Устройства высокочастотного навязывания

Характеристика высокочастотного навязывания, устройств и оптико-акустической аппаратуры для перехвата речевой информации в проводных каналах. Описание способов защиты информации от высокочастотного навязывания, в радиодиапазоне, в оптическом диапазоне.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 28.05.2015
Размер файла 388,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Днепропетровск национальный университет им. О. Гончара

Физико-технический факультет

Кафедра радиоэлектронной автоматики

Реферат

На тему "Устройства высокочастотного навязывания"

Выполнила:

ст.гр. ТЗ -12-1

Жайворонок В.С.

Проверила:

Лысенко Н.А.

Днепропетровск

2015

Содержание

Общая характеристика высокочастотного навязывания

Устройства для перехвата речевой информации в проводных каналах

Перехват речевой информации с использованием радиоканала

Оптико-акустическая аппаратура перехвата речевой информации

Защита информации от высокочастотного навязывания

Защита информации в радиодиапазоне

Защита информации в оптическом диапазоне

Литература

Общая характеристика высокочастотного навязывания

высокочастотный навязывание акустический радиодиапазон

Под высокочастотным навязыванием (ВЧ-навязыванием) понимают способ несанкционированного получения речевой информации, основанный на зондировании мощным ВЧ-сигналом заданной области пространства. Он заключается в модуляции электромагнитного зондирующего сигнала речевым в результате их одновременного воздействия на элементы обстановки или специально внедренные устройства. Качество перехвата аудиоинформации с помощью ВЧ-навязывания зависит от ряда факторов:

* характеристик и пространственного положения источника акустического сигнала;

* наличия в контролируемом помещении нелинейного элемента (устройства), параметры которого (геометрические размеры, положение в пространстве, индуктивность, емкость, сопротивление и т. д.) изменяются по закону акустического сигнала;

* характеристик внешнего источника, облучающего данный элемент (устройство);

* типа приемника отраженного сигнала.

Высокочастотное зондирование

Принцип организации съема информации, основанный на ВЧ-зондировании, показан на рис 1. Однако в некоторых случаях применяются и более сложные схемы.

Рис 1. Организация перехвата информации с использованием ВЧ-навязывания

Основные достоинства данного способа заключаются в активации модуляторов ВЧ-сигнала (нелинейных элементов) только на момент съема ин-формации, а также в возможности (в ряде случаев) вести акустический контроль помещений без непосредственного проникновения для установки закладных устройств.

Основной недостаток метода - как правило, малая дальность действия и высокие уровни облучающих сигналов, наносящие вред здоровью людей. Данные обстоятельства существенно снижают ценность ВЧ-зондирования. Однако определенные методы, о которых будет рассказано в дальнейшем, получили достаточно широкое распространение.

Классификация методов высокочастотного навязывания

Общее представление о многообразии методов такого перехвата дает следующая классификация.

Устройства для перехвата речевой информации в проводных каналах

В настоящее время ВЧ-навязывание нашло широкое применение в телефонных линиях для акустического контроля помещений через микрофон телефонной трубки, лежащей на аппарате.

Принцип реализации метода заключается в том, что в телефонную линию относительно общего корпуса (в качестве которого, например, используют контур заземления или трубы парового отопления) на один из проводов подают ВЧ-колебания от специального генератора-передатчика (ПРД). Через элементы схемы телефонного аппарата (ТА), даже если трубка не «снята», они поступают на микрофон и модулируются речью ничего не подозревающих собеседников.

Прием информации производится также относительно общего корпуса, но уже через второй провод линии. Амплитудный детектор приемника (ПРМ) позволяет выделить низкочастотную огибающую для дальнейшего усиления и записи. Очевидно, что качество перехватываемой информации тем выше, чем ближе осуществлено подключение к (оконечному устройству) телефонному аппарату. Это обстоятельство вносит определенные неудобства в использование данного метода. Фильтр нижних частот (ФНЧ) в линии необходим для одностороннего распространения высокочастотных зондирующих колебаний.

Рис.2 Принцип реализации ВЧ-навязывания на телефонный аппарат

Принципиально ВЧ-сигнал в данном случае используется для преодоления разомкнутых контактов микрофонной цепи аппарата при положенной телефонной трубке. Дело в том, что для зондирующего сигнала механически разомкнутый контакт является своего рода воздушным конденсатором, сопротивление которого будет тем меньше, чем выше частота сигнала от генератора.

При воздействии ВЧ-излучения на телефонный аппарат нелинейные процессы происходят в целом ряде элементов его электрической схемы. Однако наиболее сильно они проявляются именно в микрофоне, сопротивление которого изменяется по закону случайно воздействующего акустического сигнала, что и приводит к амплитудной модуляции несущей. Для гарантированного возникновения указанного эффекта уровень зондирующего сигнала в микрофонной цепи должен быть не меньше 150 мВ, а выходное сопротивление генератора должно быть выше, чем у микрофона, в 5-10 раз. Частота зондирующего сигнала должна лежать в диапазоне 30 кГц.-20 МГц. Чаще ее выбирают примерно равной 1 МГц, так как при этом обеспечиваются наилучшие условия распространения.

Дальность действия подобных устройств в реальных условиях не превышает нескольких десятков метров.

В перспективе в области использования проводных каналов, вероятно, будут осваиваться способы зондирования не только телефонных аппаратов, но и других устройств, в том числе по цепям питания, заземления и т. д.

Перехват речевой информации с использованием радиоканала

Следует отметить, что использованию систем с ВЧ-навязыванием в радиодиапазоне «повезло» - они стали причиной громкого международного скандала. Благодаря этому обстоятельству появилась редкая для технических средств разведки возможность не только обнародовать их технические характеристики и принципы работы, но и изложить историю разработки и применения.

