Строительство волоконно-оптической линии связи

Характеристика принципов построения цифровой первичной сети связи. Расчет показателя преломления компонентов волоконного световода, его числовой апертуры и затухания. Вычисление дисперсии оптического волокна. Определение длины регенерационного участка.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 25.03.2015
Размер файла 189,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Теоретическая часть

1.1 Принципы построения цифровой первичной сети связи на основе ЦСП

1.2 Выбор оптического кабеля связи

2. Расчет параметров волоконных световодов

2.1 Расчет показателя преломления компонентов волоконного световода

2.2 Расчет числовой апертуры световода

2.3 Расчет затухания световодов

2.4 Расчет дисперсии оптического волокна

2.5 Расчет коэффициента фазы, волнового сопротивления и скорости передачи по световодам

2.6 Определение длины регенерационного участка

3. Строительство волоконно-оптической линии связи

4. Монтаж оптических кабелей

5. Сметно-финансовый расчет

Заключение

Список использованной литературы

Введение

История развития волоконно-оптических линий связи началась в 1965-1967 гг., когда появились опытные волноводные линии связи для передачи широкополосной информации, а также криогенные сверхпроводящие кабельные линии с малым затуханием. С 1970 г. активно развернулись работы по созданию световодов и оптических кабелей, использующих видимое и инфракрасное излучения оптического диапазона волн. Создание волоконного световода и получение непрерывной генерации полупроводникового лазера сыграли решающую роль в быстром развитии волоконно-оптической связи. К началу 80-х годов были разработаны и испытаны волоконно-оптические системы связи. Основные сферы применения таких систем телефонная сеть, кабельное телевидение, вычислительная техника, система контроля и управления технологическими процессами и т. д.

Различают 3 основных типа ЛС: кабельные, воздушные, волоконно-оптические. Кабельные и воздушные линии относятся к проводным линиям, у которых направляющие системы образуются системами проводник-диэлектрик. А волоконно-оптические линии представляют собой диэлектрические волноводы, направляющая система которых состоит из диэлектриков с различными показателями преломления, в которых осуществляется передача световых сигналов микроволнового диапазона волн от 0,8 до 1,6 мкм.

Волоконно-Оптические Линии Связи (ВОЛС) - это вид системы передачи информационных данных, при котором информация передается по оптическим диэлектрическим световодам, известным под названием оптическое волокно. Помимо вопросов волоконной оптики технологии ВОЛС также охватывают вопросы, касающиеся электронного передающего оборудования, его стандартизации, протоколов передачи, топологии сети и общие вопросы построения сетей. В настоящее время ВОЛС считаются самой совершенной физической средой для передачи информации, а также самой перспективной средой для передачи больших потоков информации на значительные расстояния.

1. Теоретическая часть

1.1 Принципы построения цифровой первичной сети связи на основе ЦСП

Принципы построения перспективной первичной сети связи АО «НК«?ТЖ» заключаются в следующем:

1) первичная сеть должна быть цифровой;

2) линии связи необходимо организовывать только на основе стандартных цифровых каналов и трактов;

3) первичная сеть должна иметь такие структурные и функциональные характеристики, чтобы имелась возможность ее использования для любых вторичных сетей общего пользования, ведомственных, частных и т.п.;

4) топология первичной сети должна экономично реализовывать структуры всех вторичных сетей электросвязи и быть оптимальной с точки зрения их постепенной интеграции;

5) первичная сеть должна содержать систему управления для поддержания заданных показателей надежности и качества функционирования;

6) должна обеспечиваться возможность существенного расширения пропускной способности по мере предоставления пользователям вторичных сетей новых услуг, требующих широкополосных каналов, а именно: видеосвязь, видеоконференции, промышленное телевидение, связь компьютерных сетей в реальном масштабе времени.

При разработке цифровой сети связи АО «НК«?ТЖ» следует учитывать ряд характерных ее особенностей. Сеть концентрируется вдоль железной дороги, полностью отражая при этом ее конфигурацию. Основной функцией первичной сети является формирование единого информационного потока, проходящего через последовательно расположенные пункты выделения, где часть потока ответвляется с целью обслуживания абонентов местной сети. Другой особенностью является то, что в большинстве пунктов выделения ответвляется незначительная часть потока, составляющая от долей до нескольких процентов от главного потока.

На первичной сети в качестве систем передачи должны использоваться системы передачи синхронной СЦИ (Sinchronous Digital Hierarhi) и плезиохронной ПЦИ (Plesiochronouns Digital Hierarhi) при рациональном их сочетании.

Отечественные волоконно-оптические системы передачи (ВОСП), такие как Сопка 4М (140 Мбит/с), Сопка 3М (34 Мбит/с) основаны на плезиохронной цифровой иерархии стандартного для СНГ ряда:

ИКМ-30, 120, 490, 1920 и имеют недостатки, усложняющие их применение в цифровых сетях с многократным вводом-выводом цифровых потоков 2,048 Мбит/с и их распределением. Главный недостаток связан с применением в ВОСП ПЦИ посимвольного мультиплексирования цифровых потоков, начиная с 2 Мбит/с. Такой способ приводит к использованию двух, трехкратного мультиплексирования/демультиплексирования на передающей и приемной и промежуточной станциях ввода-вывода, что существенно усложняет аппаратуру.

В развитие системы передачи ИКМ-120Т на основе серийной аппаратуры Сопка-3М, разработано техническое задание на аппаратуру ВОСП-480Т, которая должна обеспечить передачу 16 двухмегабитовых потоков (480 каналов ТЧ) по схеме "точка-точка" и трех дополнительных потоков 2,048 Мбит/с (90 каналов ТЧ) с возможностью их многократного выделения (до 32) на промежуточных станциях. В отличие от аппаратуры Сопка-3М, которая реализует только соединения "точка-точка", ВОСП-480Т предполагается для применения на дорожных и отделенческих сетях связи.

В качестве основной системы передачи на волоконно-оптической магистральной сети связи рекомендуется использовать аппаратуру синхронной цифровой иерархии СЦИ.

В настоящее время ведущие зарубежные фирмы выпускают оборудование СЦИ, рассчитанное на скорости передачи 155 Мбит/с (STM-1), 622 Мбит/с (STM-4) и 2488 Мбит/с (STM-16) с коэффициентом мультиплексирования, равным четырем. В процессе разработки находится система STM-64 со скоростью передачи 9953 Мбит/с. У мультиплексора первого уровня входными потоками могут быть потоки ПЦИ. Мультиплексоры более высоких уровней взаимодействуют как с потоками ПЦИ, так и с потоками STM нижних уровней.

Сигналы, скорость передачи которых соответствует стандартному ряду скоростей, СЦИ получили название трибов СЦИ.

