Железо

Железо, область определений. Побочная подгруппа восьмой группы. Химические свойства металла. Биологическая роль железа, применение его соединений в медицине. Диаграмма состояния системы железо-углерод. Задача на определение количества железа в руде.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 17.05.2015
Размер файла 53,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таким образом, в зависимости от условий кристаллизации, чугун может содержать углерод в виде цементита, графита или в виде их смеси. Форма образующегося графита также может быть различной.

Белый чугун содержит весь углерод в виде цементита. Он обладает высокой твердостью, хрупок, и поэтому имеет ограниченное применение. В основном он выплавляется для передела на сталь.

В сером чугуне углерод содержится главным образом в виде пластинок графита. Серый чугун характеризуется высокими литейными свойствами (низкая температура кристаллизации, текучесть в жидком состоянии, малая усадка) и служит основным материалом для литья. Он широко применяется в машиностроении для отливки станин станков и механизмов, поршней, цилиндров. Кроме углерода, серый чугун всегда содержит другие элементы. Важнейшие из них - это кремний и марганец. В большинстве марок серого чугуна содержание углерода лежит в пределах 2,4-3,8%, кремния 1-4% и марганца до 1,4%.

Высокопрочный чугун получают присадкой к жидкому чугуну некоторых элементов, в частности, магния, под влиянием которого графит при кристаллизации принимает сферическую форму. Сферический графит улучшает механические свойства чугуна. Из высокопрочного чугуна изготовляют коленчатые валы, крышки цилиндров, детали прокатных станов, прокатные валки, насосы, вентили.

Ковкий чугун получают длительным нагреванием отливок из белого чугуна. Его применяют для изготовления деталей, работающих при ударных вибрационных нагрузках (например, картеры, задний мост автомобиля). Пластичность и прочность ковкого чугуна обусловлены тем, что углерод находится в нем о форме хлопьевидного графита.

4. Химические свойства железа. Соединения железа

Железо - металл средней химической активности. В отсутствие влаги в обычных условиях пассивируется, но во влажном воздухе легко окисляется и покрывается ржавчиной. При нагревании (в особенности в мелкораздробленном состоянии) взаимодействует почти со всеми неметаллами. При этом в зависимости от условий и активности неметалла образуются твердые растворы (с C, Si, N, B, P, H), металлоподобные (Fe3C, Fe3Si, Fe4N, Fe2N) или солеподобные (FeF3, FeCI3, FeS) соединения. Окисление железа кислородом приводит к образованию оксидов нестехиометрического состава.

Чистое железо получают различными методами. Наибольшее значение имеют метод термического разложения пентакарбонила железа и электролиз водных растворов его солей.

Во влажном воздухе железо быстро ржавеет, т. е. покрывается бурым налетом гидратированного оксида железа, который вследствие своей рыхлости не защищает железо от дальнейшего окисления. В воде железо интенсивно корродирует; при обильном доступе кислорода образуются гидратные формы оксида железа(ІІI):

2Fe+3/2O2+nH2O=Fe2O3* nH2O

При недостатке кислорода или при его затрудненном доступе образуется смешанный оксид Fез04

(FеО * Fe2Оз):

ЗFе + 202 + 2Н2О = Fез04 * nН2О

Железо растворяется в соляной кислоте любой концентрации:

Fе + 2НС1 = FеС12 + Н2 ^

Аналогично происходит растворение в разбавленной серной кислоте:

Fe+H2SO4=FeS04+H2 ^

В концентрированных растворах серной кислоты железо окисляется до железа(III):

2Fе + 6Н2S04 = Fе2(SO4)3 + 3SO2 ^ + 6Н2О

Однако в серной кислоте, концентрация которой близка к 100%, железо становится пассивным и взаимодействия практически не происходит.

В разбавленных и умеренно концентрированных растворах азотной кислоты железо растворяется:

Fе + 4НNОз = Fе(NOз)з + N0 ^ + 2Н20

При высоких концентрациях НNОз растворение замедляется и железо становится пассивным.