Так, постоянный представитель США при ООН Генри Кэбот Лодж на одном из заседаний Совета Безопасности продемонстрировал в разобранном виде подслушивающее устройство, выполненное в виде гипсового орла - герба Соединенных Штатов Америки. Этот герб был подарен американскому дипломату - послу Соединенных Штатов Америки в Москве Авереллу Гарриману в 1945 году и провисел на стене кабинета в общей сложности при четырех послах. Только в начале 50-х годов специалисты по обнаружению скрытых электронных средств нашли вмонтированное в герб подслушивающее устройство. Инициатор создания программы ЦРУ по разработке миниатюрных средств оперативной техники Питер Карлоу вспоминает, что «мы нашли его, но долго не знали принцип действия. В гербе находилось пассивное устройство, похожее на головастика с маленьким хвостом». Таким образом, долгое время советское руководство имело возможность получать актуальную, очень важную оперативную информацию, что давало нам определенные преимущества в прогнозировании и осуществлении мировой политики в сложный период «холодной войны». Имеются данные о том, что, даже зная, что в кабинете посла находится подслушивающее устройство, специалисты обнаружили его только тогда, когда вынесли из кабинета практически всю мебель. В наших разведывательных кругах ходили тогда слухи, что первые подозрение появились у американцев после одной из речей Н. С. Хрущева, когда в результате анализа сведений, высказанных им, специалисты пришли к выводу, что источник утечки информации находится в посольстве США в Москве.

Опубликование информации о необычном закладном устройстве явилось сенсационным еще и потому, что США было заявлено об отсутствии у них аналогичной спецтехники. Она явилась для них полной неожиданностью. Также сообщалось, что Соединенные Штаты приступили к разработке подобных систем съема информации. И действительно через много лет американцы создали у себя аналогичный вид техники съема информации, который и внедрили в советское посольство за рубежом.

Автором и ведущим руководителем проекта первого пассивного закладного устройства был выдающийся изобретатель Лев Сергеевич Термен. Большой Энциклопедический Словарь уделил ему несколько строк. Родился в 1896 году. Советский физик. Музыкант. В 1920 году изобрел электромузыкальный инструмент «Терменвокс». В 1931-1938 годах - директор акционерного общества по производству электромузыкальных инструментов в США. С 1966 года - научный сотрудник кафедры МГУ. Известно, что Л. С. Термен лично демонстрировал В. И. Ленину свой инструмент, основанный на изменении тона звука генератора при поднесении рук к двум антеннам. В начале 30-х годов Термен после поездки остался в Америке, где основал акционерное общество. Помимо изготовления музыкальных инструментов он участвовал в оборудовании границы между США и Мексикой системой охранной сигнализации для регистрации незаконного пересечения границы нелегалами-мексиканцами. Принцип действия сигнализации такой же, как и аппарата «Терменвокс», емкостной, то есть основывался на регистрации изменений электрической емкости провода, натянутого вдоль границы, при приближении к нему человека.

Когда Термен перед войной приехал туристом в СССР, он, по приказу Берии, был арестован и отправлен в организацию. В эти годы (в середине 40-х) Л. С. Термен и создал свой шедевр, пассивный радиомикрофон.

Рис. 4. Пассивный радиомикрофон

На рис. 4 обозначены основные элементы пассивного радиомикрофона: 1 - верхняя пластмассовая крышка; 2 - ферритовое кольцо; 3 - изолятор; 4- антенна (четвертьволновой вибратор); 5 - согласующий конденсатор; 6 - корпус; 7 - жидкость; 8 - медный цилиндр (индуктивность); 9 - металлическая диафрагма.

Основой устройства является цилиндрический объемный резонатор, на дне которого налит небольшой слой масла. Верхняя часть закрыта крышкой из пластмассы, являющейся радиопрозрачной для радиоволн, но препятствующей проникновению акустических колебаний. В крышке имеется отверстие, через него внутренний объем резонатора сообщается с воздухом помещения, в котором ведутся переговоры. В указанное отверстие вставлена металлическая втулка, снабженная четвертьволновым вибратором, настроенным на частоту 330 МГц. Размеры резонатора и уровень жидкости подобраны таким образом, чтобы вся система резонировала на внешнее излучение с частотой 330 МГц. При этом собственный четвертьволновый вибратор внутри резонатора создает внешнее поле пере излучения. При ведении разговоров вблизи резонатора на поверхности масла появляются микроколебания, вызывающие изменение добротности и резонансной частоты резонатора. Этих изменений достаточно, чтобы влиять на характеристики пере излученного поля, создаваемого внутренним вибратором. Сигнал становится модулированным по амплитуде и фазе акустическими колебаниями. Работать такой радиомикрофон может только тогда, когда он облучается мощным источником на частоте резонатора, то есть 330 МГц.

Главным достоинством такого радиомикрофона является невозможность его обнаружения известными средствами поиска радиозакладок при отсутствии внешнего облучения.

Наряду с пассивными закладками, аналогичными выше описанной, для съема информации используются и полуактивные закладки, называемые аудио-транспондерами; (ответчиками; Audiotransponder). К таким закладкам относятся, например, SIM-ATP-16, SIM-ATP-40 (Hildenbrand-Elektronik), PK500 (PK-Elektronik) и некоторые другие.

Транспондеры начинают работать только при облучении их мощным узкополосным высокочастотным зондирующим (опорным) сигналом. Приемники транспондеров выделяют зондирующий сигнал и подают его на модулятор, где, как правило, осуществляется узкополосная частотная модуляция сигнала. В качестве модулирующего используется сигнал, поступающий или непосредственно с микрофона, или с микрофонного усилителя. Промодулированный ВЧ-сигнал переизлучается, при этом его частота смещается относительно несущей частоты зондирующего сигнала. Время работы транспондеров составляет несколько месяцев, так как потребляемый ток незначителен.

