Спутниковые технологии телекоммуникаций на современном этапе

История развития исследований в области гражданской спутниковой связи. Характеристика спутниковых ретрансляторов, классы их орбит. Выбор частоты для передачи данных от земной станции к спутнику. Применение спутниковой связи, спутниковый Интернет.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 24.04.2015
Размер файла 528,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Содержание

1. История

2. Спутниковые ретрансляторы

3. Орбиты спутниковых ретрансляторов

4. Многократное использование частот. Зоны покрытия

5. Частотные диапазоны

6. Модуляция и помехоустойчивое кодирование

7. Множественный доступ

8. Применение спутниковой связи

8.1 Магистральная спутниковая связь

8.2 Системы VSAT

8.3 Системы подвижной спутниковой связи

8.4 Спутниковый Интернет

9. Недостатки спутниковой связи

9.1 Слабая помехозащищённость

9.2 Влияние атмосферы

9.2.1 Поглощение в тропосфере

9.2.2 Ионосферные эффекты

9.3 Задержка распространения сигнала

9.4 Влияние солнечной интерференции

Литература

Ссылки

1. ИСТОРИЯ

Спутниковая связь -- один из видов космической радиосвязи, основанный на использовании искусственных спутников земли в качестве ретрансляторов. Спутниковая связь осуществляется между земными станциями, которые могут быть как стационарными, так и подвижными.

Спутниковая связь является развитием традиционной радиорелейной связипутём вынесения ретранслятора на очень большую высоту (от десятков до сотен тысяч км). Так как зона его видимости в этом случае -- почти половина Земного шара, то необходимость в цепочке ретрансляторов отпадает -- в большинстве случаев достаточно и одного.

В 1945 году в статье «Внеземные ретрансляторы» («Extra-terrestrial Relays»), опубликованной в октябрьском номере журнала «Wireless World», английский учёный, писатель и изобретатель Артур Кларк предложил идею создания системы спутников связи на геостационарных орбитах, которые позволили бы организовать глобальную систему связи.

Впоследствии Кларк на вопрос, почему он не запатентовал изобретение (что было вполне возможно), отвечал, что не верил в возможность реализации подобной системы при своей жизни, а также считал, что подобная идея должна приносить пользу всему человечеству.

Первые исследования в области гражданской спутниковой связи в западных странах начали появляться во второй половине 50-х годов XX века. В США толчком к ним послужили возросшие потребности в трансатлантической телефонной связи.

В 1957 году в СССР был запущен первый искусственный спутник Земли с радиоаппаратурой на борту.

Спутник-баллон «Эхо-1»

12 августа 1960 года специалистами США был выведен на орбиту высотой 1500 км надувной шар. Этот космический аппарат назывался «Эхо-1». Его металлизированная оболочка диаметром 30 м выполняла функции пассивного ретранслятора.

Инженеры работают над первым в мире коммерческим спутником связи Early Bird спутниковый связь ретранслятор станция

20 августа 1964 года 11 стран (СССР в их число не вошёл) подписали соглашение о создании международной организации спутниковой связи Intelsat (International Telecommunications Satellite organization) . В СССР к тому времени была собственная развитая программа спутниковой связи, увенчавшаяся 23 апреля 1965 года успешным запуском связного советского спутника Молния-1. В рамках программы Intelsat первый коммерческий спутник связи Early Bird (англ.) («ранняя пташка»), произведённый корпорацией COMSAT, был запущен 6 апреля 1965 года.

По сегодняшним меркам спутник Early Bird (INTELSAT I) обладал более чем скромными возможностями: обладая полосой пропускания 50 МГц, он мог обеспечивать до 240 телефонных каналов связи. В каждый конкретный момент времени связь могла осуществляться между земной станцией в США и только одной из трёх земных станций в Европе (в Великобритании, Франции или Германии), которые были соединены между собой кабельными линиями связи.

В дальнейшем технология шагнула вперед, и спутник INTELSAT IX уже обладал полосой пропускания 3456 МГц.

В СССР долгое время спутниковая связь развивались только в интересах Министерства обороны СССР. В силу большей закрытости космической программы развитие спутниковой связи в социалистических странах шло иначе чем в западных странах. Развитие гражданской спутниковой связи началось соглашением между 9 странами социалистического блока о создании системы связи «Интерспутник» которое было подписано только в 1971 году.