Применяемая в системах СЦИ система заголовков позволяет определить положение любого входного цифрового потока, погруженного в соответствующий виртуальный контейнер, транспортируемого модулями STM-1 и осуществлять его ввод-вывод из транспортных модулей STM-1(N). Это существенно упрощает выделение цифровых потоков и каналов не только на оконечных, но и на промежуточных пунктах волоконно-оптической линии связи.

Для построения СЦИ используются терминальные мультиплексоры (ТМ) и мультиплексоры ввода-вывода (АДМ). Каждый из них способен выполнять функции концентратора, коммутатора, кросс-коннектора и регенератора.

Терминальный мультиплексор является оконечным устройством сети с числом потоков доступа, соответствующим определенному уровню иерархии взаимодействующих с ним.

Системы электронной кроссовой коммутации, применяемые в узлах сетей, позволяют связывать различные потоки и каналы, закрепленные за пользователями, и проводить многие другие операции с компонентными потоками - переключение потоков с одного направления на другое, объединение нескольких компонентных потоков в один поток более высокой степени иерархии и т.д.

Маршрутизация в СЦИ осуществляется программными средствами и, следовательно, существенно упрощается.

Рассмотренные компоненты оборудования СЦИ позволяют создавать сети различной топологии, среди которых наиболее распространенной является кольцевая. При реализации кольцевой топологии для организации магистральных и дорожных связей целесообразно замкнуть кольцо путем прокладки или подвески оптического кабеля по разным сторонам железной дороги. На практике наиболее часто находит применение топология "плоского кольца", когда для замыкания кольца используются оптические волокна внутри одного кабеля.

Основой сети должна быть хребтовая структура, состоящая из одной или нескольких систем STM, расположенных вдоль железной дороги. Количество и тип систем STM определяются общей емкостью информационного потока, который должен быть обеспечен на данном участке, а количество потоков 2,048 Мбит/с, выделяемых на станциях, зависит от числа терминалов местной сети, которым необходим доступ в сеть связи АО «НК«?ТЖ».

При таком построении в определенной степени сглаживаются традиционные понятия магистрального, дорожного и отделенческого уровней сети и цифровая сеть отражает двухуровневую систему, имеющую уровень транспортной сети и уровень абонентского доступа. Первичные потоки, используемые для магистральной, дорожной и отделенческой сетей, большей частью интегрируются в потоках STM-1, STM-4, обеспечивающих многократный ввод-вывод компонентных потоков 2,048 Мбит/с из высокоскоростного группового потока.

Кольцевание сети должно быть реализовано, исходя из следующих принципов. В случае, когда железные дороги проходят параллельно, кольцевание осуществляется с использованием поперечных рокадных направлений или с использованием инфраструктуры других ведомственных сетей. На линейной сети связи, проложенной вдоль железной дороги, также формируется кольцевая структура. Малые кольца плоской структуры организуются в пределах отделения дороги и диспетчерского участка. Режим резервирования определяется соответствующими программами работы синхронных мультиплексоров, устанавливаемых в сетевых узлах. Кольца большой протяженности организуются на дорожном и магистральном уровнях.

Рисунок 1.1 -Первичная цифровая сеть МПС Капчагай - Коксу

1.2 Выбор оптического кабеля связи

ОКК Ї оптические модули с уложенными внутри оптическими волокнами, скручеными вокруг центрального элемента из стеклопластика, промежуточная оболочка с наложенными поверх арамидными нитями, внешняя оболочка из полиэтилена высокой плотности или специального трекингостойкого полиэтилена.

Оптические кабели марки ОКК, предназначенные для использования на волне 1,3 мкм, прокладывают как в канализации, так и в грунте и эксплуатируют при температуре -- 40 ... + 50° С.

Шестнадцативолоконный оптический кабель с защитным покровом из стеклопластиковых стержней приведен на рис. 1.2

Оптические кабели ОКК изготовляются в двух вариантах;

— на основе градиентного оптического волокна с диаметром сердцевины 50 мкм (модификация 01), затуханием 0,7 дБ/км и при восьми оптических волокнах маркируются ОКК-50-01-0,7-8;

— на основе одномодового оптического волокна с диаметром модового пятна 10 мкм (модификация 02), затуханием 1,0 дБ/км и при четырех оптических волокнах маркируются ОКК-10-02-1,0-4.

Рисунок 1.2. Оптический кабель городской связи марки ОККС:

1 -- силовой элемент (стеклопластика) 2--волокно;

3 -- пластмассовая лента 4 -- стеклопластиковые стержни.;

5 -- полиэтиленовая оболочка

Маркировка:

ОКК -- оптический кабель для прокладки в канализации ОККО -- то же, с броней в виде металлической оплетки; ОККС -то же, с броней из стеклопластиковых стержней;

ОККАК -- то же в алюминиевой оболочке и с броней из круглых стальных проволок;

ОКС -- станционный кабель 10 или 50 -- диаметр сердцевины; 01 или 02 -- центральный элемент и стеклопластика или стали; 07 или 1 -- коэффициент затухания, дБ/км 4, 8, 16 -- число волокон.

Диаметр по внутренней оболочке 8,6±0,5 мм;

Радиальная толщина наружной оболочки не менее 2,0 мм;

Наружный диаметр кабеля 18,0 мм;

Диаметр центрального элемента 6,0±0,3 мм.

2. Расчет параметров волоконных световодов

2.1 Расчет показателя преломления компонентов волоконного световода

При оценке показателя преломления стекол необходимо учитывать его зависимость от длины волны, т.е. спектральную зависимость, которая для диапазона длин волн 0,6-2,0 мкм характеризуется трехчленной формулой Селмейера [2]:

,

где Аi и Ii (i=1,2,3) - коэффициенты, значения которых находятся экспериментально; л - длина волны, мкм.

Для изготовления световодов применяют кварцевые стекла с добавками окиси германия, фосфора, повышающими показатель преломления кварца, и добавками окиси бора, фтора, понижающими показатель преломления стекла. Значения преломления приведена в таблице 2.1.

Таблица 2.1

Состав

стекла

n2

n

SiO2

2,092586833

1,446577628

13,5%G2O2

86,5%SiO2

2,155321729

1,467384507

9,1% G2O2

7,7% B2O3

83,2%SiO2

2,12466552

1,457623244

13,5%Be2O3

86,5%SiO2

2,086455718

1,444456894

3,1% G2O2

96,9%SiO2

2,106174019

1,451266375

3,0% Be2O3

97,0%SiO2

2,087749505

1,44490467

3,3% G2O2

9,2% B2O3

87,5%SiO2

2,091404553

1,446168923

SiO2

2,093591548

1,446924859

9,1% P2O5

90,9% SiO2

2,136264657

1,461596612

1,0% F

99,0% SiO2

2,079134834

1,441920537

16,9% NaO2

32,5% B2O3

2,282026905

1,68167384

При определении показателя преломления основных компонентов волоконного световода, необходимо учитывать, что в качестве материала светоотражающей оболочки, как правило, применяется чистое кварцевое стекло (SiO2), а для изготовления сердечника - легированный кварц.