Для железа характерны два ряда соединений: соединения железа (II) и соединения железа (III). Первые отвечают оксиду железа (II), или закиси железа, FеО, вторые-оксиду железа (III), или окиси железа, Fе2О3. Кроме того, известны соли железной кис­лоты Н2Fе04, в которой степень окисленности железа равна +6.

Соединения железа(II). Соли железа(II) образуются при растворении железа в разбавленных кислотах, кроме азотной. Важнейшая из них сульфат железа, или железный купорос,FeSO4*7H2O, образующий светло-зеленые кристаллы, хорошо растворимые в воде. На воздухе железный купорос постепенно выветривается и одновременно окисляется с поверхности, переходя в желто-бурую основную соль железа (III).

Сульфат железа (II) получают путем растворения обрезков стали в 20-30% -пой серной кислоте:

Fе + Н2S04 = FеS04 + Н2 ^

Сульфат железа (II) применяется для борьбы с вредителями растений, в производстве чернил и минеральных красок, при крашении тканей.

При нагревании железного купороса выделяется вода и полу­чается белая масса безводной соли Ре804. -При температурах выше 480 °С безводная соль разлагается с выделением диоксида и триоксида серы; последний во влажном воздухе образует тяже­лые белые пары серной кислоты:

2FеS04 == Fе2О3 + S02 ^ + S0з^

При взаимодействии раствора соли железа (II) со щелочью вы­падает белый осадок гидроксида железа(II) Fе(ОН)2, который на воздухе вследствие окисления быстро принимает зеленоватую, а затем бурую окраску, переходя в гидроксид железа(III) Fе(ОН)з:

4Fе(ОН)2 + О2 + 2Н2О = 4Fе(ОН)3

Безводный оксид железа(\\) FеО можно получить в виде чер­ного легко окисляющегося порошка восстановлением оксида железа(III) оксидом углерода (II) при500°С:

Fе2О3 + СО == 2FеО + C02

Карбонаты щелочных металлов осаждают из растворов солей железа (II) белый карбонат железа FеСОз. При действии воды, содержащей СО2, карбонат железа, подобно карбонату кальция, частично переходит в более растворимую кислую соль Fе(НСОз)2. В виде этой соли железо содержится в природных железистых водах.

Соли железа (II) легко могут быть переведены в соли железа(III) действием различных окислителей-азотной кислоты, перманганата калия, хлора, например:

6FeSO4+2HNO3+3H2SO4=3Fe2(SO4)3+2NO ^ +4H2O

10FeSO4+2KMnO4+8H2SO4=5Fe2(SO4)3+K2SO4+2MnSO4+8H2O

Ввиду способности легко окисляться, соли железа (II) часто применяются как восстановители.

Соединения железа (III). Хлорид железа(III) FеСIз представляет собой темно-коричневые с зеленоватым отливом кристаллы. Это вещество сильно гигроскопично; поглощая влагу из воздуха, оно превращается в кристаллогидраты, содержащие различное количество воды и расплывающиеся на воздухе. В таком состоянии хлорид железа (III) имеет буро-оранжевый цвет. В разбавленном растворе FеСIз гидролизуется до основных солей. В парах хлорид железа(III) имеет структуру, аналогичную структуре хлорида алюминия и отвечающую формуле Fе2СI6; заметная диссоциация Fе2СI6 на молекулы FеСIз начинается при температурах около 500 °С.

Хлорид железа (III) применяют в качестве коагулянта при очистке воды, как катализатор при синтезах органических веществ, в текстильной промышленности.

