БС с другими сетями доступа. Шлюз ASN обеспечивает связность как на уровне каналов передачи данных, так и на уровне управления.
2.3 Базовая станция BreezeMAX 4Motion
Базовая станция обеспечивает все необходимые функции для организации соединений по радиоканалу с абонентскими устройствами станции и по каналу GB Ethernet - для подключения к магистральному каналу сети провайдера. Она полностью соответствует всем требованиям стандарта IEEE 802.16e и сертификационным профилям WiMAX. Станция поддерживает режимы масштабируемой OFDMA, т.е. может работать с каналами шириной 20, 10 и 5 МГц (2048, 1024 и 512 формальных поднесущих, соответственно).
Базовая станция BreezeMAX обладает модульной архитектурой, что позволяет легко масштабировать систему и воплощать требуемую конфигурацию. Оборудование БС построено на основе шасси Compact PCI высотой 8U (рис. 2.2) предназначенного для установки инсталляции в 19- или 22-дюймовые стойки.
Компоненты базовой станции
*NPU -Модуль сетевой обработки (1+1).
Функции:
· Работа в прозрачном режиме (включает внешний ASNGW) или режиме ASN-GW (BWG-IS)
· Общие действия по управлению секцией
o Управление и диагностика AU
o Управление и контроль PSU и ACU
o Быстрое переключение & поддержка резервирования
· Управление сигнализацией, включая наружную сигнализацию
· Синхронизация
o Взаимодействие с GPS антенной.
o Синхронизация и IF настройки формирования/распределения сигнала
o Поддержка хэндовера
· Особенности безопасности
o Списки доступов
o Оценка ограничений доступа (DoS)
· QoS обозначение/присвоение для E2E QoS
· Используемые частоты для проектируемых устройств2.3ГГц: 2,300 - 2,360 МГц
o 2.5ГГц: 2,500 - 2,690 МГц
o 3.5ГГц: 3,400 - 3,800 МГц
o 3.3ГГц: 3,300 - 3,400 МГц
· Конфигурации 1Rx/1Tx, 2Rx/1Tx, 4Rx/2Tx, 4Rx/4Tx
o Выходная мощность : 34-39дБ
o Ширина канала до 20 МГц
o Разнесение антенн, технология MIMO и использование диаграммы направленности
*AU -Устройство доступа (6+1)
Выполняемые функции AU/BS:
· 802.16e многоканальная OFDMA PHY
· Выполняются функции R1/R6/R8
· гибкий размер FFT(быстрого преобразования Фурье)-до 2048 несущих частот
· Гибкая ширина канала - до 20 МГц
· Поддержка до 4 каналов (Tx/Rx)
· многообразие AAS
· высокоэффективный CDMA детектор
· IF подключается к RF ODU
· Широкий выбор повторного использования моделей
· Улучшенное шифрование каналов (CTC)
· HARQ
· Оценка приспособленности
· Фрагментация/ повторная сборка
· Экономия энергии
· Управление хэндовером(переключением абонентского устройства с одной БС на другую)
· Управление питанием
· Управление сигналом (сетевой вход, основы взаимодействия двух абонентов сети, аутентификация и регистрация, управление соединением)
· QoS PEP для воздушного интерфейсного трафика
· Составление расписания -вычисление лимита выделяемого ресурса при подключении для доставки всех типов данных
· Формирование кадров/пакетов
· Составление маршрута передачи данных R6 (GRE) и интерфейса 802.16e Аутентификация трафика и шифрование
· Аутентификация при помощи реле
· Приемник кода безопасности
· Взаимодействие клиент/сервер
· Процесс определения IP-адреса
*PIU -Модуль интерфейса питания (1+1)
*AVU -Модуль воздушной вентиляции
*PSU -Модуль источника питания (3+1)
2.4 Антенные системы
В платформе 4Motion предполагается использовать несколько конфигураций антенн. Так, для формирования независимых потоков в каждом антенном канале предлагается три варианта: разнесенные антенны с различной поляризацией Антенны должны быть разнее сены на расстояние не менее 10 длин волн (). Как правило, для этого используются две двухэлементные антенны с взаимной поляризацией элементов 90°, но подключаются только по одному элементу в антенне. Использование кросс поляризационных антенн с поляризацией ±45° относительно линии горизонта объясняется тем, что при переотражении сигналов изменяется их поляризация. Второй вариант подразумевает применение Х-образной антенны с двумя элементами со взаимно-ортогональной поляризацией. Такая поляризация обеспечивает разнесение каналов не менее чем на 20 дБ. Оба этих варианта позволяют организовать передачу по двум независимым каналам.
