Анализ и синтез деятельности оператора
Инженерно-психологическая оценка и изучение психофизиологических функций человека. Функции технического обслуживания аппаратуры и принятие ответственных решений на высших уровнях управления. Выбор канала восприятия в зависимости от вида информации.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 27.11.2014 |
Размер файла | 29,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЯ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
‹ ‹ ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ
УНИВЕРСИТЕТ› ›
КУРСОВАЯ РАБОТА
На тему: Анализ и синтез деятельности человека оператора
Волгоград 2014
Содержание
1. Задачи человека оператора при работе с прибором
2. Восприятие человеком оператором информации, ее анализ и принятие решения которые переходят в управляющие действий
3. Психофизический анализ деятельности человека оператора
4. Разработка алгоритма деятельности человека оператора с изделием РЭА
Список использованной литературы
1. Задачи человека оператора при работе с прибором
Одна из важнейших проблем построения системы "человек-машина" -- оптимальное распределение функций между оператором и техническими средствами, т. е. определение операций (и действий), которые должны выполняться человеком и машиной для обеспечения требуемой эффективности действия системы. Возможны 2 основных варианта распределения функций: в первом человек выполняет только операции контроля за машинным процессом решения задачи и утверждает решение; во втором часть операций выполняется человеком и машиной совместно, иначе решение не может быть получено. Первый вариант -- это своего рода параллельная организация взаимодействия человека с машиной, второй -- его последовательная ("пошаговая") организация. При выборе того или иного варианта должны учитываться соображения методологического характера, касающиеся социальной функции человека как субъекта труда, а также практической рекомендации науки об управлении, включая и рекомендации по организации управления в высших звеньях систем. Важное место в таком обосновании должно принадлежать инженерно-психологическим оценкам и использованию результатов изучения психофизиологических функций человека. По современным представлениям обоснование рационального (и даже оптимального) распределения функций должно базироваться на количественных оценках качества решения задач человеком (и машиной) и оценках влияния этого качества на общую эффективность системы. Интенсивное развитие вычислительной техники и ее широкое использование в АСУ различных уровней и назначения обусловливают актуальность исследований и разработок, связанных с проблемой организации эффективного взаимодействия человека-оператора и машины в рамках единой системы «человек--машина». В системах управления с ЭВМ человек выполняет самые разнообразные функции, начиная с технического обслуживания аппаратуры и кончая принятием ответственных решений на высших уровнях управления. Следовательно, инженерно-психологический анализ АСУ связывается с решением комплекса весьма сложных задач. Понятно, что при этом задачи инженерной психологии не должны ограничиваться проектированием и оценкой только согласующих средств, таких как индикаторные устройства и пульты ввода информации, хотя они, без сомнения, делают возможным, ускоряют, расширяют или усиливают взаимодействие человека с ЭВМ. Инженерно-психологический анализ должен включать и задачи распределения функций между человеком и ЭВМ, и оптимизацию взаимодействия в целом. В настоящее время уже можно указать исходные пункты решений указанных задач. Такими исходными пунктами исследований организации взаимодействия могут служить, с одной стороны, теория решения задач человеком в режиме диалога с ЭВМ, а с другой -- количественное исследование и формализация факторов эффективного взаимодействия человека с ЭВМ. Проблема организации взаимодействия -- комплексная проблема, требующая для своего решения использования во взаимосвязи методов и результатов, заимствованных из самых различных областей математики, техники, психологии. В инженерно-психологической литературе намечаются три пути улучшения взаимодействия. Первый путь связывается с дальнейшим совершенствованием средств отображения информации, созданием принципиально новых средств, развитием математического обеспечения, теории и техники проектирования систем. Второй путь -- это развитие специальных психологических исследований, направленных на оптимизацию условий деятельности пользователей, распределение функций и т. п. И, наконец, третий путь -- раскрытие закономерностей обучения и подготовки людей к работе в человеко-машинных системах, поиск средств и способов преодоления психологического барьера при работе с ЭВМ, учет индивидуальных особенностей и т. д. Комплексный подход к проблеме взаимодействия человека с ЭВМ необходим и в связи с осознанием того факта, что эффект взаимодействия проявляется прежде всего в. создании новой системы, обладающей такими признаками, которые отсутствуют у включенных в ее состав подсистем. Иными словами, решение многих задач, возникающих в процессе управления производством, может быть осуществлено достаточно эффективно только системой «человек--ЭВМ», а не человеком или машиной в отдельности. В свою очередь, с инженерно-психологических позиций при этом со всей остротой встает вопрос о распределении функций, о рациональном сопряжении математического обеспечения ЭВМ и творческой деятельности человека. К сожалению, достаточно четкие принципы такого сопряжения применительно к АСУ пока не разработаны, здесь еще много неясных и нерешенных вопросов. Тем не менее в литературе прослеживаются достаточно интересные подходы.
