Методы кражи данных из оптического волокна

Проблемы безопасности связи с использованием оптического волокна. Методы подключения к оптоволокну. Сгибание волокна, оптическое расщепление, V-образный вырез, рассеяние. Расчет потери мощности. Последовательность действий при подсоединении к оптоволокну.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 18.11.2014
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • 1. Методы подсоединения к оптоволокну
  • 1.1 Сгибание волокна
  • 1.2 Оптическое расщепление
  • 1.3 Использование неоднородных волн
  • 1.4 V-образный вырез
  • 1.5 Рассеяние
  • 2. Моделирование
  • 2.1 Методология
  • 2.2 Данные для моделирования
  • 2.3 Расчет потери мощности
  • 3. Эксперимент по подключению к оптоволокну
  • 3.1 Последовательность действий при подсоединении к оптоволокну
  • 3.2 Процедура
  • 3.3 Возможные действия при прослушке
  • 4. Сценарии подсоединения
  • 4.1 Подсоединение к сети передачи данных
  • 4.2 Подсоединение с удалённой обработкой
  • 5. Защита от подключений
  • 5.1 Наблюдение за кабелем и мониторинг
  • 5.1.1 Мониторинг сигналов вблизи волокна
  • 5.1.2 Электрические проводники
  • 5.1.3 Мониторинг мощности мод
  • 5.1.4 Измерение оптически значимой мощности
  • 5.1.5 Оптические рефлектометры
  • 5.1.6 Методы с использованием пилотного тона
  • 5.2 Сильно гнущееся волокно
  • 5.3 Шифрование
  • 5.3.1 Шифрование третьего уровня
  • 5.3.2 Шифрование второго уровня
  • Заключение
  • Список использованных источников

Введение

Связь с использованием оптоволокна далеко не так безопасна, как это обычно принято считать. Существует ряд известных методов, используемых для извлечения или вставки информации в оптический канал и позволяющих избежать обнаружения подключения. Ранее сообщалось о нескольких инцидентах, в которых успешное подключение было сложно обнаружить. В данной работе рассматривается ряд известных методов подключения к оптоволокну, приводится отчет о симуляции оптических характеристик волокна, к которому подсоединение выполнено методом сгиба, а также доказательство концепции в виде физического эксперимента. Также представлены схемы различных сценариев, где злоумышленник, обладающий необходимыми ресурсами и использующий существующие технологии, может скомпрометировать безопасность оптического канала связи. Обсуждаются способы предотвращения подключения к оптоволокну, либо минимизации последствий утечки информации, передаваемой по каналу связи.

В противоположность общему представлению, оптоволокно, по существу, не имеет защиты от сторонних подключений и прослушивания. В настоящее время по оптическим каналам связи передается огромное количество критической и чувствительной информации, и есть риск того, что она может попасть в руки определенных лиц, имеющих необходимые ресурсы и оборудование.

Подключение к оптоволокну (fiber tapping) - процесс, при котором безопасность оптического канала компрометируется вставкой или извлечением световой информации. Подключение к оптоволокну может быть интрузивным либо неинтрузивным. Первый метод требует перерезания волокна и подсоединения его к промежуточному устройству для съема информации, в то время как при использовании второго метода, подключение выполняется без нарушения потока данных и перерыва сервиса. Неинтрузивным технологиям и будет посвящена данная статья.

В настоящее время сообщается лишь о нескольких зафиксированных случаях подключения к оптоволокну. Это связано с большими сложностями в обнаружении места подключения, в то время как собственно подключение выполняется достаточно просто. Вот список основных инцидентов:

2000, В аэропорту Франкфурта, Германия обнаружено подключение к трем главным линиям компании Deutsche Telekom.

2003, на оптической сети компании Verizone обнаружено подслушивающее устройство.

2005, подводная лодка ВМФ США USS Jimmy Carter модернизирована специальным образом для установки несанкционированных подсоединений к подводным кабелям.

оптическое волокно подсоединение связь

1. Методы подсоединения к оптоволокну

1.1 Сгибание волокна

При данном методе подключения, кабель разбирается до волокна. Данный способ основан на принципе распространения света через волокно посредством полного внутреннего отражения. Для достижения данного способа угол падения света на переход между собственно ядром волокна и его оболочкой должен быть больше, чем критический угол полного внутреннего отражения.