Современные закладные устройства, реализующие вышеописанные принципы, имеют различные габариты и форму. Самые маленькие из них напоминают пластмассовую рыболовную блесну. Об их достаточно широком использовании говорит тот факт, что в 60-е годы американцы жаловались на постоянное облучение ВЧ-сигналами их представительства в СССР с целью активизации встроенных резонаторов.

Кстати, использование подобных систем - достаточно вредное для здоровья дело как для тех, кого подслушивают, так и для тех, кто подслушивает. Специалисты ЦРУ вынуждены были одевать специальные фартуки, предохраняющие важнейшие органы от влияния вредного излучения, когда сами облучали советские учреждения.

Применение полуактивных систем в рамках промышленного шпионажа явление на Западе довольно редкое. На российском рынке подобные системы также пока не представлены и, видимо, не будут представлены еще несколько лет. Однако при дальнейшем совершенствовании противодействия техническим средствам разведки жизнь заставит заинтересованные организации настоятельно потребовать от производителей спецтехники выпуска полуактивных систем.

Кроме использования специальных средств, устанавливаемых на объекте, теоретически возможно зондирование отдельных радиотехнических устройств (телевизоров, приемников и т. д.), узлов бытовой техники, строительных конструкций. Однако на практике это крайне сложная задача, так как требуется перебрать множество вариантов по направлению излучения, частоте зондирующего сигнала, уровня, вида модуляции и т. п.

Перспективой развития подобных средств в радиодиапазоне является модернизация резонаторов с целью повышения индекса модуляции отраженного излучения и рациональный выбор частоты. Приоритетным направлением развития является и освоение более высокочастотных диапазонов (вплоть до миллиметровых волн). Можно предположить, что подобные резонаторы будут выполняться в виде отдельных узлов различного оборудования (кондиционеров, радиоприемников и т. д.) или элементов строительных конструкций. Об этом можно судить по широко известной истории строительства нового здания американского посольства в Москве. Обнаружив в 1982 году подслушивающие устройства, американцы прекратили строительство. Советская сторона в лице председателя КГБ В. Бакатина передала схемы размещения аппаратуры. Многие изделия удивили специалистов, при этом вершиной всего сочли саму конструкцию здания - «восьмиэтажного микрофона». Было объявлено, что направленное на него излучение соответствующей частоты модулируется некими специальными конструктивными элементами, которые способны улавливать звуковые колебания, возникающие при разговоре. Подозревали, что источник и приемник излучения находятся в стоящей через дорогу церкви Девяти мучеников Кизических. В разговорах американских экспертов она часто фигурировала как «храм Богородицы на телеметрии».

Оптико-акустическая аппаратура перехвата речевой информации

Наиболее перспективным направлением в области ВЧ-навязывания является использование лазерных микрофонов, первые образцы которых были приняты на вооружение американскими спецслужбами еще в 60-е годы.

Принцип работы этих устройств, получивших название лазерные системы акустической разведки (ЛСАР), заключается в следующем. Генерируемое лазерным передатчиком излучение (ВЧ-сигнал) распространяется через атмосферу, отражается от поверхности оконного стекла, модулируется при этом по закону акустического сигнала, также воздействующего на стекло, повторно преодолевает атмосферу и принимается фотоприемником (ПРМ), восстанавливающим разведываемый сигнал (рис. 5).

Рис. 5. Принцип работы лазерного микрофона

Сама модуляция зондирующего сигнала на нелинейном элементе, в качестве которого выступает оконное стекло, достаточно сложный физический процесс, который упрощенно может быть представлен в следующем виде:

1. Звуковая волна, генерируемая источником акустического сигнала, падая на границу раздела воздух-стекло, вызывает отклонения поверхности стекла от исходного положения. Отклонения приводят к дифракции света, отражающегося от этой границы.

Действительно, это заметно, например, при падении плоской монохроматической звуковой волны на плоскую границу раздела. Отклонения границы от стационарного состояния представляют собой бегущую вдоль стекла «поверхностную» волну с амплитудой, пропорциональной амплитуде смещений среды в поле звуковой волны, а длина этой «поверхностной» волны равна:

л п= ла/sinи3,

где и3- угол падения, а ла - длина падающей акустической волны.

2. Отраженный от возмущенной поверхности свет содержит сдвинутые по частоте дифракционные компоненты. Если поперечный размер падающего пучка лазерного излучения значительно превышают длину «поверхностной» волны, то отраженный свет представляет собой совокупность дифрагирующих пучков, распространяющихся по дискретным направлениям, определяемым из равенства

В результате в отраженных пучках присутствуют три вида модулции оптического излучения.

Во-первых, частотная модуляция, вызванная эффектом Доплера, вследствие колебательных движений оконного стекла под воздействием акустических сигналов.

При этом девиация частоты относительно центрального значения монохроматического излучения лазера подсветки имеет величину

Во-вторых, фазовая модуляция, вызванная наличием в отраженном сигнале как зеркально отраженного, так и дифракционных компонентов.

Результат суперпозиции последних приводит к тому, что если поперечные размеры падающего оптического пучка малы по сравнению с длиной «поверхностной» волны, то в отраженном сигнале будет доминировать дифракционный пучок нулевого порядка. В этом случае и окажется, что фаза световой волны будет промодулирована во времени с частотой звукового сигнала.

В-третьих, амплитудная модуляция, вызванная колебаниями подсвечивающего пучка относительно направления зеркального (максимального) отражения.