Сульфат железa (III) Fе2(S04)3 - очень гигроскопичные, рас­плывающиеся на воздухе белые кристаллы. Образует кристалло­гидрат Fе2(S04)3. 9Н20 (желтые кристаллы). В водных растворах сульфат железа (III) сильно гидролизован. С сульфатами щелочных металлов и аммония он образует двойные соли - квасцы, на­пример, железоаммонийные квасцы (NН4)Fе(SO4)2 *12Н2О-хо­рошо растворимые в воде светло-фиолетовые кристаллы. При прокаливании выше 500 °С сульфат железа (III) разлагается в со­ответствии с уравнением:

Fе2(S04)3 == Fе2О3 + ЗSО3 ^

Сульфат железа (III) применяют, как и FеСI3, в качестве коагулянта при очистке воды, а также для травления металлов. Рас­твор Fе2(S04) способен растворять Сu2S и СuS с образованием сульфата меди(II); это используется при гидрометаллургическом получении меди.

При действии щелочей на растворы солей железа (III) выпа­дает красно-бурый гидроксид железа(III) Fе(ОН)з, нераствори­мый в избытке щелочи.

Гидроксид железа(III)-более слабое основание, чем гидроксид железа (II); это выражается в том, что соли железа(III) сильно гидролизуются, а со слабыми кислотами (например, с угольной, сероводородной) Fе(ОН)з солей не образует. Гидроли­зом объясняется и цвет растворов солей железа (III): несмотря на то, что ион Fе3+ почти бесцветен, содержащие его растворы окрашены в желто-бурый цвет, что объясняется присутствием гидроксоионов железа или молекул Fе(ОН)з, которые образуются благодаря гидролизу:

Fe3++H2O - FeOH2+ + H+

FeOH2+ + H2O - Fe(OH)+2 + H+

Fe(OH)2+ + H2O - Fe(OH)3 + H+

При нагревании окраска темнеет, а при прибавлении кислот становится более светлой вследствие подавления гидролиза.

При прокаливании гидроксид железа(III), теряя воду, переходит в оксид железа(III), или окись железа, Fе2О3. Оксид железа (III) встречается в природе в виде красного железняка и при­меняется как коричневая краска - железный сурик, или мумия.

Характерной реакцией, отличающей соли железа (III) от солей железа (II), служит действие роданида калия КSСN или роданида аммония NН4SСN на соли железа. Раствор роданида калия содержит бесцветные ионы SСN-, которые соединяются с ионами Fе(III), образуя кроваво-красный, слабо диссоциированный роданид железа(III) Fе(SСN)3. При взаимодействии же с роданидами ионов железа (II) раствор остается бесцветным.

Цианистые соединения железа. При действии на растворы солей железа (II) растворимых цианидов, например циа­нида калия, получается белый осадок цианида железа (II);

Fе2+ + 2СN- == Fе(СN)2v

В избытке цианида калия осадок растворяется вследствие об­разования комплексной соли K4[Fе(СN)6]-гексациано-(II)феррата калия

Fe(CN)2 + 4KCN=K4[Fe(CN)6]

Fe(CN)2 + 4CN- = [Fe(CN)6]4-

Гексациано-(II)феррат калия К4[Fе (СN)6] * 3Н2О кристалли­зуется в виде больших светло-желтых призм. Эта соль называется также желтой кровяной солью. При растворении в воде соль диссоциирует на ионы калия и чрезвычайно устойчивые комплексные ионы [Fе (СN) 6]4-. Практически такой раствор совершенно не содержит ионов Fе3+ и не дает реакций, характерных для железа(II),

Гексациано-(II) феррат калия служит чувствительным реакти­вом на ионы железа (III), так как ионы [Fе (СМ) 6]4-, взаимодействуя с ионами Fе3+, образуют нерастворимую в воде соль гексациано-(II)феррат железа (III) Fе4[(Fе(СN)6]3 характерного синего цвета; эта соль получила название берлинской лазури:

4Fе + 3[Fе(СN)6]4- = Fе4[Fе(СN)6]3

Берлинская лазурь применяется в качестве краски. При действии хлора или брома на раствор желтой кровяной соли анион ее окисляется, превращаясь в ион [Fе(СN) 6]3:

2[Fе(СN)6]4- + СI2 = 2[Fе(СN)6]3- + 2СI-

Соответствующая этому аниону соль К3[Fе (СN)6] называется гексациано-(III) феррaтом калия, или красной кровяной солью. Она образует красные безводные кристаллы.