2. Спутниковые ретрансляторы

В первые годы исследований использовались пассивные спутниковые ретрансляторы (примеры -- спутники «Эхо» и «Эхо-2»), которые представляли собой простой отражатель радиосигнала (часто -- металлическая или полимерная сфера с металлическим напылением), не несущий на борту какого-либо приёмопередающего оборудования. Такие спутники не получили распространения. Все современные спутники связи являются активными. Активные ретрансляторы оборудованы электронной аппаратурой для приема, обработки, усиления и ретрансляции сигнала.

Спутниковые ретрансляторы могут быть нерегенеративными и регенеративными. Нерегенеративный спутник, приняв сигнал от одной земной станции, переносит его на другую частоту, усиливает и передает другой земной станции. Спутник может использовать несколько независимых каналов, осуществляющих эти операции, каждый из которых работает с определённой частью спектра (эти каналы обработки называются транспондерами).

Регенеративный спутник производит демодуляцию принятого сигнала и заново модулирует его. Благодаря этому исправление ошибок производится дважды: на спутнике и на принимающей земной станции. Недостаток этого метода -- сложность (а значит, гораздо более высокая цена спутника), а также увеличенная задержка передачи сигнала.

3. Орбиты спутниковых ретрансляторов

Орбиты, на которых размещаются спутниковые ретрансляторы, подразделяют на три класса:

· экваториальные,

· наклонные,

· полярные.

Важной разновидностью экваториальной орбиты является геостационарная орбита, на которой спутник вращается с угловой скоростью, равной угловой скорости Земли, в направлении, совпадающем с направлением вращения Земли. Очевидным преимуществом геостационарной орбиты является то, что приёмник в зоне обслуживания «видит» спутник постоянно.

Однако геостационарная орбита одна, емкость её, определяемая длиной окружности орбиты, поделённой на размеры спутников с учётом «интервалов безопасности» между ними, конечна. Поэтому все спутники, которые хотелось бы, вывести на неё невозможно. Другим её недостатком является большамя высота (35 786 км), а значит, и бомльшая цена вывода спутника на орбиту. Кроме того, плотность потока мощности у земной поверхности в точке приема сигнала падает по направлению от экватора к полюсам из-за меньшего угла наклона вектора электромагнитной энергии к земной поверхности, а также из-за увеличивающегося пути прохождения сигнала через атмосферу и связанного с этим поглощением. Поэтому спутник на геостационарной орбите практически не способен обслуживать земные станции в приполярных областях.

Наклонная орбита позволяет решить эти проблемы, однако, из-за перемещения спутника относительно наземного наблюдателя необходимо запускать не меньше трёх спутников на одну орбиту, чтобы обеспечить круглосуточный доступ к связи.

Полярная орбита -- предельный случай наклонной (с наклонением 90є).

При использовании наклонных орбит земные станции оборудуются системами слежения, осуществляющими наведение антенны на спутник[10]. Станции, работающие со спутниками, находящимися на геостационарной орбите, как правило, также оборудуются такими системами, чтобы компенсировать отклонение от идеальной геостационарной орбиты. Исключение составляют небольшие антенны, используемые для приёма спутникового телевидения: их диаграмма направленностидостаточно широкая, поэтому они не чувствуют колебаний спутника возле идеальной точки.

Орбиты: 1 -- экваториальная, 2 -- наклонная, 3 -- полярная

4. Многократное использование частот. Зоны покрытия

Поскольку радиочастотный диапазон является ограниченным ресурсом, необходимо обеспечить возможность использования одних и тех же частот разными земными станциями. Сделать это можно двумя способами:

§ пространственное разделение -- каждая антенна спутника принимает сигнал только с определённого района земной поверхности, при этом разные районы могут использовать одни и те же частоты,

§ поляризационное разделение -- различные антенны принимают и передают сигнал с ортогональными поляризациями (для линейной поляризации во взаимно перпендикулярных плоскостях, для круговой соответственно с правосторонним и левосторонним вращением) , при этом одни и те же частоты могут применяться два раза (для каждой из поляризаций).