Оптические свойства выбранных материалов сердечника и оболочки должны обеспечивать одномодовый режим работы волоконного световода. Для этого необходимо рассчитать значение нормированной (характеристической) частоты:

,

где а - радиус сердечника световода, мкм; л- длина волны, мкм; n1 - показатель преломления сердечника; n2 - показатель преломления оболочки

Если нормированная частота V < 2,405, то в световоде распространяется лишь один тип волны НЕ11, и компоненты волоконного световода выбраны правильно.

Если V 2,405, то в световоде устанавливается многомодовый режим работы. Тогда необходимо осуществить повторный выбор материалов сердечника и оболочки, которые обеспечивали бы существование лишь одной моды в оптическом волокне.

2.2 Расчет числовой апертуры световода

Важной характеристикой световода является числовая апертура NA (Numerical Aperture), которая представляет собой синус от апертурного угла (цпр).

Апертурный угол - это угол между оптической осью и одной из образующих светового конуса, воздействующего на торец световода.

Числовая апертура рассчитывается по формуле [4]:

,

где

- относительная разность показателей преломления.

От значения NA зависят эффективность ввода излучения лазера в световод, потери на микроизгибах, дисперсия импульсов, число распространяющихся мод.

Чем больше у волокон Д, тем больше NA, чем легче осуществлять ввод излучения от источников света в световод.

Оптические кабели применяемые для магистральной связи должны иметь числовую апертуру NA<0,2.

2.3 Расчет затухания световодов

Важнейшими параметрами световода являются оптические потери и соответственно затухание передаваемой энергии. Эти параметры определяют дальность связи по оптическому кабелю и его эффективность.

Затухание световодных трактов обусловлено собственными потерями в волоконных световодах (бс) и дополнительными потерями, так называемыми кабельными (бк) обусловленными деформацией и изгибами световодов при наложении покрытий и защитных оболочек в процессе изготовления оптического кабеля, т.е.

,

Собственные потери волоконных световодов состоят, в первую очередь, из потерь поглощения (бп) и потерь рассеивания бр ,т.е.

,

Под кабельными потерями понимают потери энергии на макроизгибы и микроизгибы:

,

Таким образом, полные потери в волоконном световоде составят:

.

Затухание в результате поглощения связано с потерями на диэлектрическую поляризацию и существенно зависит от свойств материала световода [2]:

дБ/км,

где n1 - показатель преломления сердечника; л - длина волны, мкм; tgд - тангенс угла диэлектрических потерь в световоде, равный 2,4·10-12.

Затухание на рассеяние рассчитывается по формуле [2]:

, дБ/км.

где К - постоянная Больцмана, К = 1,38·10-23 Дж/К; Т - температура перехода стекла в твердую фазу, Т = 1500 К; - коэффициент сжимаемости, =8,1·10-11 м2/Н; л- длина волны, м.

Потери на макроизгибы обусловлены скруткой волоконных световодов по геликоиде вдоль всего оптического кабеля и для ступенчатых стекловолокон рассчитываются по формуле [5]:

дБ/км,

где а - радиус сердечника, мкм; Д - относительная разность показателей преломления, d - диаметр скрутки, мм; S - шаг скрутки, мм.

Отношение S/d называется параметром устойчивости скрутки, который в оптических кабелях находится в пределах 12 - 30.

Дополнительное затухание за счет излучения при микроизгибах для одномодовых световодов рассчитывается по формуле [4]:

дБ/км,

где k - коэффициент, зависящий от длины и амплитуды микроизгибов, k=10-15; а- радиус сердечника стекловолокна, мкм; b - диаметр оболочки, мкм; л -длина волны, мкм; - радиус поля моды, мкм,

2.4 Расчет дисперсии оптического волокна

В световодах при передаче импульсных сигналов после прохождения некоторого расстояния импульсы искажаются, расширяются и наступает момент, когда соседние импульсы перекрывают друг друга. Данное явление в теории световодов носит название дисперсии.

Расширение импульсов устанавливает предельные скорости передачи информации по световоду при импульсно-кодовой модуляции и при малых потерях ограничивает длину участка регенерации. Дисперсия ограничивает также пропускную способность волоконно-оптических систем передачи, которая предопределяет полосу частот, пропускаемую световодом, ширину линейного тракта и соответственно объем информации, который можно передать по оптическому кабелю.

Дисперсия возникает по двум причинам: некогерентность источников излучения и появление спектра Дл, существование большого числа мод.

Первая называется хроматической (частотной) дисперсией, которая делится на материальную и волноводную. Материальная дисперсия обусловлена зависимостью коэффициента преломления материала световода от длины волны. Волноводная дисперсия обусловлена процессами внутри моды и связана со световодной структурой моды. Она характеризуется зависимостью коэффициента распространения моды от длины волны.

Второй вид дисперсии носит название модовой, которая, однако, в одномодовых световодах отсутствует полностью.

В одномодовых световодах проявляются материальная и волноводная дисперсии, расчет которых производится по формулам [3]:

пс/км,

пс/км,

где Дл - ширина спектра излучения источника, при использовании в качестве источника излучения полупроводникового инжекционного лазера, Дл = 0,1-4 нм; М(л) - удельная дисперсия материала; В(л) - волноводная удельная дисперсия.

Коэффициент удельной материальной дисперсии рассчитывается по формуле [2]:

, пс/(км·нм)

где л - длина волны, мкм; с - скорость света, с = 300000 км/с; nl(л) - показатель преломления сердечника; Аi и Ii и коэффициенты выбираются из таблицы 2.8 в зависимости от состава стекла сердечника в полном соответствии с предварительно выполненными расчетами n1.

Производная рассчитывается по формуле

.

Коэффициент удельной волноводной дисперсии рассчитывается по формуле [3]:

пс/(км·нм)

пс/(км·нм)

где л - длина волны, мкм; Д - относительная разность показателей преломления.

Полное уширение импульса за счет материальной и волноводной дисперсий, приходящееся на 1 км оптической магистрали, определится:

, пс/км.

пс/км.

Хроматическая дисперсия существенно ограничивает пропускную способность волоконных световодов. Максимальная ширина полосы пропускания на 1 км оптической линии приближенно определяется по формуле:

, Гц км.

Гц км.

2.5 Расчет коэффициента фазы, волнового сопротивления и скорости передачи по световодам

Волновое сопротивление волоконного световода может быть представлено через компоненты электромагнитного поля, определение которых получается довольно сложным. В практических расчетах пользуются предельными значениями волнового сопротивления сердечника и оболочки для плоской волны. При этом:

, Ом,

Ом,

где

- волновое сопротивление идеальной среды; м0 - относительная магнитная проницаемость, м0=4р·10-7, Гн/м; е0 - относительная диэлектрическая проницаемость,

, Ф/м.