Если подействовать гексациано-(III)ферратом калия на раствор соли железа (II), то получается осадок гексациано-(III)феррата железа (II) (турнбулева синь), внешне очень похожий на берлинскую лазурь, но имеющий иной состав:

ЗFе2+ + 2[Fе(СN)6]3+ = Fе3 [Fе(СN)6]2

С солями железа(III) Кз[Fе(СN)6] образует зеленовато-бурый раствор.

В большинстве других комплексных соединений, как и в рассмотренных цианоферратах, координационное число железа (II) я железа (III) равно шести.

Ферриты. При сплавлении оксида железа (III) с карбонатами натрия или калия образуются ферриты - соли не полученной в свободном состоянии железистой кислоты НFе02, например, феррит натрия NаFеО2:

Fе2О3 + Nа2СО3 = 2NаFеO2 + СО2

В технике ферритами или ферритными материалами называют продукты спекания порошков оксида железа (III) и оксидов некоторых двухвалентных металлов, например, никеля, цинка, марганца. Спекание производится при1000-1400 "С. Ферриты обладают ценными магнитными свойствами и высоким электрическим сопротивлением, что обусловливает небольшую величину электрических потерь в них. Ферриты широко применяются в технике связи, счетно-решающих устройствах, в автоматике и телемеханике.

Соединения железа (VI). Если нагревать стальные опилки или оксид железа (III) с нитратом и гидроксидом калия, то образуется сплав, содержащий феррaт калия К2Fе04 - соль железной кислоты Н2Fе04:

Fе2О3 + 4КОН + ЗКNО3 = 2К2Fе04 + ЗКNO3 + 2Н20

При растворении сплава в воде получается красно-фиолетовый раствор, из которого действием хлорида бария можно осадить нерастворимый в воде феррат бария ВаFе04.

Все ферраты - очень сильные окислители (более сильные, чем пермангаиаты). Соответствующая ферратам железная кислота Н2FеО4 и ее ангидрид FеО3) в свободном состоянии не получены

Карбонилы железа. Железо образует летучие соединения с оксидом углерода, называемые карбонилами железа. Пентакарбонил железа Fе(СО)5 представляет собой бледно-желтую жидкость, кипящую при 105°С, нераствори­мую в воде, но растворимую во многих органических растворителях. Fе(СО)5 получают пропусканием СО над порошком железа при 150-200°С и давлении 10 МПа, Примеси, содержащиеся в железе, не вступают в реакции с СО, вследствие чего получается весьма чистый продукт. При нагревании в вакууме пентакарбонил железа разлагается на железо и СО; это используется для получения высокочистого порошкового железа - карбонильного железа.

5. Биологическая роль железа, применение его соединений в медицине

В организме человека содержится 5г железа. Большая часть его сосредоточена в гемоглобине крови (70%). Железо входит также в состав ферментов, например цитохромо, каталазы, пероксидазы и др. В связанной форме железо находится в некоторых белках, которые выполняют в организме роль переносчиков железа.

Одним из наиболее важных внутрикомплексных соединений, которые создала природа является гемоглобин. Это сложный по составу белок, содержащий и небелковую(простетическую) группу- ген, на долю которой приходится около 4% гемоглобина.

Простетическая группа представляет собой бионеорганический комплекс Fe(II) с полициклическим органическим веществом - порфирином. Эта группа носит название гем(от греч. гема - кровь). Гем имеет плоскостное строение.

Железо в геме имеет и шестую орбиталь, которая в гемоглобине используется в процессе связывания кислорода. Эта же орбиталь участвует в образовании связи с углеродом монооксидом. Доказано, что пятая и шестая связи перпендикулярны к плоскости порфириного кольца.