В противном случае, часть света будет излучаться через оболочку ядра. Значение критического угла является функцией показателей отражения ядра и его оболочки и представлено следующим выражением:

ис=cos-1 (мcladding/ мcore), причем мcladding < мcore;

Здесь иc - критический угол, мcladding - показатель преломления оболочки, мcore - показатель преломления ядра

При сгибании волокна, оно искривляется таким образом, чтобы угол отражения стал меньше чем критический, и свет начал проникать через оболочку

Очевидно, что могут быть два типа сгибов:

1) Микросгиб. Приложение внешнего усилия приводит к острому, но при этом микроскопическому искривлению поверхности, приводящему к осевым смещениям на несколько микрон и пространственному смещению длины волны на несколько миллиметров (рис.1). Через дефект проникает свет, и он может использоваться для съема информации.

Рисунок 1 - Микроизгиб

2) Макросгиб. Для каждого типа волокна существует минимально допустимый радиус изгиба. Это свойство также может использоваться для съема информации. Если волокно сгибается при меньшем радиусе, то возможен пропуск света (рис. 2), достаточный для съема информации. Обычно минимальный радиус изгиба одномодового волокна составляет 6.5-7.5 см, за исключением волокна специального типа. Многомодовое волокно может быть изогнуто до 3.8 см.

Рисунок 2 - Макроизгиб

1.2 Оптическое расщепление

Оптоволокно вставляется в сплиттер, который отводит часть оптического сигнала. Этот метод является интрузивным, поскольку требует разрезания волокна, что вызовет срабатывание тревоги. Однако, необнаруженное подключение такого типа может работать годами.

1.3 Использование неоднородных волн

Данный способ используется для перехвата сигнала от волокна-источника в волокно-приемник посредством аккуратной полировки оболочек до поверхности ядра и затем их совмещения. Это позволяет некоторой части сигнала проникать во второе волокно. Данный способ трудновыполним в полевых условиях.

1.4 V-образный вырез

V-образный вырез - это специальная выемка в оболочке волокна близкая к ядру, сделанная таким образом, что угол между светом, распространяющимся в волокне и проекцией V-выреза больше, чем критический. Это вызывает полное внутреннее отражение, при котором часть света будет уходить из основного волокна через оболочку и V-образный вырез.

1.5 Рассеяние

На ядре волокна создается решетка Брэгга, с ее помощью достигается отражение части сигнала с волокна. Это достигается наложением и интерференцией УФ лучей, создаваемых лазером с УФ возбуждением.

2. Моделирование

2.1 Методология

Для точной оценки потерь при сгибании оптоволокна типа SMF-28 используется полновекторный частотный решатель Максвелла, основанный на методе конечных элементов высокого порядка и допускающий адаптацию граничных условий - растягивающегося идеально согласованного слоя. Получены векторные расчеты констант распространения и электрических полей мод в изогнутых волноводах. Потери при сгибе рассчитываются на основе мнимой части константы распространения фундаментальной моды. Общие потери получены сложением потерь ортогональной и базовой моды. Результаты, полученные данным способом достаточно точны и были проверены.

2.2 Данные для моделирования

Для волокна SMF-28, радиус ядра и показатель преломления представляют собой соответственно:

rc = 4.15 мm и nc=1.4493 В оболочке, они соответственно равны:

rcl = 62.25 мm and ncl=1.444.

Коэффициент преломления воздуха равен 1.

2.3 Расчет потери мощности

Радиус изгиба с взят по оси x, мода поляризуется вдоль оси y, а распространение идет по оси z, как показано на рисунке 3.

Рисунок 3 - Распространение луча по оси z

Рисунок 4 представляет собой выраженную в числах потерю на сгибе как функцию радиуса изгиба волокна метровой длины. Наблюдается логарифмическая зависимость потерь относительно радиуса изгиба. Для небольших радиусов изгиба (с < 10 mm), потери превышают 40 dB/м. При обычных радиусах изгиба (с > 15 mm) потери составляют меньше чем 1 dB/м

Рисунок 4 - Численная оценка потери на изгибе, как функции от радиуса изгиба

3. Эксперимент по подключению к оптоволокну

3.1 Последовательность действий при подсоединении к оптоволокну

Полностью операция прослушивания может быть реализована с помощью следующих шагов:

· Получение оптического сигнала с волокна

· Детектирование сигнала.