В соответствии с основным уравнением передачи по волоконным световодам коэффициент фазы зависит от волнового числа среды и находится в пределах

, рад/км,

рад/км

где k2=k0n2- волновое число оболочки; k1=k0n1- волновое число сердечника.

Волновое число идеальной среды k0 рассчитывается по формулам:

,

где - угловая частота, 1/с; л - длина волны, мкм.

В соответствии с основными положениями электродинамики в однородных средах плоская электромагнитная волна распространяется с фазовой скоростью и групповой скоростью uгр.

Для недисперсионной среды фазовая скорость не зависит от частоты, и тогда групповая скорость равна фазовой скорости. Однако, в дисперсионных средах, где фазовая скорость электромагнитной волны является функцией частоты, и uгр имеют разные значения.

Фазовая скорость рассчитывается по формуле:

, км/с,

где в - коэффициент фазы.

При больших значениях длин волн, близких к критической, энергия распространяется в оболочке с фазовой скоростью

,

при уменьшении длины волны вся энергия концентрируется в сердечнике, которой соответствует скорость распространения

.

Таким образом, с увеличением длины волны фазовая скорость уменьшается от значения скорости в оболочке до значения скорости в сердечнике световода.

Следует иметь ввиду, что скорость распространения волны по световоду всегда меньше скорости света, т.е. поверхностная волна всегда имеет замедленный характер распространения.

Групповая скорость распространения по световоду определяется выражением:

, км/с.

км/с.

2.6 Определение длины регенерационного участка

Исходя из экономичности оптической магистрали и качества передачи информации, желательно, чтобы длина участка регенерации была максимальной. связь волоконный световод оптический

Длина регенерационного участка для выбранной аппаратуры передачи и заданном качестве связи определяется характеристиками оптического кабеля: затуханием и дисперсией. Затухание лимитирует длину участка по потерям в тракте передачи. Дисперсия приводит к расширению импульсов, которое возрастает с увеличением длины линии, что приводит к повышению вероятности ошибки передаваемой информации.

Уровень оптического сигнала с увеличением расстояния от начала регенерационного участка уменьшается из которого следует:

,

где Рпр.мин - минимально допустимая мощность на входе фотоприемника, дБ м; Рпер - уровень мощности генератора излучения, дБ м; брс- потери в разъемном соединении используются для подключения приемника и передатчика к оптическому кабелю, дБ; бвх, бвых - потери при вводе и выводе излучения из волокна, дБ; бнс - потери в неразъемных соединениях, дБ; б - коэффициент ослабления оптического волокна, дБ/км; lсд - строительная длина оптического кабеля (1000-6000м), км.

Рисунок 1 - Распределение уровня оптического сигнала по длине регенерационного участка

По рисунку 2.8- Зависимость чувствительных фотоприемников от скорости передачи информации: 1 - ЛФД (Ge) определяем Рпр.мин - минимально допустимая мощность на входе фотоприемника, дБ м при скорости 70 мбит/сек = 61

Величина носит название энергетического потенциала аппаратуры и определяется типом источника излучения и фотоприемника.

Из последнего выражения можно определить длину регенерационного участка, определяемого затуханием линии:

, км

Современные способы сращивания оптических волокон, посредством сварки автоматическими устройствами, обеспечивают величину потерь на одном сростке в пределах 0,01-0,03 дБ.

Потери в лучших образцах разъемных соединителей (оптических коннекторах) составляют 0,35-0,5 дБ на одно соединение.

Расчет энергетического потенциала производится следующим образом.

Учитывая, что в аппаратуре STM в качестве источника излучения используется полупроводниковый инжекционный лазер, выходная мощность последнего составляет Рпер = 10 мВт.

При использовании способа кодирования с невозвращением в нуль из выходной мощности источника излучения вычитается 3 дБм, а при коде с возвращением в нуль - 6 дБм, что обусловлено уменьшением средней излучаемой мощности кодированного сигнала по сравнению с непрерывным режимом.

Потери при вводе света в волокно для полупроводникового лазера составляют бвых=3-5 дБ, при выводе света на фотоприемник - бвх=2-3 дБ.

Рисунок 2 - Зависимость чувствительных фотоприемников от скорости передачи информации: 1 - ЛФД (Ge); 2 - ЛФД (GaJnAs)

Определение длины регенерационного участка по пропускной способности оптического кабеля

Дисперсионные явления в волоконном световоде приводят к появлению межсимвольной интерференции, для уменьшения которой необходимо, чтобы выполнялось следующее условие [6]:

,

где В - скорость передачи информации; ф- уширение импульса в кабеле длиной 1 км.

3. Строительство волоконно-оптической линии связи

При строительстве волоконно-оптических линий связи, как и при строительстве обычных линий связи, выполняются следующие работы: разбивка линии; доставка кабеля и материалов на трассу; испытание и прокладка кабеля; монтаж кабеля и устройств ввода.

При прокладке кабеля в пределах города сооружается кабельная канализация, в полевых условиях кабель укладывается непосредственно в землю или подвешивается на опорах контактной сети.

На всех этапах подготовки к строительству ВОЛС - от экспертизы проекта до составления проекта производства и план-графиков строительства участков необходимо стремиться к тому, чтобы проектные и планируемые технические решения способствовали максимальной индустриализации работ, исключали случаи ухудшения характеристик ОК, увеличения числа дополнительных муфт на ВОЛС.

До начала поступления кабеля на строительство ВОЛС должны быть выполнены работы по обследованию будущих трасс прокладки оптического кабеля, определению мест и помещения для проведения входного контроля кабелей.

Руководством по строительству ВОЛС предусмотрен 100%-ный входной контроль кабеля на кабельной площадке. Кроме обычных испытаний по проверке качества изоляции металлических элементов в ОК проводятся измерения затухания оптических волокон. Наиболее удобно такие измерения производить с помощью оптического тестера.

После окончания электрических измерений оптические волокна соединяются последовательно методом сварки, для образования шлейфа, по которому при механизированной прокладке будет контролироваться целостность кабеля. Затем концы кабеля герметично заделывают и барабан с проверенной строительной длиной отправляется на трассу.

До вывоза барабанов с кабелем на трассу проводят группирование строительных длин. В пределах регенерационного участка группирование осуществляется по конструктивным данным и, главное, по передаточным параметрам оптического кабеля: затуханию и дисперсии.

Группирование производится в соответствующих соединительных муфтах регенерационного участка ВОЛС и состоит в поиске такого варианта соединения волокон в этих муфтах на основании данных измерений параметра передачи отрезков ВОЛС, при котором достигается ослабление случайных составляющих заданного параметра передачи волокна, т.е. приближение его значения к среднему во всех оптических регенерационных участках ВОЛС. Для нахождения оптимальной комбинации соединения волокон требуется провести анализ большого числа комбинаций их соединения, который целесообразно осуществлять на ЭВМ.