Эти колебания вызваны также пространственным перемещением оконного стекла под воздействием акустического сигнала.

На практике наиболее часто используют системы, работающие на восприятии именно этого вида модуляции.

Для того чтобы работать с лазерными системами акустической разведки, требуется большой опыт. В частности, необходимо правильно выбрать точку съема, грамотно расположить аппаратуру на местности, провести тщательную юстировку. Для обработки перехваченных сообщений необходимо в большинстве случаев использование профессиональной аппаратуры обработки речевых сигналов на базе компьютера. Однако пока подобная техника не для любителей. В нашу страну несколько раз ввозились лазерные системы, но большинство из них так и не были проданы из-за высокой стоимости (от 10 до 130 тысяч $) и неподготовленности потенциальных пользователей, которые, кроме крика ворон, ничего не могли услышать.

Однако из печати известно, что лазерные микрофоны широко использовались против сотрудников советского (российского) посольства и консульств в США, подслушивались разговоры даже в семьях их сотрудников по месту жительства. Поэтому можно полагать, что так как опытные специалисты в состоянии скрытно применять подобные устройства, то весьма вероятно привлечение лазерных систем для решения задач конкурентной борьбы уже в ближайшем будущем.

На сегодняшний день создано целое семейство лазерных средств акустической разведки. Достижения в развитии лазерной техники позволили значительно улучшить технические характеристики и надежность работы данных систем разведки. Достаточно сказать, что появилась возможность дистанционной регистрации колебаний стекла с амплитудой вплоть до 10-14 - 10-16 м, имеются сообщения о потенциальной возможности работы по объектам на расстояниях до 10 км, а наработка на отказ серийного гелий-неонового лазера составляет не менее 10 000 часов.

Примером современных ЛСАР могут служить устройства HPO150 фирмы «Хьюлет Паккард» и SIPE LASER 3-DA SUPER.

HPO150 - лазерная система, обеспечивающая эффективное обнаружение, подслушивание и регистрацию разговоров, ведущихся в помещениях. Дальность его действия - 1000 м. Устройство использует излучение гелий-неонового или полупроводникового лазера с длиной волны 0,63 мкм (что, кстати, является большим недостатком, так как пятно видно глазом, более со-временные системы работают в ближнем ИК-диапазоне). Прослушивание и перехват разговоров ведутся, благодаря приему переотраженного сигнала от обычного оконного стекла, представляющего собой своеобразную мембрану, колеблющуюся со звуковой частотой и создающую фонограмму происходящего разговора. Приемник и передатчик выполнены раздельно. Кассетное устройство магнитной записи и специальный блок компенсации помех, а также треноги поставляются в комплекте устройства. Вся аппаратура размещена в небольшом чемодане. Электропитание - от батареи.

SIPE LASER 3-DA SUPER - данная модель состоит из источника излучения (гелий неонового лазера), приемника этого излучения с блоком фильтрации шумов, двух пар головных телефонов, аккумулятора питания и штатива. Наводка лазерного излучения на оконное стекло нужного помещения осуществляется с помощью телескопического визира. Используется оптическая насадка, позволяющая изменять угол расходимости выходящего пучка, и система автоматического регулирования, задающая высокую стабильность параметров. Система обеспечивает съем речевой информации с хорошим качеством с оконных рам с двойными стеклами на расстоянии до 250 м. На рис. 58 показан внешний вид переносной ЛСАР PK ELECTRONIC.

На качество работы лазерных микрофонов существенно влияет большое количество различных факторов: погодные условия, уровни фоновых шумов, толщина и марка стекла, жесткость крепления стекла в раме, способ крепления рамы к стене, длина волны передатчика, точность юстировки аппаратуры, обработки сигнала, длина волны, уровень речи в помещении и т. д. В связи с этим сложно говорить о дальности перехвата информации вообще, можно рассчитать дальность съема информации из данного помещения данной аппаратурой в данных условиях. Кстати, немецкие специалисты даже в рекламных проспектах отмечают, что дальность действия лазерной аппаратуры от единиц до сотен метров.

Дальнейшее развитие лазерных систем, вероятнее всего, пойдет по пути уменьшения массогабаритных характеристик устройств за счет использования современных полупроводниковых лазеров, оптических устройств и средств первичной обработки сигналов с использованием ЭВМ.

В целом, о возможности применения вышеизложенных методов в интересах промышленного шпионажа можно сделать следующие выводы:

* Аппаратура, использующая принцип ВЧ-навязывания, - реальное средство несанкционированного получения речевой информации.

* Эффективность применения ЛСАР зависит от следующих факторов: уровня речи; расстояния от пункта контроля до объекта; технических характеристик аппаратуры и средств вторичной обработки перехваченных сигналов; погодных условий; степени подготовки лиц, использующих технические средства разведки.

* Применение подобной техники возможно только при тщательной предварительной подготовке.

* Использование аппаратуры ВЧ-навязывания в проводных каналах имеет хорошую перспективу из-за сравнительной простоты и дешевизны, известных методов.

* Использование лазерных систем в техническом плане не имеет серьезных проблем, и в обозримом будущем они станут обычным средством несанкционированного получения речевой информации не только спецслужб.

Защита информации от высокочастотного навязывания

Защита в проводных каналах

Защита информации от ВЧ-навязывания в проводных каналах осуществляется с помощью как организационных, так и технических мероприятий.

К организационным мероприятиям относятся:

* использование телефонных аппаратов, выполненных в защищенном виде;

* осуществление физического контроля телефонных линий на предмет наличия подключений (на расстояниях до 100 м от аппарата, что соответствует предельной дальности действия систем перехвата информации та-кого типа);

* отключение ТА от сети на время проведения переговоров.