2. Восприятие человеком оператором информации, ее анализ и принятие решения которые переходят в управляющие действия
Между воспринимающими каналами человека - оператора информация должна распределятся на основе психологических восприятия информации различными анализаторами. Необходимо также учитывать взаимодействие и взаимное влияние анализаторов, их устойчивость к воздействию различных факторов среды: гипервесомости и невесомости, вибрации, гипоксемии, изменение способности к восприятию информации в процессе длительной работы и др. Весьма существенное значение имеет вид информации, условия ее приема, а также характер деятельности оператора.
Выбор канала восприятия в зависимости от вида информации.
Передача количественной информации. Для передачи количественной информации используются зрительный, слуховой и кожный каналы восприятия. Выбор канала обусловливается числом градаций признака.
Зрительный канал обеспечивает наибольшую точность определение величины признака, особенно при использовании цифровых кодов, шкал, изменений положений указателей приборов. Он позволяет сравнивать и измерять информацию одновременно по нескольким признакам. Наименьшая точность наблюдается при кодировании величины яркостью.
Слуховой канал поточности восприятия количественной информации может конкурировать со зрительным только при передаче количественной информации в виде речевых сообщений. Точность приема количественной информации, закодированной с помощью частоты или интенсивности звукового сигнала, повышается при использовании эталона сравнения. Человек способен воспринять до 16 - 25 градации тональных сигналов, различающихся по высоте или громкости.
Кожный канал при передачи количественной информации значительно уступает зрительному и слуховому каналу. С его помощью можно передать более 10 градаций величины за счет использования частоты вибротактильных или электрокожных сигналов (после соответствующей тренировке). управление психофизиологический информация
Передача многомерных сигналов. Использование многомерных сигналов, различающихся по нескольким признакам, способствует более экономной передаче информации. С точки зрения возможности приема многомерной информации различные воспринимающие каналы человека не являются идентичными.
Зрительный канал, обладающий хорошо выраженными аналитическими свойствами, позволяет одновременно использовать несколько признаков в сигнале. Информация для этого канала восприятия может быть закодирована одновременно с помощью интенсивности и цвета световых раздражителей, формы, площади, пространственного расположения сигналов, отношений их отдельных параметров. Способность к поэлементному анализу большого числа отдельных составляющих сложного сигнала позволяет воспринимать с помощью этого канала большой объем информации, несмотря на то, что по шкалированию некоторых из них (например, интенсивности, частоты). Зрительный анализатор не обладает выраженными преимуществами по сравнению с другими анализаторами. Значительно повышает пропускную способность данного канала по отношению к многомерным кодовым сигналам синтез различных компонентов сигналов в единый зрительный образ. В этом отношении большую роль играет наличие возможности одновременного восприятия нескольких пространственно разобщенных зрительных образов.
Слуховой канал позволяет использовать при передаче многомерных звуковых сигналов интенсивность и частоту, тембр и ритм. Распределение частот по октавам и модулирование звуковых сигналов также повышает их распознаваемость. Однако общий набор сигналов и возможность варьирования ими для этот анализатора меньше, чем для зрительного. Значительно ограничивает использование этого каната трудность приема и анализа информации, поступающей одновременно более чем от одного источника сигналов.
Кожный канал обладает меньшими возможностями для приема многомерных сигналов, чем два предыдущих. При передаче по нему многомерных сигналов практически могут быть использованы частота сигналов и их пространственная локализация.