Для реализации передачи по четырем каналам рекомендована четырехэлементная антенная система - две Х-образные антенны (как в предыдущем варианте), разнесенные друг 0от друга не менее чем на 10. Во всех этих вариантах подразумевается, что каждый антенный элемент формирует луч шириной 65° в азимутальной плоскости и 7° - в вертикальной (по уровню 3 дБ), уровень боковых лучей до -30 дБ в азимутальной плоскости и -17 дБ - в вертикальной. Для задач адаптивного формирования диаграммы направленности используют антенные массивы из четырех близко расположенных элементов с вертикальной поляризацией. Однако для смешанных режимов этот вариант не оптимален.
2.5 Абонентское оборудование
С платформой BreezeMAX 4Motion предлагается несколько вариантов оборудования конечного пользователя (CPE), которые позволяют операторам эффективно обслуживать разнообразных пользователей в деловых и жилых секторах (рис.11). Выпускается четыре варианта CPE: для наружного монтажа - устройства BreezeMAX PRO CPE (с наружным и внутренним модулями), для установки внутри помещений самостоятельно инсталлируемые устройства BreezeMAX 4Motion Si, а также модемы в формате PC Card и USB Dangle.
Устройство BreezeMAX 4Motion Si - это компактное, портативное устройство, инсталлируемое непосредственно конечным пользователем. Оно напрямую подключается к ПК и активируется через SIM-карту или с помощью специального приложения. Так же, как и абонентское устройство PRO, портативная абонентская станция выпускается в двух вариантах - на чипсете Intel RD2 и на чипсете компании Beceem. В первом случае устройство оснащено шестью антеннами, расположенными под корпусом.
Устройство на чипсете Beceem оснащено двумя небольшими всенаправленными антеннами. Выпускается несколько вариантов устройств BreezeMAX 4Motion Si для каждого из диапазонов 2,3; 2,5 и 3,5 ГГц. Все они включают обязательный интерфейс IEEE 802.3 Ethernet 10/100-BaseT (от 1 до 4 портов RJ-45). Опционально устройства оснащаются модулем IEEE 802.11b/g для организации локальной точки доступа, а также голосовым шлюзом для передачи VoIP.
BreezeMAX 4Motio PC Card - это сетевой адаптер на чипсете Beceem, позволяющий подключать к сети мобильного WiMAX переносной компьютер. Он выпускается для каждого из диапазонов 2,3; 2,5 и 3,5 ГГц и при ширине канала 10 МГц обеспечивает максимальную скорость в нисходящем канале до 20 Мбит/с, в восходящем - до 7 Мбит/с. Ширина канала задается при конфигурации и может составить 5; 7; 8,75 и 10 МГц. На карте находятся две выдвигающиеся антенны, регулирование положения которых, при необходимости, позволит улучшить прием сигнала. Возможна работа на удалении до 5 км от базовой станции.
Устройство US210 - это WiMAX USB-адаптер для ПК. Адаптер полностью соответствует стандарту IEEE 802.16e и поддерживает мобильное беспроводное соединение на скорости до 130 км/ч. Устройство инсталлируется и настраивается конечным пользователем, пиковая скорость в нисходящем канале - до 33 Мбит/с, в восходящем - до 7 Мбит/с. Работает в частотных диапазонах 2,3; 2,5 и 3,5 ГГц. Мощность передатчика - 23 дБм, усиление антенны - 2 дБ от изотропной мощности. Благодаря одной передающей и двум приемным антеннам US210 поддерживает MIMO-технологию. Энергопотребление - 2,4 Вт при мощности в антенне 23 дБм.
Глава 3. Структура сети mobile WiMAX
WiMAX Forum разработал архитектуру, которая определяет множество аспектов работы WiMAX сетей: взаимодействия с другими сетями, распределение сетевых адресов, аутентификация и многое другое. Приведённая иллюстрация даёт некоторое представление об архитектуре сетей WiMAX.
ь SS/MS: (Subscriber/Mobile Station) - абонентская/мобильная станция;
ь ASN: (Access Service Network)- Сеть доступа;
ь BS: (Base station), базовая станция, часть ASN - Основной задачей является установление, поддержание и разъединение радио соединений. Кроме того, выполняет обработку сигнализации, а также распределение ресурсов среди абонентов.;
ь ASN-GW: (ASN Gateway), шлюз, предназначен для объединения трафика и сообщений сигнализации от базовых станций и дальнейшей их передачи в сеть CSN.
ь CSN: (Connectivity Service Network)- сеть обеспечения услуг;
ь HA: (Home Agent, часть CSN)- элемент сети, отвечающий за возможность роуминга. Кроме того, обеспечивает обмен данными между сетями различных операторов;
ь NAP:(a Network Access Provider)
ь NSP: (a Network Service Provider)
Следует заметить, что архитектура сетей WiMax не привязана к какой-либо определённой конфигурации, обладает высокой гибкостью и масштабируемостью.
