Статистические алгоритмы обнаружения, измерения и оценивания параметров сигналов
Статистическая направленность задач цифровой обработки сигналов в радиоэлектронных системах. Синтез алгоритмов и обработка сигналов в задачах обнаружения. Пространственно-временная обработка сигналов. Дискретные алгоритмы частотно-фазовых измерений.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 11.09.2015 |
Размер файла | 57,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
СТАТИСТИЧЕСКИЕ АЛГОРИТМЫ ОБНАРУЖЕНИЯ, ИЗМЕРЕНИЯ И ОЦЕНИВАНИЯ ПАРАМЕТРОВ СИГНАЛОВ
Введение
Особенностью задач цифровой обработки сигналов в радиоэлектронных системах является их статистическая направленность. Так, при решении задач статистического синтеза алгоритмов цифровой обработки сигналов, модель системы ЦОС строится на основе вероятностных характеристик случайных числовых последовательностей на выходе АЦП, а также на основе анализа статистических свойств сигналов и помех.
1. Обработка сигналов в задачах обнаружения
Некогерентная обработка. В этом случае АЦП стоит после цепочки: согласованный фильтр (СФ), амплитудный детектор (АД) (рис. 2). Напряжение с выхода детектора u(t) дискретизируется по времени и квантуется по амплитуде .
Оптимальный обнаружитель должен формировать отношение правдоподобия [ ]
где условные вероятности отсчетов при различных условиях на входе АЦП и сравнить его с порогом.
Для статистически независимых наблюдений алгоритм цифрового процессора (ЦП) оптимального обнаружения бинарно квантованных сигналов имеет вид
,
где - весовые коэффициенты, , - вероятности появления нуля на n -й позиции при условии, что на входе АЦП один шум и смесь сигнала с шумом соответственно, C - порог обнаружения, выбираемый по критерию Неймана-Пирсона.
Модель когерентной цифровой обработки сигналов. Чтобы снизить требования к быстродействию АЦП и других цифровых элементов, цифровую обработку стараются проводить на пониженной частоте. Для этого используют схему с двумя квадратурными каналами (рис. 3), в которой с помощью умножителей и фильтров нижних частот (ФНЧ) (т.е. фазовых детекторов) осуществляется переход от промежуточной (или высокой) частоты f0 к видеочастоте. Квадратурные составляющие и , где - комплексная огибающая наблюдаемого процесса x(t), содержит всю необходимую информацию о сигнале. Эти составляющие дискретизируются в АЦП и затем поступают в цифровой процессор. При оптимальной аналоговой обработке квадратурных составляющих находится модуль комплексной статистики в виде корреляционного интеграла
. (19)
Здесь - весовая функция, астерик означает комплексное сопряжение, Тa- интервал анализа. Учитывая представление комплексных функций, корреляционный интеграл распадается на сумму из четырех интегралов, при этом
,
.
После дискретизации по времени эти интегралы перейдут в суммы
. (20)
В результате квантования по уровню и цифрового кодирования осуществляется переход чисел ; . После этого корреляционные суммы можно вычислить с помощью четырех корреляторов, реализующих операции , , , , где , - числа, являющиеся цифровыми значениями коэффициентов и . Выходы корреляторов объединяются с учетом (20), после чего формируется модуль статистики (19). Все эти операции составляют алгоритм функционирования цифрового процессора (ЦП). Вычислительная процедура, реализуемая цифровым коррелятором, идентична цифровой фильтрации, в основе которой лежит операция свертки
,
где x[i] - дискретный сигнал на входе фильтра, h[k-i] - весовые коэффициенты, определяющие импульсную характеристику фильтра; N- объем выборки. Алгоритм свертки описывает фильтрацию во временной области. Но можно ее проводить и в частотной области, используя для этого дискретное преобразование Фурье и теорему о свертки. Заметим, что цифровой фильтр не является линейным устройством и может быть им только аппроксимирован при малой погрешности округления чисел.
2. Пространственно-временная обработка сигналов
Cистема осуществляет пеленгование и обзор пространства по угловым координатам радиосигналов. Рассматривается плоское пространство и линейная антенна. Полезный сигнал представляет собой монохроматическое колебание известной частоты f0. Информационным параметром является угловая координата . Оптимальная пространственно-временная обработка сначала обрабатывает входной сигнал с помощью антенных решеток
, (21)
где относительная координата оси x, отводимой под раскрыв антенны; -длина волны принимаемого колебания; -относительный раскрыв.