Типичная карта покрытия для спутника, находящегося на геостационарной орбите, включает следующие компоненты:

§ глобальный луч -- производит связь с земными станциями по всей зоне покрытия, ему выделены частоты, не пересекающиеся с другими лучами этого спутника.

§ лучи западной и восточной полусфер -- эти лучи поляризованы в плоскости A, причём в западной и восточной полусферах используется один и тот же диапазон частот.

§ зонные лучи -- поляризованы в плоскости B (перпендикулярной A) и используют те же частоты, что и лучи полусфер. Таким образом, земная станция, расположенная в одной из зон, может использовать также лучи полусфер и глобальный луч.

При этом все частоты (за исключением зарезервированных за глобальным лучом) используются многократно: в западной и восточной полусферах и в каждой из зон.

Типичная карта покрытия спутника, находящегося на геостационарной орбите

5. Частотные диапазоны

Выбор частоты для передачи данных от земной станции к спутнику и от спутника к земной станции не является произвольным. От частоты зависит, например, поглощение радиоволн в атмосфере, а также необходимые размеры передающей и приёмной антенн. Частоты, на которых происходит передача от земной станции к спутнику, отличаются от частот, используемых для передачи от спутника к земной станции (как правило, первые выше).

Частоты, используемые в спутниковой связи, разделяют на диапазоны, обозначаемые буквами. К сожалению, в различной литературе точные границы диапазонов могут не совпадать. Ориентировочные значения даны в рекомендации ITU-R V.431-6:

Название диапазона

Частоты (согласно ITU-R V.431-6)

Применение

L

1,5 ГГц

Подвижная спутниковая связь

S

2,5 ГГц

Подвижная спутниковая связь

С

4 ГГц, 6 ГГц

Фиксированная спутниковая связь

X

Для спутниковой связи рекомендациями ITU-R частоты не определены. Для приложений радиолокации указан диапазон 8-12 ГГц.

Фиксированная спутниковая связь

Ku

11 ГГц, 12 ГГц, 14 ГГц

Фиксированная спутниковая связь, спутниковое вещание

K

20 ГГц

Фиксированная спутниковая связь, спутниковое вещание

Ka

30 ГГц

Фиксированная спутниковая связь, межспутниковая связь

Используются и более высокие частоты, но повышение их затруднено высоким поглощением радиоволн этих частот атмосферой. Ku-диапазон позволяет производить прием сравнительно небольшими антеннами, и поэтому используется в спутниковом телевидении (DVB), несмотря на то, что в этом диапазоне погодные условия оказывают существенное влияние на качество передачи.

Для передачи данных крупными пользователями (организациями) часто применяется C-диапазон. Это обеспечивает более высокое качество приема, но требует довольно больших размеров антенны.

Антенна для приема спутникового Спутниковая антенна для C-диапазона телевидения (Ku-диапазон)

6. Модуляция и помехоустойчивое кодирование

Особенностью спутниковых систем связи является необходимость работать в условиях сравнительно низкого отношения сигнал/шум, вызванного несколькими факторами:

§ значительной удалённостью приёмника от передатчика,

§ ограниченной мощностью спутника (невозможностью вести передачу на большой мощности).

В связи с этим спутниковая связь плохо подходит для передачи аналоговых сигналов. Поэтому для передачи речи её предварительно оцифровывают, используя, например, импульсно-кодовую модуляцию (ИКМ).

Для передачи цифровых данных по спутниковому каналу связи они должны быть сначала преобразованы в радиосигнал, занимающий определённый частотный диапазон. Для этого применяется модуляция (цифровая модуляция называется также манипуляцией). Наиболее распространёнными видами цифровой модуляции для приложений спутниковой связи являются фазовая манипуляция и квадратурная амплитудная модуляция. Например, в системах стандарта DVB-S2 применяются QPSK, 8-PSK, 16-APSK и 32-APSK.

Модуляция производится на земной станции. Модулированный сигнал усиливается, переносится на нужную частоту и поступает на передающую антенну. Спутник принимает сигнал, усиливает, иногда регенерирует, переносит на другую частоту и с помощью определённой передающей антенны транслирует на землю.