· Обнаружение механизма передачи (декодирование протокола)

Программная обработка обнаружения фреймов/пакетов и извлечение из них необходимых данных.

Эксперимент включал в себя передачу цифрового видеосигнала через оптический Ethernet с одного компьютера на другой. Подсоединяемое волокно было разделано до оболочки и помещено в оптический каплер (coupler), где волокно сгибается, вызывая излучение некоторого количества света, нарушающего принцип полного внутреннего отражения. Это устройство направляет захваченный свет в однонаправленный конвертер Ethernet. В дальнейшем, фреймы Ethernet обрабатываются и из них реконструируется видеопоток на третьем ПК. Для передачи потока и воспроизведения использовался VLC плеер. Анализатор протоколов WireShark использовался для захвата пакетов, а ПО Chaosreader использовалось для реконструкции видео из захваченных пакетов.

3.2 Процедура

Программное и аппаратное обеспечение соединено как на рисунке 5. Разделанное волокно проходит от источника видео до приемника, через зажим каплера. В зажиме отводится часть света и попадает в однонаправленный медиаконвертер, считывающий Ethernet-фреймы, которые затем передаются в третий PC, на котором стоит WireShark. Анализатор протокола конвертирует фреймы Ethernet и извлекает такую информацию как MAC - адреса источника и приемника. Также он обрабатывает содержимое фреймов и достает из него IP-пакеты. Информация, полученная из пакетов, включает в себя IP-адреса, сообщения сигнальных протоколов и биты служебной загрузки.

Рисунок 5 - Экспериментальная схема для подсоединения к волокну методом изгиба

Пакеты собранные таким способом сохраняются в формате файла pcap (packet capture). Затем файл обрабатывается ПО Chaosreader, который реконструирует оригинальные файлы и создает индекс реконструированных файлов. Для обнаружения нашего захваченного видео, мы смотрим в каталоге и ищем *. DAT файлы большого размера. Затем этот файл открывается в плеере VLC и показывает перехваченную часть видеопотока.

3.3 Возможные действия при прослушке

Помимо проигрывания видео, экспериментальная система, описанная здесь, может быть использована для выполнения ряда задач по перехвату информации, такой например как сведения для атаки по IP-адресам, кражи паролей, прослушивания VoIP-переговоров, реконструкции сообщений электронной почты с помощью бесплатного, коммерческого или самодельного ПО.

4. Сценарии подсоединения

Эксперимент, описанный здесь, выполнялся с использованием Ethernet компонентов, по причине их наибольшей доступности. Однако, некоторые сценарии, возможные в реальной жизни, вполне могут выглядеть так, как показано на рисунке 6.

Рисунок 6 - Сценарий подсоединения с удаленной обработкой.

4.1 Подсоединение к сети передачи данных

Ценная информация может быть получена из сетей передачи данных таких как SDH и SONET - двух основных стандартов передачи данных по оптоволокну через магистральные каналы связи и метросети.

Информацию из высокоскоростных сетей достаточно сложно сохранять и обрабатывать, но на рынке доступны высокотехнологичные анализаторы SDH-протоколов, которые могут быть использованы для получения низкоуровневых исходных сигналов. Частично это упрощает возможные сложности, связанные со скоростью передачи данных. Такие устройства могут быть впоследствии доработаны для получения различных типов трафика, проходящего через сеть. Например, можно извлекать ethernet поток, который сопоставлен некоторому потоку контейнера VC4.

4.2 Подсоединение с удалённой обработкой

Существует две важных стимула заниматься удаленной обработкой:

При подключении к дальним высокоскоростным (несколькоГбит/сек) каналам связи, роль хранилища становится крайне важной. Захваченные пакеты заполняют диск крайне быстро.

Привлечение сетевых экспертов для работы в полевых условиях может оказаться весьма затратным. Более удобно организовать им работу в удаленном центре обработки где присутствует любое необходимое оборудование, сложно выносимое в поле.