Как уже отмечалось, физиологическая функция гемоглобина заключается в способности обратимо связывать кислород и переносить его от легких к тканям. Если гемоглобин обозначить Hb Fe2+, то реакция обратимого присоединения можно записать так:

[Hb Fe2+] + O2 - [Hb Fe2+ * O2]

дезоксигемоглобин оксигемоглобин

Гемоглобин, присоединивший кислород называется оксигемоглобин, а без кислорода-дезоксогемоглобином.

Гемоглобин взаимодействует с углеродом монооксидом, который в быту известен, как угарный газ. При этом образуется макроциклический комплекс с железом - карбонилгемоглобин: [Hb Fe2+] + СО [Hb Fe2+ * СО] константа этого комплекса приблизительно в 100 раз больше, чем комплекса железа с кислородом в геме. Поэтому при вдыхании углерода монооксиде большая часть гемоглобина переходит в карбонилгемоглобин, что и нарушает перенос кислорода от легких к тканям и вызывает отравление организма при значительном увеличении парцмального давления кослорода равновесие сместится в сторону разрушения HbFe * СО и большего образования оксигемоглобина [Hb Fe] * O2.

Структуру подобную гемоглобину имеет и миоглобин (Mb). Он обратимо связывает кислород в мышцах, по механизму действия сходен с гемоглобиом и относится к гемосодержащим белкам:

MbFe2+ + O2 MbFe 2+ * О2

Дезоксиформа оксиформа

Существует большая группа железосодержащих ферментов, которые катализируют процесс переноса электронов в митохондриях, это так называевые цитохромы (ЦХ). Всего известно около 50 цитохром. Наиболее изученным считается цитохром С. Доказано, что перенос электронов в окислительно-восстановительной цепи с участием этого фермента осуществляется за счет изменения состояния железа:

ЦХFe3+ + e - ЦХFe2+

Группа ферментов, катализирующих реакций и окисления водородпероксидом, называются каталазами и пероксидами. Они также имеют в своей структуре гем, в центре которого находится Fe3+. Механизм действия каталазы до конца не ясен, но доказано, что Fe3+ не восстанавливается. Каталаза ускоряет разложение водородпероксида, который образуется в реакциях метаболизма:

Н2О2 + Н2О2 каталаза 2Н2О +О2

В этой реакции одна молекулаН2О2 является окислителем, другая - восстановителем. Реакция идет с большой скоростью, одна молекула каталазы может разложить 44000 молекул Н2О2 в одну секунду.

Фермент пероксидаза ускоряет реакции окисления органических веществ (RH) водородпероксидом по схеме:

Н2О2 + Н2О* RН пероксидаза 3Н2О 2Н2О + R

В органах и тканях имеется так называемое депонированное (запасенное) железо, которое используется, если возникает дефицит железа. Депонируется оно с помощью белка - ферритина, который представляет мобой биопластер с молекулярной массой 460000.

В организме железо может транпортироваться в виде аминокислотных комплексов, которые образуются за счет координационной связи железа с азотом пептидных групп. Образование таких бионеорганических комплексов делает возможным прохождение ионов через клеточные мембраны. Как известно, пептидный слой оболочки клетки затрудняет прохождение ионов металлов в виде акваионов. А если ион металла находится в окружении органических легандов, то он достаточно легко проходит через клеточную мембрану.

Железо также транспортируется в виде железосодержащих белков, например, транссерринов. В механизме действия транссеррина многое остается дискуссионным, но доказано, что транссеррин отдает железо в виде Fe3+. Функция транссеррина заключается в транспорте ионов железа в ретикулоциты, в которых осуществляется синтез гемоглобина. В 1868 г. Д. К. Чернов впервые указал на существование определенных температур («критических точек»), зависящих от содержания углерода в стали и характеризующих превращения одной микроструктуры стали в другую. Этим было положено начало изучению диаграммы состояния Fе-С, а 1868 г. стал годом возникновения металловедения - науки о строении и свойствах металлов и сплавов. Французский исследователь Ф. Осмонд стал пользоваться только что изобретенным Ле Шателье пирометром и уточнил значения «критических точек».