Из-за низкой мощности сигнала возникает необходимость в системах исправления ошибок. Для этого применяются различные схемы помехоустойчивого кодирования, чаще всего различные варианты свёрточных кодов (иногда в сочетании с кодами Рида-Соломона), а также турбо-коды и LDPC-коды.

7. Множественный доступ

Для обеспечения возможности одновременного использования спутникового ретранслятора несколькими пользователями применяют системы множественного доступа:

§ множественный доступ с частотным разделением -- при этом каждому пользователю предоставляется отдельный диапазон частот.

§ множественный доступ с временнымм разделением -- каждому пользователю предоставляется определённый временной интервал (таймслот), в течение которого он производит передачу и прием данных.

§ множественный доступ с кодовым разделением -- при этом каждому пользователю выдаётся кодовая последовательность, ортогональная кодовым последовательностям других пользователей. Данные пользователя накладываются на кодовую последовательность таким образом, что передаваемые сигналы различных пользователей не мешают друг другу, хотя и передаются на одних и тех же частотах.

Кроме того, многим пользователям не требуется постоянный доступ к спутниковой связи. Этим пользователям канал связи (таймслот) выделяется по требованию с помощью технологии DAMA (Demand Assigned Multiple Access -- множественный доступ с предоставлением каналов по требованию).

8. Применение спутниковой связи

8.1 Магистральная спутниковая связь

Изначально возникновение спутниковой связи было продиктовано потребностями передачи больших объёмов информации. Первой системой спутниковой связи стала система Intelsat, затем были созданы аналогичные региональные организации (Eutelsat, Arabsat и другие). С течением времени доля передачи речи в общем объёме магистрального трафика постоянно снижалась, уступая место передаче данных.

С развитием волоконно-оптических сетей последние начали вытеснять спутниковую связь с рынка магистральной связи.

8.2 Система VSAT

Системы VSAT (Very Small Aperture Terminal -- терминал с очень маленькой апертурой) предоставляют услуги спутниковой связи клиентам (как правило, небольшим организациям), которым не требуется высокая пропускная способность канала. Скорость передачи данных для VSAT-терминала обычно не превышает 2048 кбит/с.

Слова «очень маленькая апертура» относятся к размерам антенн терминалов по сравнению с размерами более старых антенн магистральных систем связи. VSAT-терминалы, работающие в C-диапазоне, обычно используют антенны диаметром 1,8-2,4 м, в Ku-диапазоне -- 0,75-1,8 м.

В системах VSAT применяется технология предоставления каналов по требованию.

Антенна терминала VSAT

8.3 Системы подвижной спутниковой связи

Особенностью большинства систем подвижной спутниковой связи является маленький размер антенны терминала, что затрудняет прием сигнала. Для того, чтобы мощность сигнала, достигающего приёмника, была достаточной, применяют одно из двух решений:

§ Спутники располагаются на геостационарной орбите. Поскольку эта орбита удалена от Земли на расстояние 35786 км, на спутник требуется установить мощный передатчик. Этот подход используется системой Inmarsat (основной задачей которой является предоставление услуг связи морским судам) и некоторыми региональными операторами персональной спутниковой связи (например, Thuraya).

§ Множество спутников располагается на наклонных или полярных орбитах. При этом требуемая мощность передатчика не так высока, и стоимость вывода спутника на орбиту ниже. Однако такой подход требует не только большого числа спутников, но и разветвленной сети наземных коммутаторов. Подобный метод используется операторами Iridium и Globalstar.

С операторами персональной спутниковой связи конкурируют операторы сотовой связи. Характерно, что как Globalstar, так и Iridium испытывали серьёзные финансовые затруднения, которые довели Iridium до реорганизационного банкротства в 1999 г.

В декабре 2006 года был запущен экспериментальный геостационарный спутник Кику-8 с рекордно большой площадью антенны, который предполагается использовать для отработки технологии работы спутниковой связи с мобильными устройствами, не превышающими по размерам сотовые телефоны.

8.4 Спутниковый Интернет

Спутниковая связь находит применение в организации «последней мили» (канала связи между интернет-провайдером и клиентом), особенно в местах со слабо развитой инфраструктурой.

Особенностями такого вида доступа являются:

§ Разделение входящего и исходящего трафика и привлечение дополнительных технологий для их совмещения. Поэтому такие соединения называютасимметричными.