Прокладка кабеля кабелеукладчиком (бестраншейная прокладка) является наиболее распространенным способом и широко применяется на трассах в различных условиях местности. В этом случае ножом кабелеукладчика в грунте прорезается узкая щель и кабель укладывается на ее дно. При этом механические нагрузки достаточно высоки, так как кабель на пути от барабана до выхода из кабеленаправляющей кассеты подвергается воздействиям продольного растяжения, поперечного сжатия и изгиба, а также вибрационному воздействию в случае применения вибрационных кабелеукладчиков. Поэтому, при прокладке кабеля необходимо создавать принудительное вращение барабана и не допускать засорения кассеты кабелеукладочного ножа. Достоинством вибрационного кабелеукладчика является малое тяговое усилие, высокая маневренность и возможность эффективной работы в различных грунтах.

Известны два варианта системы прокладки оптических кабелей:

традиционная схема прокладки;

специализированная схема прокладки (созданная специально для ОК).

При традиционной системе прокладки (кабельные барабаны располагаются сзади трактора) кабель подается непосредственно с барабана в кассету без изгибов и не испытывает дополнительных напряжений.

При специализированной системе прокладки (кабельный барабан монтируется спереди трактора) кабель проходит над кабиной трактора через квадратную конструкцию с роликами или направляющими трубками, а затем через блок с гидроприводом, обеспечивающий размотку кабеля с барабана и подачу его в кассету. Кабель совершает один полный виток вокруг блока, скорость вращения которого должна превышать линейную скорость перемещения базового трактора. Все ролики или направляющие приспособления в системе, вызывающие изменения направления прохождения кабеля, должны соответствовать минимальному допустимому радиусу изгиба данного кабеля. Допустимый минимальный радиус изгиба оптического кабеля должен в 20 раз превышать диаметр кабеля.

Расчет усилия тяжения при прокладке оптического кабеля в земле кабелеукладчиком производится по формуле [2]:

, Н

где Р - масса единицы длины кабеля, кг/км; f - коэффициент трения в кассете кабелеукладчика, f =0,15; м - динамический коэффициент, м=2,5; lсд - строительная длина кабеля, км; Q - вертикальное давление слоя земли над кабелем, Q= 190 кг/км.

Если рассчитанная величина усилия тяжения не превышает допускаемого значения для соответствующего оптического кабеля, то его марка выбрана правильно.

Траншейная прокладка оптического кабеля в грунт аналогична прокладке электрических кабелей. Однако при прокладке ОК необходимо соблюдать большие меры предосторожности, обеспечивающие допустимые пределы растяжения, изгибов, закручивания и истирания кабеля.

Сравнивая траншейный способ прокладки с прокладкой кабелеукладчиком, следует отдать предпочтение последнему. Прокладка кабеля с помощью кабелеукладчика более производительна и сокращает трудоемкость в 10-20 раз. При использовании кабелеукладчика практически одновременно производится образование траншеи, размотка и укладка кабеля. Поэтому траншейный способ применяется лишь там, где использование кабелеукладчика невозможно по условиям местности. Траншея отрывается механизмом (экскаватором) или вручную.

Размещение оптического кабеля в пластмассовом трубопроводе позволяет повысить механическую прочность и влагостойкость кабеля, не обладающего наружными металлическими покровами, и защитить его от грызунов.

Предварительно пластмассовый трубопровод диаметром 40 или 50 мм укладываются в траншею на глубину 1,2 традиционным способом.

Операция по затягиванию оптического кабеля в трубопровод проводится таким же способом, как в случае прокладки электрических кабелей в кабельную канализацию. Вначале протягивается трос, а затем прикрепленный к нему кабель. При прокладке в трубопровод кабель предварительно смазывается. Затяжка кабеля в трубопровод производится в направлении, противоположном направлению прокладки трубопровода. В точках размещения сростков необходимо оставлять достаточный запас кабеля для последующего сращивания вне котлована.

При прокладке оптического кабеля вдоль электрифицированных железных дорог широкое применение получил способ подвески кабеля на опорах контактной сети. При этом кабель испытывает большие растягивающие усилия, поэтому в его конструкцию должны входить дополнительные силовые элементы или использовать самонесущий кабель. Кроме того, широкое распространение получил способ подвески оптического кабеля прикрепленного к несущему тросу.

При расчете самонесущего оптического кабеля, подвешенного на опорах контактной сети, на механическую прочность необходимо учитывать собственный вес кабеля, а также дополнительные нагрузки за счет гололедных образований и ветрового давления на ОК.

Для удобства проведения расчетов воздушных конструкций на механическую прочность принято выражать все нагрузки, действующие в них, через так называемые удельные нагрузки.

В расчете используют следующие виды удельных нагрузок.

1. Удельная нагрузка г1 от силы тяжести (собственного веса) оптического кабеля

, ,

где Р - удельная масса оптического кабеля, кг/м; S - площадь поперечного сечения кабеля, м2; g - ускорение свободного падения, g=9,81 м/с2.

2. Удельная нагрузка г2от наличия на воздушных конструкциях льда при гололеде

, н/м3,

где b - толщина стенки льда на кабеле, м (5-20 мм в зависимости от метеорологических условий местности); сл - плотность льда, сл = 900 кг/м3; d - наружный диаметр оптического кабеля, м.

3. Удельная нагрузка гЗ от силы тяжести оптического кабеля и силы тяжести отложившегося на нем льда

, н/м3.

4. Удельная нагрузка г4 от давления ветра на воздушные конструкции при отсутствии гололеда

, н/м3,

где х - скорость ветра (15-30), м/с.

5. Удельная нагрузка г5 от давления ветра на оптический кабель, покрытый гололедом

,

где х1 - скорость ветра при гололеде (15-30)Ч2, м/с.

6. Удельная нагрузка г6 от силы тяжести оптического кабеля и давления ветра при отсутствии гололеда

, н/м3.

7. Удельная нагрузка г7 от силы тяжести оптического кабеля, льда и давления ветра на воздушные конструкции, покрытые гололедом

, н/м3.

Целью расчета является определение напряжения растяжения в оптическом кабеле ветра при отсутствии гололеда

, Мпа,

где l - длина пролета, м; г - суммарная удельная нагрузка (г6 или г7), Мн/м3; f - стрела провеса оптического кабеля в пролете, м.

Стрела провеса кабеля в пролете выбирается в зависимости от высоты подвеса ОК на опорах контактной сети и габарита ОК по отношению к земле (см. исходные данные).

Рассчитанная таким образом величина напряжения растяжения сравнивается с допустимой величиной для соответствующего оптического кабеля.

Если у<удоп, то стрела провеса выбрана верно.