Он описал характер микроструктурных изменений, наблюдаемых при переходе через эти точки, и дал названия важнейшим структурам железоуглеродистых сплавов;

эти названия употребляются до сих пор. С тех пор учеными различных стран было выполнено огромное количество работ, посвященных изучению сплавов железа с углеродом и диаграммы состояния системы Fе-С. Такого рода работы проводятся и в настоящее время. В них уточняются положения линий на диаграмме состояния в связи с применением более чистых веществ и более точных и современных методов.

Температура плавления железа равна 1539 ± 5 °С. Железо образует две кристаллические модификации: б-железо и г-железо. Первая из них имеет кубическую объемноцентрированную решетку, вторая - кубическую гранецентрированную. б-Железо термодинамически устойчиво в двух интервалах температур: ниже 912°С и от 1394 °С до температуры плавления. Между 912 и 1394 °С устойчиво г-железо. Температурные интервалы устойчивости б- и г-железа обусловлены характером изменения энергии Гиббса обеих модификаций при изменении температуры (см. рис. 166). При температурах ниже 912 и выше 1394 °С энергия Гиббса б-железа меньше энергии Гиббса г-железа, а в интервале 912-1394 °С- больше.

Температуры фазовых превращений железа хорошо видны на кривой охлаждения в виде остановок-горизонтальных площадок. Как видно, кроме площадок, отвечающих 'перечисленным точкам, на кривой охлаждения имеется еще одна остановка-при 768 °С. Эта температура связана не с перестройкой решетки, а с изменением магнитных свойств железа. При темвературах выше 768 °С железо немагнитно, а ниже 768 °С - магнитно. Немагнитное б-железо иногда называют в-железом, а модификацию б-железа, устойчивую при температурах от 1392°С до плавления,-д-железом. '

Железо - серебристый пластичный металл. Оно хорошо поддается ковке, прокатке и другим видам механической обработки, Механические свойства железа сильно зависят от его чистоты - от содержания в нем даже весьма малых количеств других элементов.

В частности, растворяется в железе и углерод. Его растворимость сильно зависит от кристаллической модификации железа и от температуры. В б- железе углерод раствор очень незначительно, в г- железе гораздо лучше. Раствор в г- железе термодинамически устойчив в более широком интервале температур, чем чистое г- железо. Твердый раствор углерода в б- железе называется ферритом, твердый раствор углерода в гжелезе - аустенитом.

Содержанию в железе 6,67% (масс.) углерода отвечает химическое соединение - карбид железа, или цементит, FeзС. Это вещество имеет сложную кристаллическую структуру и характеризуется высокой твердостью (близка к твердости алмаза) и хрупкостью. При температуре около 1600 °С цементит плавится.

Механические свойства феррита и аустенита зависят от содержания в них углерода. Однако при всех концентрациях углерода феррит и аустенит менее тверды и более пластичны, чем цементит.

Диаграмма состояния системы железо-углерод, дающая представление о строении железоуглеродных сплавов, имеет очень большое значение. С ее помощью можно объяснить зависимость свойств сталей и чугунов от содержания в них углерода и от термической обработки. Она служит основой при выборе железоуглеродных сплавов, обладающих теми или иными заданными свойствами.

6. Практическая часть

железо медицина свойство

В 500 кг руды содержится некоторое количество железа. После удаления из руды 200 кг примесей, содержащих в среднем 12,5 % железа, содержание железа в оставшейся руде повысилось на 20 %. Определите, какое количество железа осталось ещё в руде?

Решение.