§ Одновременное использование входящего спутникового канала несколькими (например 200-ми) пользователями: через спутник одновременно передаются данные для всех клиентов «вперемешку», фильтрацией ненужных данных занимается клиентский терминал (по этой причине возможна «Рыбалка со спутника»).

По типу исходящего канала различают:

§ Терминалы, работающие только на прием сигнала (наиболее дешевый вариант подключения). В этом случае для исходящего трафика необходимо иметь другое подключение к Интернету, поставщика которого называют наземным провайдером. Для работы в такой схеме привлекается туннелирующее программное обеспечение, обычно входящее в поставку терминала. Несмотря на сложность (в том числе сложность в настройке), такая технология привлекательна большой скоростью по сравнению с dial-up за сравнительно небольшую цену.

§ Приемо-передающие терминалы. Исходящий канал организуется узким (по сравнению со входящим). Оба направления обеспечивает одно и то же устройство, и поэтому такая система значительно проще в настройке (особенно если терминал внешний и подключается к компьютеру через интерфейс Ethernet). Такая схема требует установки на антенну более сложного (приемо-передающего) конвертера.

И в том, и в другом случае данные от провайдера к клиенту передаются, как правило, в соответствии со стандартом цифрового вещания DVB, что позволяет использовать одно и то же оборудование как для доступа в сеть, так и для приема спутникового телевидения.

9. Недостатки спутниковой связи

9.1 Слабая помехозащищённость

Огромные расстояния между земными станциями и спутником являются причиной того, что отношение сигнал/шум на приёмнике очень невелико (гораздо меньше, чем для большинства радиорелейных линий связи). Для того, чтобы в этих условиях обеспечить приемлемую вероятность ошибки, приходится использовать большиеантенны, малошумящие элементы и сложные помехоустойчивые коды. Особенно остро эта проблема стоит в системах подвижной связи, так как в них есть ограничение на размер антенны и, как правило, на мощность передатчика.

9.2 Влияние атмосферы

На качество спутниковой связи оказывают сильное влияние эффекты в тропосфере и ионосфере.

9.2.1 Поглощение в тропосфере

Степень поглощения сигнала атмосферой находится в зависимости от его частоты. Максимумы поглощения приходятся на 22,3 ГГц (резонанс водяных паров) и 60 ГГц (резонанс кислорода). В целом, поглощение существенно сказывается на распространении сигналов с частотой выше 10 ГГц (то есть, начиная с Ku-диапазона). Кроме поглощения, при распространении радиоволн в атмосфере присутствует эффект замирания, причиной которому является разница в коэффициентах преломления различных слоёв атмосферы.

9.2.2 Ионосферные эффекты

Эффекты в ионосфере обусловлены флуктуациями распределения свободных электронов. К ионосферным эффектам, влияющим на распространение радиоволн, относят мерцание, поглощение, задержку распространения, дисперсию, изменение частоты, вращение плоскости поляризации. Все эти эффекты ослабляются с увеличением частоты. Для сигналов с частотами, большими 10 ГГц, их влияние невелико.

Эффект

100 МГц

300 МГц

1 ГГц

3 ГГц

10 ГГц

Вращение плоскости поляризации

30 оборотов

3,3 оборота

108°

12°

1,1°

Дополнительная задержка сигнала

25 мс

2,8 мс

0,25 мс

28 нс

2,5 нс

Поглощение в ионосфере (на полюсе)

5 дБ

1,1 дБ

0,05 дБ

0,006 дБ

0,0005 дБ

Поглощение в ионосфере (в средних широтах)

<1 дБ

0,1 дБ

<0,01 дБ

<0,001 дБ

<0,0001 дБ

Сигналы с относительно низкой частотой (L-диапазон и частично C-диапазон) страдают от ионосферного мерцания, возникающего из-за неоднородностей в ионосфере. Результатом этого мерцания является постоянно меняющаяся мощность сигнала.

9.3 Задержка распространения сигнала

Проблема задержки распространения сигнала так или иначе затрагивает все спутниковые системы связи. Наибольшей задержкой обладают системы, использующие спутниковый ретранслятор на геостационарной орбите. В этом случае задержка, обусловленная конечностью скорости распространения радиоволн, составляет примерно 250 мс, а с учётом мультиплексирования, коммутации и задержек обработки сигнала общая задержка может составлять до 400 мс.