Базовые точки в рамках базовой модели сети WiMAX - это каналы связи между базовыми модулями. Они представляют собой стандартные интерфейсы, причем не обязательно физические, особенно если соединяемые базовой точкой модули конструктивно находятся в одном устройстве.
R1 представляет собой канал связи между мобильной станцией и сетью доступа ASN. Это - беспроводной интерфейс, соответствующий стандарту IEEE 802.16, однако допустимы и дополнительные протоколы управления.
R2 является каналом между МС и CSN. Она включает протоколы и процедуры, связанные с аутентификацией МС, авторизацией и IP-конфигурированием. Это - чисто логический интерфейс, ему нельзя поставить в соответствие никакой конкретный физический интерфейс между МС и CSN.
R3 содержит набор протоколов управления между ASN и CSN для реализации процедур AAA, выполнения различных политик и управления мобильностью. Она также поддерживает функции передачи данных (в том числе туннелирования) между ASN и CSN.
R4 - это канал связи между ASN-шлюзами различных ASN-сетей или между ASN-шлюзами в пределах одной ASN.
R5 является каналом связи между сетью домашнего и гостевого сервис-провайдера.
R6 служит интерфейсом между БС и ASN-шлюзом.
R7 определен как некий виртуальный канал внутри ASN-шлюза для связи двух групп функций (связанных с каналом передачи информации и не связанных с ним). Конкретизации протоколов R7, видимо, следует ожидать в будущем (или не ожидать вовсе).
R8 - это канал связи непосредственно между базовыми станциями. Он должен поддерживать передачу управляющих сообщений и опционально - непосредственную трансляцию данных (для быстрого и бесшовного хендовера).
Заключение
В данном курсовом проекте была рассмотрена технология широкополосного беспроводного доступа mobile WiMAX. Произведен расчет параметров сети связи с подвижными объектами в городской местности на основе системы стандарта IEEE 802.16e. Мы рассчитали технические параметры базовых и абонентских станций, рассмотрели структурные схемы сети, БС и МС, определили радиус зоны обслуживания.
Список используемой литературы
В.И. Носов Сети радиодоступа. Часть 1.: Учебное пособие. УМО по специальности связь/ СибГУТИ. - Новосибирск, 2006 г. - 256 стр.
В.И. Носов Сети радиодоступа. Часть 2.: Учебное пособие. УМО по направлению «Телекоммуникации»/ СибГУТИ. - Новосибирск, 2007 г. - 256 стр.
В. Вишневский, С. Портной, И. Шахнович. Энциклопедия WiMAX путь к 4G: Учебное пособие.Техносфера, Москва, 2009;
Шахнович И. Архитектура сети WiMAX: основные элементы и принципы. - Первая миля, 2009, №1, с.6-15.
А.Иванов, С.Портной Оборудование WiMAX - решение компании Alvarion - Первая миля, 2009, №2, с. 32-39.
Размещено на Allbest.ru
...Подобные документы
Сравнение систем радиодоступа и обоснование выбора для проектируемой сети. Описание и технические характеристики аппаратуры WiMAX. ASN шлюзы, базовая станция BreezeMAX 4Motion, антенные системы и абонентское оборудование. Структура сети mobile WiMAX.
курсовая работа [3,7 M], добавлен 28.04.2011Проектирование информационной сети по технологии Fixed WiMAX в г. Ставрополе для предоставления услуг беспроводного широкополосного доступа к глобальным и региональным сетям. Характеристики технических средств. Безопасность и экологичность проекта.
дипломная работа [4,1 M], добавлен 22.06.2011- Проектирование сети беспроводной связи WiMAX стандарта IEEE 802.16e для сельского населенного пункта
Основные характеристики стандарта WiMAX, архитектура построения сети. Принципы построение сетей WiMAX в посёлке городского типа. Выбор аппаратуры и расчет сети. Расчет капитальных вложений, доходов и срока окупаемости. Мероприятия по технике безопасности.
дипломная работа [2,9 M], добавлен 22.06.2012 Преимущества технологии WiMAX. Описание услуг, предоставляемых беспроводной сетью на ее базе. Особенности используемого оборудования на существующей сети и его физические параметры, принципы работы и условия эксплуатации. Архитектура сетей WiMAX.
реферат [163,9 K], добавлен 14.01.2011Анализ технологий беспроводной связи в городе Алматы. Технология проектирования сети WiMAX. Базовая станция Aperto PacketMax-5000 на объекте ЦА АО "Казахтелеком" (ОПТС-6). Расчет параметров сети и оптимизации пакета. Финансовый план построения сети.