Передача информации о положении объектов в пространстве.
Зрительный канал дает самую полную информацию о положении наблюдаемых объектов в пространстве (по трем координатам). Большая точность в оценке пространства и пространственны отношений обеспечивается за счет выраженной аналитической способности зрительного анализатора, константности восприятия, визуализации представлений, широкой возможности оперирования пространственными зрительными образами.
Кожный канал при передаче этой информации можно поставить на второе место. Он обеспечивает определение положения объекта в пространстве по двум координатам при непосредственном соприкосновении с объектом и при дистанционном определении положения его в пространстве за счет искусственных кодовых признаках. Такими кодовыми признаками могут быть частота вибротактильных или электрокожных сигналах и их локализация. Применения для этого изменение амплитуды, величины и площади давления тактильных сигналов ограничивается быстрым развитии адаптации в тактильном анализаторе.
Слуховой канал при бинауральном восприятии обеспечивает высокую точность определения направление на источник звука. Когда же применяется искусственный код (обычное изменение частоты акустического сигнала, его тона), точность локализации оказывается ниже, чем при использовании зрительного и кожного анализаторов. В основном, в этом случае с помощью слухового анализатора можно определять изменение положения объекта в пространстве только по одной координате.
Принятое оператором решение только тогда имеет смысл, когда оно правильно и своевременно будет реализовано. Реализация решения осуществляется путем непосредственного ввода необходимой информации в машину. Для этого используются «выходные» каналы человека: - двигательный (моторный); - речевой.
Подавляющее число управляющих действий оператор осуществляет посредством движений.
Любое управляющее движение складывается из массы элементарных движений, объединяемых механизмом центральной регуляции в целостную структуру. Разные движения, включенные в такую структуру, имеют различное название, по которому их можно разделить на три группы: 1) рабочие или исполнительные движения, посредством которых осуществляется воздействие на орган управлении; 2) гностические движения, направленные на познание объекта и условий труда. К ним относятся осязательные, ощупывающие, измерительные и другие движения; 3) приспособительные движения, к которым относятся установочные, уравновешивающие и другие движения.
Структура двигательных компонентов и определяемые ею скорость и точность управляющего действия зависят от тех задач, которые решает оператор, а также от назначения органов управления, их конструкции, расположения в пространстве и других факторов.
По назначению органов управления все двигательные задачи можно разделить на следующие четыре класса: 1. Операции включения, выключения и переключения. Манипулирование соответствующими органами управления строится по принципу простых реакций или реакций выбора, основной характеристикой которых является время реакции. 2. Двигательные задачи, заключающиеся в выполнении последовательного ряда повторяющихся движений, с помощью которых осуществляются операции кодирования и передачи информации. Характеристикой повторяющихся движений является их темп. По мере тренировки повторяющиеся движения становятся ритмичными. 3. Третий класс двигательных задач наблюдается при манипулировании с органами управления для настройки аппаратуры и точной установки управляемого объекта. В этом случае необходимо дозирование движений по их силовым, пространственным и временным параметрам в соответствии с некоторой заданной мерой. Основным фактором, определяющим их динамику, является точность дозировочных реакций. 4. Операции слежения за изменяющимися объектами. Задачи, выполняемые оператором в процессе движения, относятся к классу непрерывных перцептивно-моторных задач.
Управляющие движения оператора характеризуются четырьмя группами характеристик - скоростными (временными), пространственными, силовыми и точностными.
3. Психофизический анализ деятельности человека оператора
Важнейшей составляющей деятельности оператора в системе "человек - машина" является прием осведомительной информации об объекте управления. Прием сигналов различной модальности осуществляется при помощи анализаторов (зрительного, слухового, тактильного и т.д.).
Основными психическими процессами, участвующими в приеме информации, являются ощущение, восприятие, представление и мышление. Анализ этих процессов, раскрытие их природы и закономерностей необходимы для решения задачи оптимального построения информационной модели реальной обстановки.