Задержка распространения наиболее нежелательна в приложениях реального времени, например, в телефонной связи. При этом, если время распространения сигнала по спутниковому каналу связи составляет 250 мс, разница во времени между репликами абонентов не может быть меньше 500 мс.

В некоторых системах (например, в системах VSAT, использующих топологию «звезда») сигнал дважды передается через спутниковый канал связи (от терминала к центральному узлу, и от центрального узла к другому терминалу). В этом случае общая задержка удваивается.

9.4 Влияние солнечной интерференции

При приближении Солнца к оси спутника-наземная станция радиосигнал, принимаемый со спутника наземной станцией, искажается в результате интерференции.

Литература

· INTELSAT Satellite Earth Station Handbook

· Dennis Roddy. Satellite Communications. -- McGraw-Hill Telecommunications, 2001.

· Bruce R. Elbert. The Satellite Communication Applications Handbook. -- Artech House, Inc., 2004. -- ISBN 1-58053-490-2.

· Ascent to Orbit, a Scientific Autobiography: The Technical Writings of Arthur C. Clarke. -- New York: John Wiley & Sons, 1984.

· Быховский М. А. Развитие телекоммуникаций. на пути к информационному обществу. развитие спутниковых телекоммуникационных систем. -- М.: Горячая линия ? Телеком, 2014. -- 436 с. -- ISBN 9785991204057.

Ссылки

· WTEC Panel Report on Global Satellite Communications Technology and Systems (англ.)

· О спутнике Early Bird на сайте boeing.com (англ.)

· Communications Satellites Short History (англ.)

· VSAT FAQ (англ.)

· VSAT FAQ (рус.)

· Satellite Internet and VSAT Information Centrum (англ.)

· Satellite Communications and Space Weather (англ.)

· Satellite Communications in the Global Internet: Issues, Pitfalls, and Potential (англ.)

· Спутниковые технологии телекоммуникаций на современном этапе (рус.)

Размещено на Allbest.ru

...

Подобные документы

  • История развития спутниковой связи. Абонентские VSAT терминалы. Орбиты спутниковых ретрансляторов. Расчет затрат по запуску спутника и установке необходимого оборудования. Центральная управляющая станция. Глобальная спутниковая система связи Globalstar.

    курсовая работа [189,0 K], добавлен 23.03.2015

  • Передача цифровых данных по спутниковому каналу связи. Принципы построения спутниковых систем связи. Применение спутниковой ретрансляции для телевизионного вещания. Обзор системы множественного доступа. Схема цифрового тракта преобразования ТВ сигнала.

    реферат [2,7 M], добавлен 23.10.2013

  • Обмен радиовещательных и телевизионных программ. Размещение наземных ретрансляторов. Идея размещения ретранслятора на космическом аппарате. Особенности системы спутниковой связи (ССС), ее преимущества и ограничения. Космический и наземный сегменты.

    реферат [29,1 K], добавлен 29.12.2010

  • Общие сведения о системах персональной спутниковой связи. Ознакомление с развитием российской государственной спутниковой группировки и программой запусков космических аппаратов. Характеристики космических и земных станций передачи и приема сигналов.

    презентация [2,2 M], добавлен 16.03.2014

  • Принципы построения территориальной системы связи. Анализ способов организации спутниковой связи. Основные требования к абонентскому терминалу спутниковой связи. Определение технических характеристик модулятора. Основные виды манипулированных сигналов.

    дипломная работа [3,1 M], добавлен 28.09.2012

  • Орбиты спутниковых ретрансляторов. Модуляция-демодуляция и помехоустойчивое кодирование. Коды Боуза-Чоудхури-Хоквингема. Наиболее широко известные сверточные коды. Протоколы множественного доступа. Проблема статистического мультиплексирования потоков.

    контрольная работа [1,8 M], добавлен 20.12.2012

  • Вопросы построения межгосударственной корпоративной системы спутниковой связи и ее показатели. Разработка сети связи от Алматы до прямых международных каналов связи через Лондон. Параметры спутниковой линии, радиорелейной линии, зоны обслуживания IRT.