При подвеске оптического кабеля на опорах контактной сети проводится следующая подготовительная работа: организуется предмонтажный и входной контроль ОК и крепежной арматуры; устанавливаются и закрепляются в проектном положении кронштейны, хомуты и детали анкеровки ОК на опорах; подвешиваются на кронштейнах укладочные и раскаточные ролики для протяжки трос-лидера и ОК.

При протяжке ОК выполняются следующие работы: протяжка диэлектрического трос-лидера; протяжка оптического кабеля.

Работы при протяжке ОК могут выполняться "с пути" со снятием напряжения и с занятием перегона, либо при наличии подъездов к пути и обеспечения электробезопасности - "с поля" без снятия напряжения.

При использовании специализированного комплекса машин или специализированного комплекса механизмов на платформах для работы "с пути" подвеска ОК осуществляется в следующей последовательности.

По заранее подвешенным на кронштейны роликам протягивается трос-лидер. Для этого после занятия комплексом перегона и снятия напряжения один грузовой прицеп с катушками трос-лидера устанавливается в начале анкерного участка за 25-30 м от анкерной опоры, а второй прицеп в сцепе с автомотрисой начинает медленно двигаться к первой анкерной опоре. Напротив первой анкерной опоры автомотриса останавливается, монтажная люлька с двумя монтерами поднимается к кронштейну с роликом. Трос-лидер открепляется от люльки, пропускается через ролик и снова прикрепляется к люльке. В таком положении автомотриса медленно передвигается к следующей опоре. На следующей опоре трос-лидер снова пропускается через ролик и движение автомотрисы возобновляется. Таким образом, трос-лидер протягивается по всему участку. После пропуска трос-лидера через крайний ролик анкерной опоры, автомотриса, с находящимся впереди нее прицепом с кабельными барабанами, передвигается на расстояние 25-30 м за последнюю опору и останавливается. Во время протяжки трос-лидера монтеры, управляющие тягово-тормозным устройством с катушками, подтормаживают катушки, обеспечивая раскатку трос-лидера под натяжением.

Для крепления к опорам должны использоваться хомуты или монтажные кронштейны. После закрепления муфты на опоре, технологический запас может укладываться петлей и закрепляться на опоре. При этом ОК с одной стороны муфты сворачивается в петлю в одном направлении, а с другой стороны - в обратном. Затем петли соединяются и закрепляются на кронштейне.

4. Монтаж оптических кабелей

Наиболее трудоемким этапом создания волоконно-оптических систем связи является монтаж кабельной системы. В этой статье мы поговорим о том, какие методы монтажа кабеля сегодня используются.

В зависимости от того, где проходит тот или иной фрагмент кабельной системы, можно выделить следующие виды монтажа:

- Монтаж кабеля внутри зданий.

- Подземная прокладка.

- Подвешивание на опорах.

- Прокладка по морскому дну.

В зависимости от вида монтажа варьируются и типы используемых кабелей, и конкретные методы их прокладки.

Внутри зданий. Монтажные работы по прокладке кабелей внутри зданий, как правило, не требуют серьезных затрат. Для прокладки используются имеющиеся в здании кабельные каналы, пространства фальшполов и потолков.

Внутри зданий можно использовать наименее защищенные кабели. Пожаробезопасность может быть одним из требований, которые к ним могут предъявляться. Внешняя оболочка кабеля в этом случае должна не только изготовляться из негорючих материалов, но и исключать выделение при температуре горения как вредных для организма человека веществ, так и газов, которые при большом скоплении могут привести к взрыву. Пожаробезопасные кабели стоят дорого, поэтому при невысокой стоимости самих монтажных работ общие затраты на создание кабельной сети могут существенно увеличиться.

Другой спецификой этого вида монтажа является большое количество углов поворота кабеля. При монтаже необходимо следить, чтобы радиусы изгиба на поворотах были не меньше указанных в документации на кабель.

Под землей. Подземная прокладка кабеля требует бОльших затрат на монтаж. Часто тем, кто прокладывает подземный кабель, приходится сталкиваться с непредвиденными трудностями.

Тем не менее, этот вид прокладки широко применяется (часто другой альтернативы просто нет) и четко разбивается на два подвида:

· прокладка в подземной кабельной канализации;

· закапывание в грунт.

Подземная кабельная канализация используется при монтаже кабеля в городской черте. Кабель при этом прокладывается поэтапно: отрезками между двумя ближайшими люками колодцев кабельной канализации. Первоначально из одного колодца в другой продевается легкая проволока, а затем с ее помощью протаскивается сам кабель. Операция эта может оказаться очень трудоемкой в случае, если каналы забиты до отказа другими коммуникационными кабелями.

При прокладке в подземных коммуникациях могут использоваться самые разные типы кабеля. Наиболее важные требования, которые к ним предъявляются, - герметичность и наличие специальной оболочки из прочной металлической проволоки или гофрированной ленты для защиты от грызунов.

Закапывание в грунт применяется за городской чертой, в основном на равнинной местности. Кабель укладывается на глубине около 1 м с помощью специального плугового укладчика, который за один проход копает мини-траншею (с помощью специального плуга), укладывает кабель и, во многих случаях, сразу же его закапывает. Впрочем, при грунтовой прокладке нередко используется и ручной труд.

Существенную опасность для уложенного в грунт кабеля представляют "копатели" всех видов и форм собственности. Добродушный частник, пожелавший выкопать колодец, может вывести из строя линию связи протяженностью в несколько тысяч километров. Поэтому часто в траншею с кабелем на меньшей глубине закладывается ярко-оранжевая лента с предупредительной надписью.

Примечательной разновидностью укладки кабеля в грунт является использование полиэтиленовых труб. Суть этой технологии состоит в том, что сначала в грунт закапывается не сам кабель, а длинная полиэтиленовая трубка. После того, как канал создан по всей длине будущей линии связи, в него с помощью специального компрессора в буквальном смысле вдувается оптоволоконный кабель. Для снижения трения кабеля о стенки трубки, часто ее внутреннюю поверхность снабжают продольными ребрами.

Достоинство этого способа укладки кабеля в грунт очевидно: при необходимости замены кабель, с помощью того же компрессора, высасывается из трубки, и вместо него вдувается новый.

Что касается типа кабеля, который используется для укладки в грунт, то это определяется, в основном, характером местности, по которой он проходит. Здесь наиболее важным свойством, которым должен обладать прокладываемый кабель, является герметичность (обычно она проверяется методом электрического пробоя), особенно если кабель прокладывается в болотистой местности, в поймах рек и по дну водоемов. Такой кабель может иметь несколько защитных оболочек, а свободное пространство внутри него заполняется специальным гидрофобным веществом.