При использовании воображения, можно легко достроить все необходимые сценарии по работе с удаленными данными. Например:

1) Использование беспроводного интернета. При использовании Wi-Fi, прослушивающий компьютер может находиться в другой комнате или фургоне, за пределами здания, где установлено подключение. Эксперт может работать в относительной безопасности с возможностью доступа ко всем ресурсам.

2) Использование микрочастотного или спутникового канала. Наша экспериментальная схема была модифицирована и Ethernet трафик перенаправлялся на направленный спутниковый канал (рис.6).3) Вставка сигнала. При помощи метода рассеяния, описанного ранее, теоретически возможно создать устройство, которое имеет возможность передавать сигнал внутрь волокна посредством видоизмененной технологии оптического каплинга (coupling) Можно разработать технологии для постановки помех на волокно без разрыва в связи или даже внедрение зловредной информации.

5. Защита от подключений

Есть три основных категории методов предотвращающих или снижающих до минимума влияние посторонних подключений:

5.1 Наблюдение за кабелем и мониторинг

5.1.1 Мониторинг сигналов вблизи волокна

Производство оптоволокна с дополнительными волокнами, по которым передается специальный сигнал мониторинга. Использование такого метода увеличит стоимость кабеля, но любая попытка согнуть кабель вызывает потерю сигнала мониторинга, и вызывает срабатывание сигнала тревоги [7].

5.1.2 Электрические проводники

Другой метод состоит в интегрировании электрических проводников в кабель, и если оболочка кабеля нарушена, то изменяется емкость между электрическими проводниками и это может использоваться для срабатывания тревоги.

5.1.3 Мониторинг мощности мод

Этот метод применим к мультимодовому волокну, в котором затухание - это функция от моды, в которой распространяется свет. Подсоединение влияет на определенные моды, но при этом затрагивает и другие моды. Это приводит к перераспределению энергии от проводящих мод к непроводящим, что меняет соотношение энергии в ядре волокна и его оболочке. Изменение энергии в модах может быть обнаружено на принимающей стороне соответствующим измерением, что будет являться информацией для принятия решения - есть подключение к кабелю или нет.

5.1.4 Измерение оптически значимой мощности

В волокне может осуществляться мониторинг уровня оптически значимой мощности. В том случае, если она отличается от установленного значения, срабатывает сигнал тревоги. Однако это требует соответствующей кодировки сигнала, так чтобы в волокне присутствовал постоянный уровень сигнала, не зависящий от наличия передаваемой информации.

5.1.5 Оптические рефлектометры

Поскольку подсоединение к волокну забирает часть оптического сигнала, для обнаружения подключений могут использоваться оптические рефлектометры. С их помощью можно установить расстояние по трассе, на котором обнаруживается падение уровня сигнала рисунок 7

Рисунок 7 - Поиск подключения на оптической трассе с помощью оптического рефлектометра

5.1.6 Методы с использованием пилотного тона

Пилотные тоны проходят по волокну также как и коммуникационные данные. Они используются для обнаружения перерывов в передаче. Пилотные тоны могут использоваться для обнаружения атак, связанных с постановкой помех, но если несущие волновые частоты пилотных тонов не затрагиваются, то данный метод не является эффективным при обнаружении такого рода атак. О наличии подключения можно судить только по существенной деградации уровня сигнала пилотного тона [8]

5.2 Сильно гнущееся волокно

Эти виды волокна, обычно называемые волокном с низкими потерями и сильным радиусом изгиба, защищают сеть передачи данных, ограничивая высокие потери, возникающие при прокалывании волокна или его сгибании. Кроме того, для светового потока становятся менее повреждающими такие факторы как вытягивание, перекручивание и другие физические манипуляции с волокном. Существуют также другие типы волокна основанные на иных технологиях производства

5.3 Шифрование

Хотя шифрование никак не препятствует подсоединению к волокну, она делает украденную информацию малополезной для злоумышленников. Шифрование обычно классифицируется по уровням 2 и 3.

5.3.1 Шифрование третьего уровня

Пример шифрования третьего уровня - протокол IPSec. Он реализуется на стороне пользователя, так что это вызывает определенные задержки в обработке. Протокол поднимается вначале сессии и общая реализация может быть весьма сложной если в работу вовлечено большое количество сетевых элементов. Рассмотрим, например, разработку мультимедийных подсистем. При первоначальной разработке, связь между различными узлами и элементами является незащищенной. Существенно позже IPSec был встроен в оригинальный дизайн, так как технологии нижнего уровня не предлагали никакого шифрования вообще.