Однако организовать постоянный контроль телефонных линий в реальных городских условиях достаточно проблематично. Это можно сделать только при размещении организации в обособленном здании либо при наличии собственной АТС. Отключение аппаратов от линии на время проведения переговоров также нельзя отнести к надежным мероприятиям: опыт показывает, что об этом часто забывают. Поэтому надежной защиты не может быть без применения технических средств.

Технические мероприятия проводятся по следующим направлениям:

* инструментальный контроль излучений на предмет выявления зондирующих ВЧ-сигналов в линиях связи;

* установка пассивных схем защиты.

Рассмотрим перечисленные технические способы более подробно. Проведение контроля телефонных линий на предмет выявления зондирующих сигналов технически легко осуществимое мероприятие. Для этого необходимо иметь приемник со следующими характеристиками:

* частотный диапазон 9 кГц -30 МГц;

* чувствительность порядка нескольких единиц микровольт;

* наличие АМ и ЧМ-детекторов.

Кроме того, требуется обеспечить прием сигналов, распространяющихся по проводным линиям. Для этого можно использовать обычные электрические и магнитные антенны, например, электрические НЕ 010, НЕ 013/015, НFН 2Z1 и магнитные НFН 2-Z3, НFН 2-Z2. Могут использоваться упоминавшиеся ранее комбинированные антенны, предназначенные для измерения как магнитной, так и электрической составляющей поля, например FМА-11. Однако располагать антенны следует в непосредственной близости от проводов телефонной сети. Очень эффективны для этих целей специальные антенны типа токосъемных клещей.

В таблице приведены технические характеристики приемных устройств для обнаружения ВЧ-излучений в проводных каналах связи.

Недостатком рассматриваемого метода защиты является возможность выключения аппаратуры перехвата информации во время проверки, следовательно, эпизодический контроль оказывается не вполне надежным.

Гарантированным способом противодействия является шунтирование линии или микрофона телефонной трубки конденсатором емкостью 0,01 мкФ. Он имеет предельно низкую цену, а обеспечивает достаточно надежную защиту. Зондирующий сигнал по законам физики «идет по пути наименьшего сопротивления», а конденсатор для высокой частоты имеет относительно низкое по сравнению с микрофоном сопротивление.

В связи с этим обстоятельством интересен тот факт, что как у нас, так и за границей существуют предприниматели, которые продают «защищенные» от ВЧ-навязывания телефонные аппараты по цене до нескольких сотен долларов. Экономическая нецелесообразность приобретения подобных аппаратов очевидна.

Защита информации в радиодиапазоне

Основная сложность применения пассивных и полуактивных радиозакладных устройств, описанных выше, - это необходимость проникновения на объект с целью их установки, что требует проведения специальных операций. В качестве примера в том же подразделе был приведен исторический случай проведения мероприятия по внедрению «орла» в американское посольство. Вернемся к нему еще раз, чтобы четко сформулировать требования по обеспечению защиты.

Так, перед непосредственными исполнителями была поставлена задача получения достоверной информации из американского посольства в Москве. Агентурное проникновение было весьма затруднено, подходов к американским дипломатам практически не имелось. Поэтому рассматривались различные варианты мероприятий, которые смогли бы обеспечить конспиративность постановки спецтехники для съема информации. Обычные классические методы внедрения технических средств для организации контроля разговоров были неприемлемы, так как не было соответствующей агентуры для внесения в помещения каких-либо предметов - камуфляжей, в которых располагалась бы техника для съема информации. К тому же было известно, что американская служба безопасности постоянно осуществляет в своем посольстве в Москве контроль эфира в диапазоне радиоволн, на которых имеется возможность работать передатчиками для съема информационных сигналов.

В связи с этим начались исследования по созданию различных вариантов новой спец аппаратуры съема информации с использованием нетрадиционных принципов создания технических устройств. В результате остановились на методе облучения высокой частоты нелинейного пассивного эндо-вибратора (микрофона).

Помимо разработки принципиально нового вида спецтехники было уделено серьезное внимание созданию камуфляжа для обеспечения максимума безопасности. Было решено смонтировать спецтехнику внутри овального предмета из алебастра и гипса с рельефной символикой в виде американского национального герба. А сама пористость поверхности герба была достаточна для прохождения звуковой энергии человеческого голоса к микрофону. Контрольный пункт для приема информативных сигналов от «герба» располагал-ся в помещениях гостиницы «Националь» (речь идет о старом здании Посольства США в Москве, располагавшемся на Манежной площади).

Следующим этапом в проведении мероприятий по получению информации из кабинета американского посла стала разработка убедительной легенды для внесения «герба» в здание посольства. В день национального праздника Америки в посольство пришла пионерская делегация и в торжественной обстановке вручила американскому послу «герб». Посол поблагодарил за приятный подарок и повесил «герб» у себя в кабинете на стене над своим письменным столом.

Следовательно, в случае более четких действий службы безопасности появление подобного подарка в кабинете, где обсуждаются конфиденциальные вопросы, было бы невозможно. Сотрудники спецслужб понадеялись на проверку «орла» (по существующему порядку все вносимые предметы, особенно в такую ответственную зону, как кабинет посла, подвергались тщательной проверке, в том числе рентгеновскому просвечиванию), которая ничего не дала. Действительно, выявить подобные устройства крайне сложно и самый действенный метод защиты - никаких подарков не принимать.

Второй недостаток данной системы, который возможно использовать для организации защиты, это очень большие уровни мощности передатчика. Современные приборы легко обнаруживают такое излучение. Трудность заключается только в том, что необходимо зарегистрировать излучение непосредственно в момент перехвата информации.