Над землей. Хотя сейчас в России более трех четвертей оптоволоконных кабелей проходят под землей, монтаж кабеля на опорах имеет большие перспективы. Он может с успехом использоваться и в городской черте, и за ее пределами, так как оптоволоконный кабель подвешивается на уже существующие опоры линий традиционных коммуникаций. Это могут быть:

· опоры телефонных и телеграфных линий;

· опоры линий электропередач (ЛЭП);

· опоры контактной электросети железных дорог.

Надземная прокладка кабеля производится сравнительно легко. Монтаж кабеля осуществляется сразу на большом отрезке линии опор. Обычно это делается сразу по всей длине подвешиваемого кабеля (3-6 км)с помощью так называемого метода подтяжения. На опорах закрепляются специальные ролики, по которым сначала протягивается легкий полимерный трос, а затем уже, с его помощью, - кабель. Специальные машины обеспечивают равномерное разматывание кабеля с транспортировочных барабанов. После того как кабель подвешен на всем отрезке, он перекладывается с роликов на крепежные элементы.

Отдельного внимания заслуживает подвешивание оптоволоконного кабеля на опорах ЛЭП. Здесь имеется три возможности:

· Использование специального грозозащитного троса с встроенным оптоволоконным кабелем.

· Подвешивание самонесущего кабеля между опорами.

· Навивка кабеля на фазовый или грозозащитный провод.

Включение кабеля в грозозащитный трос (см. рис), который является обязательным элементом любой ЛЭП, - одно из самых надежных и долговечных (до 40-60 лет) решений. Однако и стоимость грозозащитного троса со встроенным оптоволоконным кабелем, и стоимость его монтажа сравнительно велики. Поэтому использование грозозащитного троса с оптоволоконной начинкой оказывается эффективным при строительстве новых ЛЭП.

Использование самонесущего кабеля, то есть кабеля, подвешиваемого на опорах вместе с фазовыми проводами, имеет свои преимущества: он не подвержен поражению молнией или токами короткого замыкания. С другой стороны, этот вид кабеля наименее надежен и не может быть использован в ЛЭП напряжением более 150 кВ.

Навивка кабеля на фазовый и грозозащитный провод - сегодня, пожалуй, самый экономичный и быстрый способ прокладки кабеля по существующим ЛЭП. Оптоволоконный кабель навивается на провод с помощью механизированных средств. Интересна, например, радиоуправляемая навивочная машинка фирмы "Фокас", которая способна обвивать кабель со скорость 1 м/с (за исключением участков обхода опоры). При обходе опоры машинку необходимо перевешивать на следующий отрезок линии. Эта процедура занимает примерно 40 минут, тем не менее, скорость прокладки кабеля довольно высока - около 3 км в день.

Однако и у этого способа есть свои недостатки. Он не может быть применен на линиях с напряжением выше 175 кВ, и, к тому же, при замене провода, вокруг которого навит кабель, последний придется прокладывать заново.

По дну морскому. Оптоволоконные кабели, которые прокладывается по дну морей и океанов, - наиболее дорогие. Для укладки кабеля в этом случае используются специально оборудованные судна. Кабель прокладывается за один раз: от берега до берега. Если требуемый для этого кабель (например, при прокладке трансатлантических линий) не помещается на одном судне, то используют целую эскадру кораблей.

Особые проблемы связаны с устранением неисправностей кабеля, проложенного по морскому дну. После того как кабель пролежит на дне не один месяц, его зачастую трудно бывает найти. Особенности донного рельефа и подводные течения могут отнести кабель на десятки километров.

Таковы основные виды монтажа оптоволоконных кабельных систем. Сделанный обзор не претендует на полноту. Каждый из способов монтажа может иметь несколько модификаций, выбор которых определяется конкретными целью и условиями прокладки.

5. Сметно-финансовый расчет

Сметная стоимость строительства оптической магистрали на участке проектирования определяется с учетом затрат на производство строительных работ, стоимости самого кабеля и расходов на его монтаж.

Таблица 5.1 Смета на строительство оптической линии связи на участке Капчагай - Коксу железной дороги

Наименование работ

Единица измерения

Количество

Стоимость, т.г

Единичная

Общая

А.Кабельная линия

1.Строительные работы

бурения с закладкой пластмассовой трубы диаметром 50 мм при длине перехода до 15 м

км трассы

км

272

18000

4896000

2.Разработка траншеи механизированным способом с укладкой до 4 кабелей на глубине до 1,2 м.

700

190400

3.Разработка траншей вручную с укладкой до двух кабелей на глубине до 1,2 м в пластмассовых трубах для организации ввода в здание

1500

408000

4.Переход под железными и автомобильными дорогами методом горизонтального

900

244800

Итого

5739200

Кроме перечисленных расходов, связанных непосредственно с процессом строительства, сметой предусматриваются также накладные расходы и плановые накопления в соответствующих размерах.

Расценки на земляные и монтажные работы, а также ориентировочная стоимость оптического кабеля приведены в приложении 2. (таблица 1).

Результаты сметно-финансового расчета сводятся в таблицу следующей формы (таблица 5.1)

Заключение

В данной курсовой работе мной было выбран участок магистрального пути от города Капчагай до станции Коксу протяженностью 272 км.

Построила первичную цифровую сеть МПС Капчагай - Коксу.

В курсовой работе по составу стекла рассчитала показатели преломления. По данным рассчитала коэффициента затухания0,1961 дБ, не превышающий нормы. Рассчитала материальную дисперсии пс/км, волноводная дисперсия пс/км, что также удовлетворяет нормам параметров.

Так же составила смету на строительство оптической линии связи на участке Капчагай - Коксу железной дороги.

Сметная стоимость строительства оптической магистрали на участке проектирования определила с учетом затрат на производство строительных работ, стоимости самого кабеля и расходов на его монтаж.

Кроме перечисленных расходов, связанных непосредственно с процессом строительства, сметой предусматриваются также накладные расходы и плановые накопления в соответствующих размерах.

По расчетам общая сумма составляет 5739200 тенге.

Список использованной литературы

Липская М.А. Методические указания к курсовой работе по дисциплине «Волоконно-оптические линии связи». Алматы, КазАТК, 2012.

Концепция создания сети связи МПС РФ с интеграцией услуг / Под ред. Казанского А.Ю. - Москва: НИИЖА, 1997. - 92 с.

Гроднев И.И. Волоконно-оптические линии связи. - М.: Радио и связь, 1990.-224с.

Гроднев И.И., Верник С.М. Линии связи. - М.: Радио и связь, 1988. - 544 с.

Джеймс Дж. Рэфи. Волоконно-оптические кабели - световоды. abc TeleTraining, Inc, 1991. - 212 с.

Мурадян А.Г., Гольдфарб И.С., Иноземцев В.П. Оптические кабели многоканальных линий связи. - М.: Радио и связь, 1987. - 200 с.

Андрушко Л.М., Гроднев И.И., Панфилов И.П. Волоконно-оптические линии связи. - М.: Радио и связь, 1985. - 136 с.