5.3.2 Шифрование второго уровня

Шифрование второго уровня освобождает элементы третьего уровня от любого бремени шифрования информации. Один из возможных источников шифрования второго уровня - это оптический CDMA, который считается относительно безопасным [10-12]. Данное допущение, в основном, базируется на методах расшифровки методом грубой силы и упускает из виду более продвинутые способы. Вероятность успешного перехвата данных является функцией нескольких параметров, включая отношение сигнал/шум, и дробление (fraction) доступной системной емкости. В [12] указывается что увеличение сложности кода может увеличить отношение сигнал/шум, требуемое для злоумышленника чтобы "сломать" кодирование всего лишь на несколько dB, в то время как обработка менее чем 100 бит со стороны злоумышленника может уменьшить отношение сигнал/шум на 12 dB. Перепрыгивание по длинам волн и распределение сигнала во времени в частности, и использование O-CDMA в общем, обеспечивают достаточный уровень секретности, но он высоко зависит от системного дизайна и параметров реализации.

Заключение

Подсоединение к оптоволокну является весьма осязаемой угрозой интересам национальной безопасности, финансовым организациям а также персональной приватности и свободам. После подключения, получаемая информация может быть использована многими способами в зависимости от мотивации злоумышленника и его технических возможностей. В данной работе мы предоставили концепцию как в виде симуляции, так и в виде физического эксперимента, используя подключение посредством `подключения методом сгиба' и также продемонстрировали возможность существования разных сценариев, выполнимых при помощи доступных технологий. Помимо получения информации с оптоволокна, существует ряд методик, позволяющих вставлять информацию в неё, как в случае с разделением на неоднородных волнах и достигнуть постановки помех или вброса неверной информации. Явная легкость прослушивания оптоволокна требует определенных предосторожностей.

Список использованных источников

1) http://habrahabr.ru/post/176677/

2) www.algoritm.net/

3) http://www.complat.ru/rus/interesting/articles/videlenniy-kanal

Размещено на Allbest.ru

...

Подобные документы

  • Конструкция оптического волокна и расчет количества каналов по магистрали. Выбор топологий волоконно-оптических линий связи, типа и конструкции оптического кабеля, источника оптического излучения. Расчет потерь в линейном тракте и резервной мощности.

    курсовая работа [693,4 K], добавлен 09.02.2011

  • Механические, электромагнитные, радиационные и температурные воздействия на передаточные параметры оптического волокна и поляризационно-модовую дисперсию. Электротермическая деградация оптического кабеля. Затухание и поляризационно-модовая дисперсия.

    дипломная работа [1,3 M], добавлен 07.09.2016

  • Структура оптического волокна. Устройство световода. Одномодовое и многомодовое волокна. Режимы прохождения луча. Источники и приемники излучения. Оптический модулятор, работающий на эффекте Керра и эффекте Поккельса. Расчет модовой дисперсии оптоволокна.

    курсовая работа [96,4 K], добавлен 25.09.2011

  • Принцип работы оптического волокна, основанный на эффекте полного внутреннего отражения. Преимущества волоконно-оптических линий связи (ВОЛС), области их применения. Оптические волокна, используемые для построения ВОЛС, технология их изготовления.

    реферат [195,9 K], добавлен 26.03.2019

  • Выбор и обоснование трассы магистрали, определение числа каналов. Расчет параметров оптического волокна, выбор и обоснование конструкции оптического кабеля. Разработка и элементы схемы размещения регенерационных участков. Смета на строительство и монтаж.

    курсовая работа [162,8 K], добавлен 15.11.2013

  • Рассогласование числовых апертур передающего и принимающего волокон фирмы Corning. Определение потерь мощности оптического сигнала, возникающих из-за различия диаметров сердцевин соединяемых волокон и при их радиальном, угловом и осевом смещении.