Прием информации человеком-оператором необходимо рассматривать как процесс формирования перцептивного (чувственного) образа. Под ним понимается субъективное отражение в сознании человека свойств действующего на него объекта.
В процессе восприятия можно выделить три основных этапа: обнаружение, идентификация и интерпретация информации.
В зависимости от характера деятельности оператора, процесс обнаружения информации имеет в ней различный удельный вес. В некоторых видах операторского труда обнаружение информации является основной целью деятельности.
Оператору должны быть известны возникающие в процессе обнаружения типовые задачи (объекты, события, состояния, параметры), которые обычно обнаруживаются по комплексу сигналов на информационной модели. Оператор концентрирует свое внимание на тех сигналах, по которым задача может быть обнаружена наиболее вероятно и быстро.
Обнаружению сигналов препятствуют помехи различного вида. В условиях помех наблюдатель, в зависимости от поставленной цели, выбирает одну из двух стратегий поведения: либо во что бы то ни стало не пропустить полезный сигнал, несмотря на ложные обнаружения, либо не допустить ложного обнаружения, хотя в этом случае снижается вероятность обнаружения полезного сигнала.
Процесс идентификации информации представляет собой акт отождествления обнаруженных сигналов с некоторыми образами, хранимыми в памяти. Оператор получает информацию в закодированной форме, в виде сигналов, предоставляемых средствами отображения информации. Поэтому возможна идентификация обнаруженной информации либо с образом сигнала на индикаторе (например, с отметкой на экране прибора), либо с образом самого источника, который порождает этот сигнал. Чаще в деятельности оператора используется второй вариант идентификации, т.е. узнавание по приборной информации признаков объекта наблюдения. Таким образом, в сознании оператора совершается процесс декодирования информации, заключающийся в преобразовании полученных при чувственном восприятии сигналов в представление об объекте. Такое преобразование осуществляется обычно посредством процесса ассоциации - сравнения признаков, присущих полученному сигналу, с определенными эталонными признаками, хранящимися в памяти оператора. Важно отметить, что ассоциативное опознание объекта происходит не по полному совпадению сигнала с эталонным образом, а по любому из существенных признаков, этому образу присущих.
Процесс интерпретации информации направлен на уточнение и дополнение полученных ранее сведений, на их осмысление. Это особенно необходимо в операторской деятельности, где узнавание задачи осуществляется обычно при неполной информации о ней, так как сам процесс кодирования информации неизбежно связан с ее потерями. Помехи при передаче и восприятии информации также вносят дополнительную неопределенность в полученные данные.
Процесс интерпретации базируется не только на содержании предъявленной информации и форме ее представления, но и на субъективных факторах - знаниях и опыте оператора, приобретенных в практической деятельности.
В результате процесса интерпретации завершается формирование концептуальной модели, включающей в себя не только представление о сложившейся ситуации, но и прогноз, предвосхищение ее развития, вероятность разрешения или неразрешения возникшей в ней задачи, а также возможных последствий в том и другом случае.
Последствия ответного действия обычно снова доступны для восприятия в виде сигналов обратной связи. Обратная связь может быть внутренней (ощущение в пальцах, звук от нажима клавиши), либо внешней (световой сигнал, появляющийся на дисплее и означающий, что команда получена). Обратная связь помогает деятельности оператора, особенно когда она является немедленной.
Переработка информации протекает под влиянием ограничений, отражающих пропускную способность различных умственных операций. Каждая операция имеет ограничения по скорости формирования и количеству информации, перерабатываемой в единицу времени. Имеются также ограничения по ресурсам внимания, которыми обладает система обработки информации.
Физиологической основой формирования перцептивного образа является работа анализаторов - нервные приборы, посредством которых человек осуществляет анализ раздражений. Любой анализатор состоит из трех основных частей: рецептора, проводящих нервных путей, центра в коре больших полушарий головного мозга.
Основной функцией рецептора является превращение энергии действующего раздражителя в нервный процесс. Вход рецептора приспособлен к приему сигналов определенной модальности (вида) - световых, звуковых и др. Однако его выход посылает сигналы, по своей природе единые для любого входа нервной системы. Это позволяет рассматривать рецепторы как устройства кодирования информации.