    дипломная работа [2,7 M], добавлен 22.02.2008

  • Изучение методов сигналов в спутниковой системе связи. Определение зоны обслуживания КС с построением на карте местности, расчет параметров передающей антенны, максимально возможного количества несущих, передаваемых в одном стволе ретранслятора ССС.

    курсовая работа [6,1 M], добавлен 31.05.2010

  • Особенности построения спутниковой линии связи, методы коммутации и передачи данных. Описание и технические параметры космических аппаратов, их расположение на геостационарных орбитах. Расчет энергетического баланса информационного спутникового канала.

    дипломная работа [2,8 M], добавлен 04.10.2013

  • Расчет напряженности поля земной радиоволны вертикальной поляризации для заданной дальности радиосвязи на двух типах однородной земной поверхности. Расчет напряженности поля на линии связи ионосферной волной. Уровень сигнала на спутниковой радиолинии.

    курсовая работа [1,8 M], добавлен 15.04.2014

  • Характеристика систем спутниковой связи. Принципы квадратурной амплитудной модуляции. Факторы, влияющие на помехоустойчивость передачи сигналов с М-КАМ. Исследование помехоустойчивости приема сигналов 16-КАМ. Применение визуального симулятора AWR VSS.

    курсовая работа [2,2 M], добавлен 28.12.2014

  • Расчет пролёта радиорелейной линии. Выбор оптимальных высот подвеса антенн. Ухудшения связи, вызванные дождем и субрефракцией радиоволн. Энергетический расчет линии "вниз" и "вверх" для спутниковой системы связи. Коэффициент усиления антенны приемника.

    курсовая работа [801,4 K], добавлен 28.04.2015

  • Средства связи как технологии передачи информации: история, характеристика. Проводные, кабельные, воздушные, оптоволоконные линии связи. Беспроводные, радиорелейные, спутниковые системы; буквенно-цифровые сообщения. Сотовая связь, Интернет-телефония.

    курсовая работа [158,8 K], добавлен 18.12.2012

  • Работа спутниковой компании "Пиорит-ДВ". Монтаж спутниковой антенны, настройка спутникового оборудования. Одновременное использование спутникового ретранслятора несколькими пользователями. Скорость передачи данных, пропускная способность цифрового канала.

    отчет по практике [430,3 K], добавлен 26.01.2013

  • Общий анализ антенн, их назначение и классификация, сферы практического применения. Расчет электрических характеристик антенны, радиуса раскрыва большого зеркала, эксцентриситета малого зеркала гиперболы, фокусных расстояний зеркал и диаметра облучателя.

    курсовая работа [4,1 M], добавлен 23.01.2014

  • Проблемы покрытия сотовой сети на пассажирском судне, архитектура мобильной связи на пароме, анализ необходимого трафика. Выбор орбиты, частотного диапазона, технологии передачи. Энергетический расчет спутниковой линии восходящего и нисходящего участков.

    курсовая работа [471,9 K], добавлен 21.11.2010

  • Анализ известных протоколов множественного доступа в сетях спутниковой связи, особенности передачи речевой информации. Разработка схем спутникового ретранслятора пакетов и блока быстрой коммутации для системы космической связи военного назначения.

    курсовая работа [1,3 M], добавлен 13.12.2011

  • Построение радиорелейных и спутниковых линий передачи, виды применяемых модуляций. Характеристика цифровых волоконно-оптических систем передачи. Применение программно-аппаратного комплекса LabView для тестирования сигнализации сети абонентского доступа.

    дипломная работа [2,9 M], добавлен 26.06.2011

  • Состояние внедрения ATN в практику воздушного движения. Спутниковые информационные технологии в системах CNS/ATM. Спутниковые радионавигационные системы. Координаты, время, движение навигационных спутников. Формирование информационного сигнала в GPS.

    учебное пособие [7,4 M], добавлен 23.09.2013

  • Понятие сетей передачи данных, их виды и классификация. Оптико-волоконные и волоконно-коаксиальные сети. Использование витой пары и абонентских телефонных проводов для передачи данных. Спутниковые системы доступа. Сети персональной сотовой связи.

    реферат [287,1 K], добавлен 15.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.