Кабинет американского посла многократно проверялся на наличие радиозакладок с отрицательным результатом. Однако американская спецслужба решилась серьезно заняться поиском техники съема информации, которая, как они предполагали, установлена в здании посольства в Москве. Поэтому из США прибыли специалисты с соответствующей аппаратурой. События происходили следующим образом: была проведена рутинная проверка, после чего специалисты удалились. Шторы на окнах оставались открытыми и наблюдатели зафиксировали, что посол приступил к диктовке писем секретарю. Сотрудники с аппаратурой в это время находились под подоконником с радиоприемным устройством и скрытно разворачивали антенны. Вот тут и было обнаружено направленное излучение высокой частоты. После этого определили и место. Вначале со стены был снят «герб», а саму кирпичную стену почти всю разобрали. Образовалось большое отверстие с выходом на улицу. «Герб» несколько дней лежал в кабинете, и только затем они решили посмотреть, нет ли чего-нибудь у него внутри. «Герб» разломали и нашли резонатор.

Следовательно, для обнаружения факта облучения необходимо проводить либо постоянный радиоконтроль, либо провоцировать противостоящую сторону на применение средства разведки в известные сроки. Обнаружение зондирующего ВЧ-сигнала - довольно простое дело даже для неспециалиста. Для этих целей необходим панорамный радиоприемник или анализатор спектра.

Выбранный прибор переводится в режим максимального обзора при минимальной чувствительности, и осуществляется изучение радиоэлектронной обстановки в районе расположения объекта (идентифицируются все мощные излучения). Антенны поворачиваются в сторону возможного расположения передатчиков. После этого достаточно фиксировать появление зондирующих сигналов.

Главная сложность - периодические ложные срабатывания: радиотелефоны в прилегающих помещениях, радиомаяки различного назначения, мощные радиостанции армии и спецслужб, которые работают не постоянно.

Еще один способ защиты - экранирование помещения. Способ действенный, проблема состоит только в том, что он очень дорогой и резко снижающий эргономические характеристики помещения. Особую сложность вызывает защита окон и дверей. Другое направление - размещение помещений, выделенных для проведения конфиденциальных мероприятий, в заглубленных железобетонных подвалах.

Защита информации в оптическом диапазоне

Для защиты от лазерных микрофонов возможно использование организационных и технических мероприятий. Последние, в свою очередь, реализуются путем различных видов воздействия на канал перехвата информации активными и пассивными средствами в оптическом и акустическом диапазонах.

К организационным методам можно отнести:

* использование погодных и климатических условий (дождь, снег, сильный ветер и т. д.);

* ведение переговоров в местах с высоким уровнем фоновых шумов (как внешних, так и внутренних);

* размещение на местности таким образом, чтобы на пути распространения лазерного луча были естественные и искусственные препятствия (кустарник, строения и т. д.);

* использование недоступных для лазерного подслушивания помещений (окна выходят во двор; подвальные, полуподвальные помещения);

* увеличение расстояния до границы контролируемой территории;

* расположение рабочих мест, исключающих прохождение акустических сигналов к окнам;

* использование аппаратуры предупреждения о применении лазерных систем;

* ведение переговоров не повышая голоса, не срываясь на крик (разница в уровне речи между нормальным и громким голосом может достигать 15 дБ);

* увеличение расстояния от говорящего до окна.

К применению организационных мероприятий необходимо подходить разумно. Например, глупо было бы ждать резкого ухудшения погоды, чтобы провести конфиденциальную беседу.

Более надежными являются технические методы защиты информации. Так, радикальным средством защиты в оптическом диапазоне является прерывание сигнала с использованием ставней, экранов и т. д. Однако это приводит к отсутствию в помещении дневного света. Представляется возможным ослабить зондирующий лазерный сигнал и путем его рассеивания, поглощения или отражения. Технической реализацией данных способов является использование различных пленок, наносимых на поверхность стекла. Таковы в общих чертах возможности противодействия пассивным методам в оптическом диапазоне. При активном противодействии задача сводится к электромагнитному воздействию на приемные (а, возможно, и передающие) тракты аппаратуры разведки с целью выведения их из строя либо временного ухудшения работоспособности.

Целью противодействия в акустическом диапазоне является уменьшение отношения сигнал/шум в точке ведения съема (на поверхности стекла), при которых восстановление речевой информации невозможно (от -10 до -14 дБ).

Решение данной задачи возможно двумя способами:

* увеличением уровня маскирующего шума, то есть применением активных средств акустической маскировки;

* снижением уровня сигнала, то есть усилением звукоизоляции окна.

В настоящее время существует большое количество типов систем активного зашумления в акустическом диапазоне. Они используются для подавления дистанционных и забрасываемых средств перехвата речевой ин-формации. В существующих системах формируется маскирующий сигнал типа «белый» шум или типа «разговор трех и более лиц», спектр которого представляет собой усредненный спектр голоса человека. У подобных систем имеется целый ряд недостатков.

Во-первых, значительно повышается уровень фоновых акустических шумов в защищенном помещении, что приводит к быстрой утомляемости находящихся в нем людей.

Во-вторых, при разговоре в зашумленном помещении человек инстинктивно начинает говорить громче, тем самым повышается величина отношения сигнал/помеха на входе приемника, акустической разведки. Таким образом, с учетом того, что активная акустическая маскировка ухудшает эргономические показатели, основным путем защиты речевой информации является обеспечение необходимых акустических характеристик ограждающих конструкций выделенных помещений.

Звукоизолирующая способность ограждающих конструкций определяется отношением величины интенсивности J1, прошедшего через ограждение звука, к интенсивности падающего J2, и характеризуется коэффициентом

t = J1 /J2 .