Проводящие нервные пути осуществляют передачу нервных импульсов в кору головного мозга. Эти импульсы, достигнув коры головного мозга, подвергаются там определенной обработке и снова возвращаются в рецепторы. Только в этом процессе взаимодействия рецепторов и центров в коре больших полушарий происходит формирование перцептивного образа.
В зависимости от модальности поступающего сигнала различают виды анализаторов. Наибольшее значение для деятельности оператора имеет зрительный анализатор, за ним следуют слуховой и тактильный. Участие других анализаторов в деятельности оператора невелико.
Основными характеристиками любого анализатора являются пороги - абсолютный (верхний и нижний), дифференциальный и оперативный.
Минимальная величина раздражителя, вызывающая едва заметное ощущение, - нижний абсолютный порог чувствительности. Максимально допустимая величина - верхний порог чувствительности. Сигналы, величина которых меньше нижнего порога, человеком не воспринимается. Увеличение же интенсивности сигнала сверх верхнего порога вызывает у человека болевое ощущение (сверхгромкий звук, слепящая яркость и т.д.).
Интервал между нижним и верхним порогами носит название диапазона чувствительности анализатора.
Дифференциальный порог - минимальное различие между двумя раздражителями, вызывающее едва заметное различие ощущений.
Оперативный порог различения определяется той наименьшей величиной различия между сигналами, при которой точность и скорость различения достигает максимума. Обычно оперативный порог различения в 10-15 раз больше дифференциального.
Рассмотренные характеристики и устройство анализаторов позволяют сформулировать общие требования к сигналам-раздражителям, адресованным оператору:
1. Интенсивность сигналов должна соответствовать средним значениям диапазона чувствительности анализаторов, которая обеспечивает наиболее оптимальные условия для приема и переработки информации.
2. Для того чтобы оператор мог следить за изменением сигналов, сравнивать их между собой по интенсивности, длительности, пространственному положению, необходимо обеспечить различие между сигналами, превышающее оперативный порог различения.
3. Перепады между сигналами не должны значительно превышать оперативный порог, так как при больших перепадах возникает утомление; следовательно, существуют не только оптимальные пороги, но и оптимальные зоны, в которых различение сигналов осуществляется с наибольшей скоростью и точностью.
4. Наиболее важные и ответственные сигналы следует располагать в тех зонах сенсорного поля, которые соответствуют участкам рецепторной поверхности с наибольшей чувствительностью.
5. При конструировании индикаторных устройств необходимо правильно выбрать вид сигнала, а следовательно, и модальность анализатора (зрительный, слуховой, тактильный и т.д.).
4. Разработка алгоритма деятельности человека оператора с изделием РЭА
В последние два десятилетия отмечается чрезвычайно интенсивное внедрение практически во все сферы деятельности современного общества информационных технологий, что в свою очередь обуславливает все более возрастающее их влияние и на человека-оператора. Возможности науки и техники в настоящее время позволяют создавать средства и методы для воздействия на функциональные системы человека, изменять их деятельность как опосредованно, так и в реальном масштабе времени, что напрямую связано с безопасностью и эффективностью операторского труда.
Под термином «человек-оператор» понимается человек, осуществляющий трудовую деятельность, основу которой составляет взаимодействие с техническими компонентами машины и внешней средой опосредованно, т.е. через информационную модель и органы управления [].
Современные «системы человек-машина» (СЧМ) обеспечивают работу в режиме так называемой «фоновой» автоматизации, когда цикл функционирования в принципе может быть выполнен автоматически, но достижение требуемой эффективности системы при этом не гарантируется. В этом режиме оператор СЧМ в основном занимается либо разбором конфликтных ситуаций, не предусмотренных комплексным алгоритмом применения СЧМ или недостаточно им поддержанных, либо корректировкой принятых автоматически (автоматизировано) решений, исходя из неформализуемых (а, следовательно, недоступных машине) соображений.