Строительство линейных сооружений железнодорожной связи: Справочник; Под ред. Соболева В.И. М.: Транспорт, 1987. - 335 с.

Антонян А.Б., Гренадеров Р.С. Оптические кабели связи, применяемые на ВСС РФ. //Технология и средства связи. - 1998. - с. 14-21.

9. Иванов А.Б. Волоконная оптика. - М. Компания САЙРУС СИСТЕМС, 1999. - 658с.

Размещено на Allbest.ru

...

Подобные документы

  • Расчет показателя преломления компонентов волоконного световода, его числовой апертуры и затухания. Определение длины регенерационного участка с учетом ослабления сигнала. Определение помехозащищенности сигнала на выходе фотоприемного устройства ФПУ.

    курсовая работа [217,1 K], добавлен 25.01.2014

  • Определение числа каналов передачи. Характеристика трассы волоконно–оптической линии передачи. Расчет числовой апертуры, нормированной частоты и числа модулей, затухания оптического волокна, дисперсии широкополосности, длины регенирационного участка.

    курсовая работа [469,4 K], добавлен 02.03.2016

  • Конструкция волоконно-оптической кабелей связи. Использование системы передачи ИКМ-30. Технические характеристики ОКЗ-С-8(3,0)Сп-48(2). Расчет длины регенерационного участка. Проектирование первичной сети связи на железной дороге с использованием ВОЛС.

    курсовая работа [189,4 K], добавлен 22.10.2014

  • Обоснование трассы волоконно-оптической линии передач. Расчет необходимого числа каналов, связывающих конечные пункты; параметров оптического кабеля (затухания, дисперсии), длины участка регенерации ВОЛП. Выбор системы передачи. Схема организации связи.

    курсовая работа [4,3 M], добавлен 15.11.2013

  • Цифровизация участка сети связи с использованием SDH технологии. Выбор трассы волоконно-оптического кабеля; расчет длины регенерационного участка, мультиплексный план. Разработка схемы организации связи, синхронизация сети. Линейно-аппаратный цех.

    курсовая работа [3,8 M], добавлен 20.03.2013

  • Расчет числа каналов на магистрали. Выбор системы передачи, оптического кабеля и оборудования SDH. Характеристика трассы, вычисление длины регенерационного участка. Составление сметы затрат. Определение надежности волоконно-оптической линии передачи.

    курсовая работа [877,2 K], добавлен 21.12.2013

  • Выбор и обоснование трассы прокладки волоконно-оптической линии передачи (ВОЛП). Расчет необходимого числа каналов. Подбор типа и вычисление параметров оптического кабеля. Определение длины регенерационного участка. Смета на строительство и монтаж ВОЛП.

    курсовая работа [116,1 K], добавлен 15.11.2013

  • Выбор системы и типа кабеля для обеспечения передачи информации между городами. Вычисление оптимальной трассы прокладки кабеля вдоль автомобильной дороги. Расчет затухания, числовой апертуры, числа мод, частоты. Составление сметы на строительство линии.

    курсовая работа [806,4 K], добавлен 04.06.2015

  • Расчет необходимого количества каналов, выбор конструкции кабеля, определение бюджета мощности и длины регенерационного участка с целью проектирования волоконно-оптической линии связи Томск-Северск. Составление сметы на прокладку и монтаж кабелей.

    курсовая работа [2,0 M], добавлен 01.02.2012

  • Схема строительства волоконно-оптической линии связи (ВОЛС) с использованием подвески оптического кабеля на осветительных опорах. Особенности организации по ВОЛС каналов коммерческой связи. Расчет длины регенерационных участков по трассе линии связи.

    курсовая работа [778,1 K], добавлен 29.12.2014

  • Линии автоматики, телемеханики и связи на участке железной дороги. Организация общетехнологической телефонной связи. Выбор типа и емкости волоконно-оптического кабеля. Расчет длины элементарного участка и надежности оптической и электрической линии связи.

    курсовая работа [2,3 M], добавлен 13.02.2014

  • Выбор трассы прокладки волоконно-оптической линии связи. Расчет необходимого числа каналов. Определение числа оптических волокон в оптическом кабеле, выбор его типа и параметров. Структурная схема организации связи. Составление сметы на строительство.

    курсовая работа [571,0 K], добавлен 16.07.2013

  • Характеристика цифровой аппаратуры уплотнения импульсно-кодовой модуляции. Расчет влияний тяговой сети переменного тока на кабельную линию. Защита кабеля от опасных и мешающих влияний. Расчет длины регенерационного участка волокно-оптической линии связи.

    курсовая работа [595,9 K], добавлен 06.02.2013

  • Структура оптического волокна. Виды оптоволоконных кабелей. Преимущества и недостатки волоконно-оптической линии связи. Области ее применения. Компоненты тракта передачи видеонаблюдения. Мультиплексирование видеосигналов. Инфраструктура кабельной сети.

    курсовая работа [1,2 M], добавлен 01.06.2014

  • Волоконно-оптическая линия связи как вид системы передачи, при котором информация передается по оптическим диэлектрическим волноводам, знакомство с особенностями проектирования. Анализ этапов расчета параметров кабеля и длины регенерационного участка.

    курсовая работа [1,6 M], добавлен 28.04.2015

  • Общая характеристика оптоволоконных систем связи. Измерение уровней оптической мощности и затухания. Системы автоматического мониторинга. Оборудование кабельного линейного тракта. Модернизация волоконно-оптической сети. Схема оборудования электросвязи.

    дипломная работа [3,8 M], добавлен 23.12.2011

  • Выбор системы передачи и оборудования для защиты информации. Расчет параметров оптического волокна и параметров передачи оптического кабеля. Особенность вычисления длины регенерационного участка. Анализ определения нормативного параметра надежности.

    курсовая работа [803,9 K], добавлен 12.10.2021

  • Преимущества оптических систем передачи перед системами передачи, работающими по металлическому кабелю. Конструкция оптических кабелей связи. Технические характеристики ОКМС-А-6/2(2,0)Сп-12(2)/4(2). Строительство волоконно-оптической линии связи.

    курсовая работа [602,7 K], добавлен 21.10.2014

  • Изучение дисперсии - рассеяния во времени спектральных или модовых составляющих оптического сигнала. Определение длины и типа основного и компенсирующего дисперсию кабеля или оптических волокон. Вычисление остаточной дисперсии после компенсации.

    курсовая работа [506,5 K], добавлен 03.06.2015

  • Выбор и обоснование трассы прокладки внутризоновой волоконной линии связи между пунктами Кемерово-Киселевск. Расчет числа каналов, числа оптических волокон, длины регенерационного участка. Выбор системы передачи. Смета на строительство и монтаж ВОЛС.

    курсовая работа [2,5 M], добавлен 28.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.