В расчетах и измерениях наиболее часто используют величину, называемую звукоизоляцией R или потерями на прохождение звука через препятствие (ограждение) и определяемую соотношением

Значение звукоизоляции R для различных типов ограждающих конструкций и ряда акустических частот приведены в таблице. Необходимо отметить, что существенное влияние на звукоизоляцию оконных конструкций оказывает наличие в них щелей и отверстий.

Наиболее совершенными в настоящее время являются конструкции окон с повышенным звукопоглощением на основе стеклопакетов с герметизацией воздушного промежутка и с заполнением промежутка между стеклами различными газовыми смесями. Стеклопакеты устанавливаются в оконных блоках, выполненных из различных материалов, обладающих низкой звукопроводностью. Стекла выбираются разной толщины и устанавливаются с небольшими наклонами относительно друг друга. Все это позволяет при значительном ослаблении сигнала избежать резонансных явлений в воздушных промежутках. В результате интенсивность речевого сигнала на внешнем стекле оказывается значительно ниже интенсивности фоновых акустических шумов и съем информации традиционными для акустики методами оказывается невозможным.

Наиболее радикальной мерой защиты является прерывание распространения звука. Это достижимо только в случае применения вакуумной звукоизоляции. В основе способа лежит физическое явление, состоящее в том, что звук не может распространяться в пустоте. Таким образом, теоретически при вакууме между точкой ведения разведки и источником речи получаем идеальную звукоизоляцию. Однако на практике обеспечить полное прерывание невозможно, так как требуется обеспечить герметизацию не только межстекольного пространства, но и пространства между переплетом и рамой, а кроме того, предотвратить структурное распространение звука через материал рам.

Окна обычной конструкции имеют низкий уровень звукоизоляции. Кроме того, на звукоизоляцию влияют: герметичность швов между стеклом и переплетом, переплетом и оконной рамой, оконной рамой и стеной; длина, высота и размер поперечного сечения переплета и стекла; поглощение звука в звукопоглощающих элементах между стеклами и рамой; особенности конструкции и способы ее изготовления и т. д.

Широкое распространение получили и так называемые акустические экраны, которые используются при невозможности применения стационарных методов звукоизоляции. Обычно применяются передвижные, складные и легко монтируемые акустические экраны.

С целью решения задач по защите помещений акустические экраны могут быть использованы для дополнительной защиты окон, имеющих низкую звукоизолирующую способность.

В целом можно утверждать, что применение даже простейших приемов позволит избежать перехвата информации либо существенно ухудшит качество записанного разговора.

Таким образом, организация защиты информации от перехвата лазерными микрофонами возможна различными способами и средствами. Необходимо проведение оптимизации существующих мер защиты при их комплекс-ном использовании, так как наличие большого количества противоречивых требований и ограничений (в основном эргономических и стоимостных) требует проведения многоспектральной оценки эффективности системы защиты объекта от лазерных систем перехвата речи.

Литература

Ковалев А. Н. Защита информации: правила и механизм лицензирования//Системы безопасности.- 1995.- № 5, с. 8-10.

Волин М. Л. Паразитные процессы в радиоэлектронной аппаратуре. М: «Радио и связь», 1981, 296 с.

Лысов А. В., Остапенко А. Н. Телефон и безопасность.- СПб, Лаборатория ППШ, 1995.- 105 с.

Организация и современные методы защиты информации. /Под общей редакцией С. А. Диева и А. Г. Шаваева/. М.: Концерн «Банковский Деловой Центр», 1998, 472 с.

Петраков А. В. Основы практической защиты информации. М.: Радио и связь, 1999, 368 с.

Технические методы и средства защиты информации/Ю. Н. Максимов, В. Г. Сонников, В. Г. Петров и др. СПб.: ООО «Издательство Полигон», 2000.--320 с.

Торокин А. А. Основы инженерно-технической защиты информации. М: «Ось-89», 365 с.

Хорев А. А. Защита информации от утечки по техническим каналам утечки информации. Часть 1. Технические каналы утечки информации. М.: Гостехкомиссия России, 1998, 320 с.

Энциклопедия промышленного шпионажа/ Ю.Ф. Каторин, Е.В. Курен-ков, А.В. Лысов, А.Н. Остапенко / под общ. ред. Е.В. Куренкова - С.-Петербург: ООО «Издательство Полигон», 1999, -512с.

Аксенов Л. Осторожно. Вас подслушивают //Новости разведки и контрразведки.- 1995.- № 7-8 (40-41).- с. 13.

Андрианов В. И. и др. Шпионские штучки и устройства для защиты объектов и информации.- СПб.: Лань, 1995.-272 с.

Василевский В. И. Реализация современной концепции построения комплексов обнаружения средств негласного съема конфиденциальной ин-формации в последней разработке НПЦ Фирма «НЕЛК» - универсальной базовой поисковой программе FILIN//Системы безопасности.- № 6, ноябрь - декабрь 1996.- С. 66-67.

Гасанов Р. М. Промышленный шпионаж на службе монополий.- М.: Политиздат, 1989.- 267 с.

Кутин Г.И., Кузнецов АС. Охраняемые сведения и демаскирующие признаки при противодействии техническим разведкам.-- Л.: МО, 1989. -- 55 с.

Технический шпионаж и борьба с ним.- Минск, 1993.- 25 c.

Шиверский А. А. Защита информации: проблемы теории и практики.- М.: Юрист, 1996.- 112 с.

Размещено на Allbest.ru

...

Подобные документы

  • Назначение разрабатываемого устройства (детектора высокочастотного излучения) для оперативного обнаружения радиоизлучающих подслушивающих устройств промышленного шпионажа. Технические требования к устройству, его патентной чистоте и условиям эксплуатации.