Вследствие этого, в современных СЧМ наблюдается устойчивая тенденция повышения информационной нагрузки на человека-оператора с изменением структуры информационного потока: в нем сокращается доля простой информации, реакцией на которую могли быть преимущественно моторные отклики при одновременном резком увеличении психической нагрузки на оператора, вызываемом ростом сложности и ответственности принимаемых решений.
Операторская деятельность отличается от других видов труда тем, что оператор решает задачи управления, контроля, передачи или преобразования информации, взаимодействует с техническими устройствами или внешней средой не непосредственно, а с помощью разнообразных специальных средств отображения информации, с помощью соответствующих органов управления.
Основными характеристиками человека-оператора являются быстродействие, точность, надежность. Оценкой быстродействия оператора является время решения задачи, т.е. время от момента появления сигнала до момента окончания управляющих воздействий. Вместе с показателями быстродействия технических элементов системы «человек-машина» этот показатель определяет быстродействие всей системы. Оценкой его является время прохождения информации по замкнутому кругу «человек-машина». Общими качествами в деятельности всех операторов являются: сбор, оценка и переработка информации о технических средствах, технологических и других процессах, динамических (изменяющихся) объектах; принятие на основе оценки информации соответствующих операторских решений; действия по реализации операторских решений; контроль результативности.
Важнейшим условием для повышения качества и эффективности деятельности является обеспечение высокой надежности работы СЧМ. Под «надежностью СЧМ» следует понимать способность системы решать возложенные на неё функции своевременно и точно, на протяжении заданного времени с минимальными затратами сил, средств, энергии [].
Критерии надежности можно объединить в группы: безотказности, восстанавливаемости, готовности и своевременности. В качестве основных они включают показатели: вероятность безотказной работы, среднее время безошибочной работы, частота отказов, среднее время восстановления, коэффициент готовности, вероятность своевременного выполнения задания.
Рассмотренные особенности операторского труда позволяют выделить его в специфический вид профессиональной деятельности, в связи с чем для его изучения, анализа и оценки недостаточно классических методов, разработанных психологией и физиологией труда и используемых для оптимизации различных видов работ, не связанных с дистанционным управлением по приборам.
Деятельность оператора в системе "человек - машина" может носить самый разнообразный характер. Несмотря на это, в общем виде она может быть представлена в виде четырех основных этапов.
1. Прием информации. На этом этапе осуществляется восприятие поступающей информации об объектах управления и тех свойствах окружающей среды и СЧМ в целом, которые важны для решения задачи, поставленной перед системой "человек-машина". При этом осуществляются такие действия, как обнаружение сигналов, выделение их из совокупности наиболее значимых, их расшифровка и декодирование; в результате у оператора складывается предварительное представление о состоянии управляемого объекта: информация приводится к виду, пригодному для оценки и принятия решения.
2. Оценка и переработка информации. На этом этапе производится сопоставление заданных и текущих (реальных) режимов работы СЧМ, производится анализ и обобщение информации, выделяются критичные объекты и ситуации и на основании заранее известных критериев важности и срочности определяется очередность обработки информации. Качество выполнения этого этапа во многом зависит от принятых способов кодирования информации и возможностей оператора по ее декодированию. На данном этапе оператором могут выполняться такие действия, как запоминание информации, извлечение из памяти, декодирование и т.п.
3. Принятие решения. Решение о необходимых действиях принимается на основе проведенного анализа и оценки информации, а также на основе других известных сведений о целях и условиях работы системы, возможных способах действия, последствиях правильных и ошибочных решений и т.д. Время принятия решения существенным образом зависит от энтропии множества решений. Если же каждому состоянию объекта могут быть поставлены в соответствие несколько решений, то при расчете энтропии нужно учесть еще и сложность выбора из множества возможных решений необходимого.
4. Реализация принятого решения. На этом этапе осуществляется приведение принятого решения в исполнение путем выполнения определенных действий или отдачи соответствующих распоряжений. Определенными действиями на этом этапе являются: перекодирование принятого решения в машинный код, поиск нужного органа управления, движение руки к органу управления и манипуляция с ним (нажатие кнопки, включение тумблера, поворот рычага и т.п.). В первом случае оператор проводит контроль своих действий с помощью специальных технических средств (например, с помощью специальных индикаторов контролирует правильность набора информации). Во втором случае контроль ведется без применения технических средств. Он осуществляется путем визуального осмотра, повторения отдельных действий и т.п. Проведение любого вида самоконтроля способствует повышению надежности работы оператора.