Сначала составим таблицу, в которой напишем массу руды, массу железа, концентрацию (долю железа в рудеапишем массу руды, массу железа, содержание железа в оставшейся руде повысилось на 20) до и после удаления примесей.

Масса руды, кг

Масса железа, кг

Концентрация (доля железа в руде)

Руда

500

х

x/500

Руда после удаления примесей

500-200=300

х-0,125?200=x-25

(x-25)/300

Пусть х кг - масса железа в руде. Так как масса всей руды равна 500 кг, то концентрация железа в ней равна x/500%.

Так как масса железа в 200 кг примесей равна 0,125?200=25 (кг), то его масса в руде после удаления примесей равна (х-25) кг. Из того, что масса оставшейся руды равна 500-200=300 кг следует, что концентрация железа в ней равна (x-25)/300.

По условию, содержание железа в оставшейся руде повысилось на 20%=1/5. Составим уравнение:

(x-25)/300-1/5=x/500,

5(x-25)-300=3x

x=212,5

Найдём, что х=212,5 кг - масса железа в руде.

Найдём остаток железа в руде после удаления примесей:

212,5-25=187,5 (кг)

Ответ: 187,5 кг.

Литература

1. Вольфсон Ф.И., Дружинин А.В. Главнейшие типы рудных месторождений. М., Недра, 2002.

2. Рудные месторождения СССР. Т. 1-3. М., Недра, 1978.

3.Синяков В.И. Геолого-промышленные типы рудных месторождений. С-Пб., Недра, 2004.

4. Смирнов В.И. Геология полезных ископаемых. М., Недра, 2002.

5. Смирнов В.И.и др. Курс рудных месторождений. М., Недра, 2006.

6. Старостин В.И., Игнатов П.А. Геология полезных ископаемых. М., МГУ, 2007.

Размещено на Allbest.ru

...

Подобные документы

  • Расчет геометрических размеров полотна и рефлектора секторной антенны, реактивного шлейфа. Определение количества вибраторов в этаже и конструкции рефлектора, количества этажей антенны. Диаграмма направленности в вертикальной и горизонтальной плоскости.

    контрольная работа [246,3 K], добавлен 20.12.2012

  • Роль полупроводников в микро- и оптоэлектронике. Классификация полупроводниковых материалов. Диапазон электрических параметров различных полупроводников. Особые физико-химические свойства кремния. Применение германия в полупроводниковых приборах.

    контрольная работа [1,0 M], добавлен 15.12.2015

  • Понятие и свойства динамического звена, его значение в работе системы. Передаточная функция системы и ее основные звенья. Характеристики соединений звеньев и порядок построения их логарифмических частотных. Определение идеального дифференцирующего звена.

    реферат [171,3 K], добавлен 08.08.2009

  • Основы метода контурных токов. Решение системы контурных уравнений. Теорема взаимности. Свойства резистивных цепей и область их применения. Режим постоянного тока в электрических цепях. Понятие магазина затухания. Особенности реактивных элементов цепи.

    реферат [88,5 K], добавлен 12.03.2009

  • Основные свойства материалов. Обзор современного состояния производства полупроводниковых соединений. Расчет легирования кристалла. Технологический процесс выращивания монокристаллического фосфида галлия марки ФГДЦЧ-5-17. Допущения Пфанна и Боомгардта.

    курсовая работа [1,2 M], добавлен 02.04.2014

  • Для управления функциями живого организма стали широко применять термин "биологическая обратная связь". Стационарные исследовательские приборы и терапевтические системы, снабженные средствами ввода физиологический сигналов. Математическая модель.

    реферат [39,2 K], добавлен 09.01.2009

  • Принцип действия полупроводниковых диодов, свойства p-n перехода, диффузия и образование запирающего слоя. Применение диодов в качестве выпрямителей тока, свойства и применение транзисторов. Классификация и технология изготовления интегральных микросхем.