    дипломная работа [643,0 K], добавлен 12.12.2010

  • Типы коммутационных устройств ручного управления. Разработка высокочастотного переключателя, предназначенного для коммутации электрических цепей постоянного и переменного тока частотой до 10 МГц. Электрический расчет кнопки, общей конструкции изделия.

    курсовая работа [191,2 K], добавлен 29.08.2010

  • Описание работы однополярного аналого-цифрового преобразователя. Расчет эмиттерного повторителя и проектирование схемы высокочастотного аналого-цифрового преобразователя. Разработка печатной платы устройства, технология её монтажа и проверка надежности.

    курсовая работа [761,6 K], добавлен 27.06.2014

  • Состав и технические требования к системе передачи информации с подстанции. Определение объемов телеинформации. Выбор и сопряжение аппаратуры преобразования и передачи телемеханической информации с аппаратурой связи. Расчет высокочастотного тракта по ЛЭП.

    курсовая работа [56,8 K], добавлен 14.09.2011

  • Назначение высокочастотного переключателя и его применение для коммутации сигналов частотой до 10 МГц в стационарных электронных аппаратах. Обзор конструкции и выбор направления проектирования изделия, электрический и конструктивный расчет переключателя.

    курсовая работа [211,0 K], добавлен 23.08.2010

  • Методы моделирования характеристик КМОП транзисторов с учетом высокочастотных эффектов. Проектирование высокочастотного усилителя на МОП транзисторе с использованием S-параметров. Сравнение измеренных и рассчитанных характеристик усилителя на транзисторе.

    дипломная работа [4,3 M], добавлен 30.09.2016

  • Расчет генератора синусоидальных сигналов как цель работы. Выбор принципиальной схемы высокочастотного генератора средней мощности. Порядок расчета LC-генератора на транзисторе, выбор транзистора. Анализ схемы (разработка математической модели) на ЭВМ.

    курсовая работа [258,5 K], добавлен 10.05.2009

  • Общее описание, внутреннее устройство и функциональные особенности радиоприемных устройств, сферы практического применения. Выбор промежуточной полосы, типа транзисторов, числа каскадов высокочастотного тракта. Предварительный расчет источника питания.

    курсовая работа [1,1 M], добавлен 11.11.2014

  • Радиопередающие устройства как система, состоящая из высокочастотного тракта, модулятора, источников питания, охлаждения и защиты. Структурная схема устройства. Расчет выходного усилителя мощности, колебательной системы и кварцевого автогенератора.

    курсовая работа [571,6 K], добавлен 18.03.2011

  • Способы и средства защиты речевой информации от утечки по техническим каналам. Аппаратура и организационные мероприятия по защите речевой информации. Обоснование установки двойных дверей и заделки имеющихся в окнах щелей звукопоглощающим материалом.

    курсовая работа [2,5 M], добавлен 20.06.2014

  • Принцип распространения звуковых волн в помещении и звукоизоляция. Акустические каналы утечки информации. Способы перехвата акустической (речевой) информации из выделенных помещений. Порядок проведения измерений с помощью шумомера АТЕ-9051, его настройка.

    дипломная работа [3,3 M], добавлен 15.06.2013

  • Меры противодействия информационным угрозам. Акустические и виброакустические каналы утечки речевой информации. Разновидности радиолокационной разведки. Классификация методов и средств защиты информации от радиолакационных станций бокового обзора.

    презентация [88,0 K], добавлен 28.06.2017

  • Описание выявленных функциональных каналов утечки информации. Методологические подходы к оценке эффективности защиты речевой информации. Расчет возможности существования естественного акустического канала утечки информации по методу Н.Б. Покровского.

    курсовая работа [3,6 M], добавлен 06.08.2013

  • Виды обнаружителей диктофонов. Системы подавления диктофонов путем воздействия на носитель информации. Оснащение средствами защиты речевой информации кабинета руководителя. "Канонир–К5" - мощнейший подавитель диктофонов и подслушивающих устройств.

    дипломная работа [241,4 K], добавлен 04.05.2015

  • Утечки речевой информации с использованием ЗУ и РЗУ, условия их образования. Классификация закладных устройств. Закладки с передачей информации по токоведущим линиям. Электроакустический канал. Высокочастотное навязывание. Оптико-акустический канал.

    реферат [89,1 K], добавлен 18.12.2008

  • Управление доступом как основной метод защиты информации регулированием использования всех информационных ресурсов, его функции. Этапы поиска закладных устройств для предотвращения утечки речевой информации по акустическому и виброакустическому каналам.

    реферат [18,7 K], добавлен 25.01.2009

  • Проектирование помещения для хранения ценной информации. Возможные каналы утечки данных. Характеристики средств защиты информации. Съем информации за счет электромагнитных излучений проводных линий 220 B, выходящих за пределы контролируемой зоны.

    курсовая работа [2,9 M], добавлен 14.08.2015

  • Устройство и назначение выпрямителей электрического тока, их классификация по ряду признаков, назначение и применение. Обзор характеристик устройства, сфера использования высокочастотных выпрямителей. Пример управления высокочастотным выпрямителем.

    реферат [356,1 K], добавлен 16.12.2010

  • Описание схемы высокочастотного генератора передатчика, анализ ее параметров. Выбор рабочей точки схемы по постоянному току, значений номиналов и характеристик элементов на основе предварительных и графоаналитических расчетов схемы на постоянном токе.

    курсовая работа [2,7 M], добавлен 06.01.2012

  • Актуальность защиты информации от утечек по электромагнитному каналу. Пассивные и активные способы защиты речевой информации в выделенных помещениях. Технология виброакустической маскировки. Проектирование системы защиты информации на предприятии.

    презентация [2,0 M], добавлен 17.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.