Первые два этапа в совокупности называют иногда получением информации, последние два этапа - ее реализацией. Из проведенного описания видно, что получение информации включает в себя как бы два уровня, поскольку текущая информация передается оператору через систему технических устройств. Он, как правило, не имеет возможности непосредственно наблюдать за объектом управления (во всяком случае, эта возможность ограничена), а получает необходимую информацию со средств отображения в закодированном виде. С их помощью формируется информационная модель объекта управления.
Поэтому на первом уровне получения информации происходит восприятие оператором информационной модели, т.е. восприятие физических явлений, выступающих в роли носителей информации (положение стрелки на шкале измерительного прибора, комбинация знаков на экране электронно-лучевой трубки, мигание лампочки, звук и т.п.). После этого на втором уровне осуществляется декодирование воспринятых сигналов и формирование на этой основе некоторой "умственной картины" управляемого процесса и условий, в которых он протекает. Такую "умственную картину" в инженерной психологии принято называть концептуальной моделью. Она дает возможность оператору соотнести в единое целое различные части управляемого процесса и затем на основе принятого решения осуществить эффективные управляющие действия, т.е. правильно реализовать полученную информацию.
Список использованной литературы
1. Смирнов А.В. Основы цифрового телевидения: Учебное пособие. - М.: »Горячая линия - Телеком», 2001. - 224 с
2. «MPEG - это просто», К. Гласман. Информационно-технический журнал 625. - изд. ООО «Издательство 625», №3, 2000 - с 4-48.
3. Кодеры и вокодеры MPEG, А. Ануфриев. Информационно-технический журнал 625. - изд. ООО «Издательство 625», №7, 2003 - с.
4. Оригинальный автор: Вячеслав Никитин, Максим Ефимов, ЗАО "СКН".-[Электронный ресурс].- Режим доступа: http://www.rubatech.ru/book/print/392.-Покоренные видеопотоки.
5. Методы сжатия цифрового звука.-[Электронный ресурс].- Режим доступа: http://www.compress.ru/Archive/CP/2004/8/9/#Основы цифровых преобразований.- Методы сжатия цифрового видео.
Размещено на Allbest.ru
...Подобные документы
Функциональная и структурная схема канала регулирования. Синтез регулятора тока и скорости. Статический и динамический расчет системы и переходных процессов. Качество настройки регулятора. Принципиальная электрическая схема якорного канала регулирования.
курсовая работа [1,5 M], добавлен 28.09.2012Организация работы Центра обслуживания вызовов мобильного оператора и изучение статистических методов оценки загрузки соединительных линий. Количественные и качественные коэффициенты работы оператора связи. Отчет по программному обеспечению оператора.
реферат [1,1 M], добавлен 29.03.2014Определение требуемых уровней критерия безотказности. Расчет показателей безотказности блоков комплекта аппаратуры. Оценка ремонтопригодности устройства. Расчет периодичности технического обслуживания. Определение номенклатуры и количества элементов ЗИП.
курсовая работа [235,8 K], добавлен 07.02.2013Составляющие работы человека-оператора: решения, реализация решений, участие оператора в процессах слежения. Технология построения полного множества порожденных последовательностей с минимальным количеством членов, разработка компьютерной программы.
дипломная работа [2,0 M], добавлен 23.10.2011Синтез устройства управления семисегментным индикатором с общим катодом, которое обеспечивает высвечивание заданной последовательности символов в зависимости от состояния счетчика. Поиск наилучшего схемного решения. Сравнение и выбор серий микросхем.
курсовая работа [116,5 K], добавлен 19.06.2012Выбор вида и системы освещения. Выбор светового прибора и размещение. Определение мощности осветительной установки. Участок технического обслуживания электрооборудования. Выбор схемы электроснабжения и напряжения питания осветительной установки.