    презентация [352,8 K], добавлен 29.05.2010

  • Нелинейные дифференциальные уравнения следящей системы. Построение ее фазового портрета. Определение достаточного условия абсолютной устойчивости и граничного значения коэффициента передачи. Исследование устойчивости состояния равновесия системы.

    контрольная работа [673,9 K], добавлен 28.11.2013

  • Разработка структурной схемы волоконно-оптической системы передачи. Определение длины усилительного участка, а также допустимой дисперсии регенерационного участка. Оценка вероятности ошибки в магистрали. Диаграмма уровней на усилительном участке.

    курсовая работа [175,4 K], добавлен 14.03.2014

  • Термины и определения теории автоматики. Автоматизированные системы. Структура САУ, типовая схема и применение в производственном цикле. Классификация элементов автоматических систем. Свойства объектов регулирования. Функции разгона переходного процесса.

    презентация [1,4 M], добавлен 05.05.2014

  • Критерии эффективности и обоснование выбора базисных элементов для записи отсчетов от 16 аналоговых датчиков в область памяти. Функциональная схема компьютерной системы управления железнодорожным переездом. Алгоритм работы микропроцессорной системы.

    курсовая работа [1,4 M], добавлен 14.06.2016

  • Общие сведения о сегнетоэлектриках, диэлектрические свойства и электропроводность, линейные и нелинейные свойства. Сегнетоэлектрики и антисегнетоэлектрики, области спонтанной поляризации (доменов). Направления применения сегнетоэлектрических кристаллов.

    курсовая работа [10,0 M], добавлен 29.07.2009

  • Методы создания монтажных соединений. Классификация методов выполнения электрических соединений. Схема измерения падения напряжения в зоне контакта. Накрутка и обжимка. Формы поперечного сечения выводов. Виды соединений накруткой. Схемы для расчетов.

    реферат [813,4 K], добавлен 16.12.2008

  • Выполнение разъемных соединений: соединение винтом с конической и с цилиндрической головкой, резьбовое и стопорение шплинтами. Предохранение винтовых соединений. Выполнение неразъемных соединений: заклёпками, с натягом и завальцовка оптических деталей.

    реферат [1,5 M], добавлен 09.11.2008

  • Общие сведения о графене - двумерной аллотропной модификации углерода, история его открытия, структура, псевдомагнитные свойства. Получение нового полупроводникового материала на основе графена. Один из способов создания графенового двоичного триггера.

    доклад [3,8 M], добавлен 20.05.2013

  • Динамические свойства объекта управления. Динамические свойства последовательного соединения исполнительного механизма и объекта управления. Разработка релейного регулятора, перевод объекта из начального состояния в конечное. Выбор структуры и параметров.

    курсовая работа [354,6 K], добавлен 29.01.2009

  • Разработка структурной схемы и системы нумерации АЛ на СТС. Определение количества модулей; расчет и распределение интенсивности абонентской и междугородной нагрузки на ЦС. Расчет объема оборудования проектируемой коммутационной системы ЦС типа SI-2000.

    курсовая работа [475,8 K], добавлен 04.08.2011

  • Основные свойства и функциональное назначение элементов электромеханической следящей системы. Дифференциальные уравнения и передаточные функции системы. Расчет потенциометрического измерительного устройства. Определение запасов устойчивости системы.

    курсовая работа [980,7 K], добавлен 15.11.2013

  • Характеристики и параметры спиральных антенн, их геометрические размеры. Диаграмма направленности и коэффициент направленного действия. Зависимость усиления и ширины диаграммы направленности спиральной антенны от количества витков, согласование с фидером.

    курсовая работа [1019,4 K], добавлен 06.09.2014

  • Экспериментальное и расчетное определение эквивалентных параметров цепей переменного тока, состоящих из различных соединений активных, реактивных и индуктивно связанных элементов. Применение символического метода расчета цепей синусоидального тока.

    курсовая работа [1,5 M], добавлен 07.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.