    контрольная работа [767,6 K], добавлен 15.03.2015

  • Выбор и обоснование трассы прокладки ВОЛП между пунктами Курск-Брянск. Выбор системы передачи и определение ёмкости кабеля, расчёт параметров оптического волокна, выбор конструкции оптического кабеля. Составление сметы на строительство линейных сооружений

    курсовая работа [5,3 M], добавлен 28.11.2010

  • Проектирование кабельной магистрали для организации многоканальной связи на участке г. Биробиджан. Выбор трассы волоконно-оптической линии передач. Расчет числа каналов. Параметры оптического волокна, тип оптического кабеля. Схема организации связи.

    курсовая работа [547,6 K], добавлен 27.11.2013

  • Выбор системы передачи и оборудования для защиты информации. Расчет параметров оптического волокна и параметров передачи оптического кабеля. Особенность вычисления длины регенерационного участка. Анализ определения нормативного параметра надежности.

    курсовая работа [803,9 K], добавлен 12.10.2021

  • Подвеска оптического кабеля на опорах высоковольтных линий передач и железных дорог. Организация и технология работ по монтажу. Требования к неразъемным соединениям оптического волокна, подготовка к сращиванию. Конструкция муфт, особенности монтажа.

    курсовая работа [1,9 M], добавлен 12.08.2013

  • Описание железной дороги. Резервирование каналов и расстановка усилительных и регенерационных пунктов на участках инфокоммуникационной сети связи. Выбор типа кабеля, технологии и оборудования передачи данных. Расчет дисперсии оптического волокна.

    курсовая работа [2,1 M], добавлен 21.12.2016

  • Стандартные одномодовые оптические волокна и их геометрические параметры, параметры передачи. Волокна со смещенной дисперсией; с минимизацией потерь в третьем окне прозрачности; с ненулевой смещенной дисперсией. Характеристика коэффициента затухания.

    курсовая работа [1,2 M], добавлен 12.08.2013

  • Структура оптического волокна. Виды оптоволоконных кабелей. Преимущества и недостатки волоконно-оптической линии связи. Области ее применения. Компоненты тракта передачи видеонаблюдения. Мультиплексирование видеосигналов. Инфраструктура кабельной сети.

    курсовая работа [1,2 M], добавлен 01.06.2014

  • Организация сети оптического доступа. Методы построения и схема организации связи для технологии FTTХ. Витая пара CAT6a. Оборудование оптического линейного терминала. Расчет параметров оптического тракта. Система безопасности для технологии FTTХ.

    дипломная работа [5,5 M], добавлен 11.04.2013

  • Выбор кабельной системы, типа кабеля и размещение цепей по четверкам. Размещение оконечных и промежуточных усилительных и регенерационных пунктов на трассе линии связи. Монтаж кабельной магистрали. Расчет симметричного кабеля и оптического волокна.

    курсовая работа [837,8 K], добавлен 06.02.2013

  • Современные виды электросвязи. Описание систем для передачи непрерывных сообщений, звукового вещания, телеграфной связи. Особенности использования витой пары, кабельных линий, оптического волокна. Назначение технологии Bluetooth и транковой связи.

    реферат [37,6 K], добавлен 23.10.2014

  • Характеристика основных элементов и типов конфигураций сети SDH. Разработка волоконно-оптической системы передачи на участке Коченево-Мамонтово: выбор типа оптического волокна, необходимого оборудования и его комплектации. Электрический расчет магистрали.

    дипломная работа [1,9 M], добавлен 08.10.2013

  • Принципы технологии DWDM. Технологии мультиплексирования, источники излучения. Реализация усилителей EDFA. Выбор одномодового оптического волокна для построения ВОЛС. Исследование аномалий линии Иркутск-Чита. Расчет линии связи по затуханию и дисперсии.

    дипломная работа [5,4 M], добавлен 06.06.2013

  • Геолого-географический анализ местности на участке г. Новосибирск – г. Карасук. Определение числа каналов на внутризоновых и магистральных линиях. Расчет параметров надежности оптического волокна. Составление сметы на строительство линейных сооружений.

    курсовая работа [1,2 M], добавлен 24.12.2012

  • Основные достоинства и недостатки оптического волокна как среды для передачи информационных сигналов. Разработка волоконно-оптической линии связи между четырьмя населенными пунктами Новосибирской области - Новосибирском, Бердском, Искитимом и Линево.

    курсовая работа [4,5 M], добавлен 19.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.