курсовая работа [241,8 K], добавлен 21.02.2009Стратегии управления ошибками при передаче информации по каналам связи: эхо-контроль и автоматический запрос на повторение. Анализ зависимости величины эффективности использования канала связи от его пропускной способности и длины передаваемых пакетов.
курсовая работа [467,3 K], добавлен 20.11.2010Принцип работы и назначение кабельной распределительной сети, проблема ее технического обслуживания. Разработка и практическое внедрение измерительного комплекса "ОК" для настройки и контроля работоспособности кабельной сети в диапазоне обратного канала.
дипломная работа [882,2 K], добавлен 23.06.2009Расчет интегрального показателя качества аппаратуры. Структурный анализ аппаратуры на уровне микросхем. Распределение блоков и микросхем по типам. Влияние условий окружающей среды на интенсивность отказа аппаратуры. Проведение профилактических осмотров.
курсовая работа [1,3 M], добавлен 07.02.2013Принцип действия оптических дисковых систем, в которых считывание информации с компакт-диска производится с постоянной скоростью. Определение передаточных функций звеньев. Вычисление передаточной функции двигателя. Синтез корректирующего устройства.
курсовая работа [262,1 K], добавлен 25.01.2011Формирование алфавитного оператора. Приведение оператора к автоматному виду. Построение графа переходов абстрактного автомата. Кодирование состояний, входных и выходных сигналов. Формирование функций возбуждения и выходных сигналов структурного автомата.
курсовая работа [66,3 K], добавлен 10.11.2010Графическая структура защищаемой информации. Пространственная модель контролируемых зон, моделирование угроз информации и возможных каналов утечки информации в кабинете. Моделирование мероприятий инженерно-технической защиты информации объекта защиты.
курсовая работа [2,9 M], добавлен 19.06.2012Процесс разработки структуры устройства управления узлом ЭВМ. Синтез функций возбуждения, входного и выходного алфавита на базе мультиплексора. Синтез интерфейса с пользователем с использованием мультиплексоров. Отладка синтезируемого автомата в EWB.
курсовая работа [1,6 M], добавлен 26.01.2013Выполнение синтеза и анализа следящей системы автоматического управления с помощью ЛАЧХ и ЛФЧХ. Определение типов звеньев передаточных функций системы и устойчивости граничных параметров. Расчет статистических и логарифмических характеристик системы.
курсовая работа [1,9 M], добавлен 01.12.2010Анализ исходной системы автоматического управления, определение передаточной функции и коэффициентов. Анализ устойчивости исходной системы с помощью критериев Рауса, Найквиста. Синтез корректирующих устройств и анализ синтезированных систем управления.
курсовая работа [442,9 K], добавлен 19.04.2011Проектирование структуры системы управления электроприводом лифта. Анализ измерительных средств и методов получения информации от объекта. Выбор количества и типов входных и выходных информационных каналов. Разработка структуры информационного канала.
курсовая работа [2,4 M], добавлен 28.09.2010Технический паспорт объекта "Брянский Открытый Институт Управления и Бизнеса". Обоснование целесообразности разработки проекта. Выбор средств защиты объекта. Безинструментальная оценка звукоизоляции помещения. Инженерно-техническая защита информации.
курсовая работа [721,3 K], добавлен 21.08.2014Технические средства автоматизации. Идентификация канала управления, возмущающих воздействий. Определение передаточных функций АСР. Расчёт системы управления с помощью логарифмических амплитудных характеристик. Анализ работы системы с ПИ регулятором.
контрольная работа [240,5 K], добавлен 22.04.2011Двухполюсник, его виды, свойства и элементы; характеристики входной функции. Изучение зависимости сопротивления реактивного двухполюсника от частоты по формуле Фостера. Осуществление реализации реактивных функций разложением на элементарные дроби.
практическая работа [53,4 K], добавлен 26.11.2013Замена симметричных переменных с использованием элементарных симметричных функций. Анализ совместной реализации системы функций. Раздельная минимизация системы функций алгебры логики. Факторизация системы логических уравнений. Выбор элементной базы.
дипломная работа [1,0 M], добавлен 22.11.2012