дипломная работа [3,0 M], добавлен 01.04.2014Сравнительные характеристики беспроводного соединения Wi-Fi и WiMAX, принцип работы данных систем. Целесообразность использования WiMAX как технологии доступа, отличия фиксированного и мобильного вариантов. Пользовательское оборудование и кодирование.
дипломная работа [11,5 M], добавлен 27.06.2012Требование к сети связи со стороны потенциальных потребителей. Пользователи системы связи. Эволюция стандартов IEEE 802.16. Обзор современных систем беспроводного абонентского доступа. Сравнение ключевых технологий WiMAX, LTE, спектральной эффективности.
дипломная работа [2,7 M], добавлен 13.02.2014Область використання WiMAX-мереж. Основні чинники, що стримують розвиток цієї телекомунікаційної технології у світі. WiMAX-оператори в Україні. Фіксована та мобільна версії стандарту. Порівняння основних параметрів стандартів бездротового зв'язку.
реферат [238,6 K], добавлен 06.11.2016Застосування OFDM сигналу на фізичному рівні мережі WIMAX. Введення станції користувачів в систему і ініціалізація. Виділення часу на можливість передачі. Пряме виправлення помилок. Методи боротьби із завмираннями. Адаптивна модуляція і Кодова залежність.
дипломная работа [1,6 M], добавлен 28.01.2015Особенности построения цифровой сети ОАО РЖД с использованием волоконно-оптических линий связи. Выбор технологии широкополосного доступа. Алгоритм линейного кодирования в системах ADSL. Расчет пропускной способности для проектируемой сети доступа.
дипломная работа [5,9 M], добавлен 30.08.2010Низкая скорость передачи данных - один из основных недостатков систем мобильной связи второго поколения. Пейджинг - технология поиска абонентов в сети при поступлении входящего соединения. Основные технические характеристики сетевого маршрутизатора.
дипломная работа [1,9 M], добавлен 17.06.2017Обзор современного состояния сетей передачи данных. Организация цифровых широкополосных сетей. Главные преимущества WiMAX и Wi-Fi. Проектирование сети в программе NetCracker. Расчет зоны действия сигнала. Требования к организации рабочего места техника.
дипломная работа [1,1 M], добавлен 20.05.2013Анализ стандарта беспроводной передачи данных. Обеспечение безопасности связи, основные характеристики уязвимости в стандарте IEEE 802.16. Варианты построения локальных вычислительных сетей. Виды реализаций и взаимодействия технологий WiMAX и Wi-Fi.
курсовая работа [1,7 M], добавлен 13.12.2011Модернизация беспроводной сети в общеобразовательном учреждении для предоставления услуг широкополосного доступа учащимся. Выбор системы связи и технического оборудования. Предиктивное инспектирование системы передачи данных. Расчет параметров системы.
дипломная работа [4,1 M], добавлен 26.07.2017Перспективные технологии построения абонентской части сети с учетом защиты информации, выбор оборудования. Разработка и построение локальной сети на основе технологии беспроводного радиодоступа. Расчет экономических показателей защищенной локальной сети.
дипломная работа [4,0 M], добавлен 18.06.2009Обзор существующих технологий доступа широкополосной передачи данных. Анализ стандартов предоставления услуг. Использование метода множественного доступа при построении сети. Расчет потерь сигнала и сетевой нагрузки. Настройка виртуального окружения.
дипломная работа [2,5 M], добавлен 07.06.2017Развитие сервиса телематических услуг связи доступа в сеть Интернет с использованием технологии VPN. Модернизация сети широкополосного доступа ООО "ТомГейт"; анализ недостатков сети; выбор сетевого оборудования; моделирование сети в среде Packet Tracer.
дипломная работа [3,9 M], добавлен 02.02.2013Сравнительный анализ систем беспроводного доступа. Способы организации связи. Разработка структурной схемы сети беспроводного доступа. Размещение базовых станций и сетевых радиоокончаний. Воздействие электромагнитных полей на организм человека.
дипломная работа [274,2 K], добавлен 04.01.2011Расчет количества и стоимости оборудования и материалов для подключения к сети передачи данных по технологии xPON. Выбор активного и пассивного оборудования, магистрального волоконно-оптического кабеля. Технические характеристики широкополосной сети.
дипломная работа [2,7 M], добавлен 14.11.2017Планирование сети корпорации, состоящей из центрального офиса, филиала и небольших удаленных офисов. Проектирование сети пассивного оборудования. Определение масштаба сети и архитектуры. Обоснование выбора сетевой технологии и физической топологии сети.
курсовая работа [1,5 M], добавлен 24.01.2014