Затем на интервале наблюдения производится временная обработка
. (22)
Если функция удовлетворяет условиям теоремы отсчетов, то она может быть представлена последовательностью своих отсчетов с интервалом дискретности . В случае, когда можно пренебречь краевыми эффектами антенны, и ограничится теми точками дискретизации, которые расположены в пределах раскрыва, получаем
, . (23)
Совокупность несет в себе всю информацию, содержащуюся в поле об источниках излучения в заданном секторе. Пространственная обработка для дискретных значений угла сводится теперь к дискретному преобразованию Фурье
. (24)
Возможен другой вариант, когда система обработки начинается с многоканальной временной обработки, в результате которой формируется совокупность 2m+1 комплексных значений или 2(2m+1) вещественных чисел
, , (25)
где ul(t) - колебание на выходе l-го элемента антенной решетки, которое пропорционально принимаемому полю в l-й точке дискретизации .
Подставляя определенные таким образом значения в алгоритм оптимальной обработки, получаем выражение для отсчетов оптимального выходного эффекта в узлах интерполяции
(26)
в виде дискретного преобразования Фурье, которое ставит в соответствие последовательности чисел (дискретный пространственный сигнал) последовательность (дискретный пространственный спектр).
3. Дискретные алгоритмы частотно-фазовых измерений
Производится оценка частоты (или частоты и фазы) сигнала, который на интервале наблюдения можно считать монохроматическим . Сигнал принимается на фоне гауссовских стационарных помех n(t). Априорный интервал возможных значений частоты сигнала fc задан: . Начальная фаза полагается случайной равномерно распределенной величиной. Оптимальный выходной эффект в этом случае может быть представлен в виде:
, . (27)
Алгоритм получения оценок и сводится к нахождению точки наибольшего значения модуля функции и к определению аргумента этой функции в точке (или , если частота сигнала известна)
,
. (28)
При оценке частоты сигнала с неизвестной начальной фазой, являющейся мешающим параметром, используется только первая часть алгоритма (28). Применение к (27) периодической временной дискретизации с учетом достаточно большим интервалом наблюдения дает
, . (29)
При преобразовании (27) в (29) использовано допущение об отсутствии частотных составляющих вне полосы анализа. Следовательно, при временной дискретизации необходимо обеспечить предварительную фильтрацию принимаемых данных в полосе априорно возможных значений частоты сигнала.
Согласно (27) функция представляет собой преобразование Фурье (спектр) принятой реализации u(t), причем интеграл берется по ограниченному длительностью T интервалу. Поэтому функция может быть представлена рядом Котельникова с интервалом дискретности 1/T. Иначе говоря, для воспроизведения выходного эффекта достаточно сформировать совокупность отсчетов
(30)
и воспользоваться интерполяционной формулой Котельникова. В частности для модуля функции , входящего в алгоритм оценки частоты (28), получим
, ,
. (31)
Для уменьшения ошибок, связанных с неточной фиксацией моментов дискретизации k/2F и обеспечения эффективной многоканальной обработки, целесообразно процессы и перенести на более низкие частоты. Обозначим символами и процессы и , преобразованные с полосы на полосу . Тогда выходной эффект (30) примет вид
, . (32)
Полученный алгоритм дискретного преобразования Фурье (ДПФ) может быть реализован с использованием программы быстрого преобразования Фурье (БПФ).
цифровой радиоэлектронный сигнал дискретный
Размещено на Allbest.ru
...Подобные документы
Характеристика и область применения сигналов в системах цифровой обработки. Специализированный процессор цифровой обработки сигналов СПФ СМ: разработчики и история, структура и характеристики, область применения, алгоритмы и программное обеспечение.
курсовая работа [224,9 K], добавлен 06.12.2010Анализ методов обнаружения и определения сигналов. Оценка периода следования сигналов с использованием методов полных достаточных статистик. Оценка формы импульса сигналов для различения абонентов в системе связи без учета передаваемой информации.
дипломная работа [3,0 M], добавлен 24.01.2018Ансамбли различаемых сигналов - группы M однородных сигналов. Условие различимости сигналов - их взаимная ортогональность. Правило задачи распознавания-различения по аналогии с задачей обнаружения. Задачи обнаружения по критерию минимума среднего риска.
реферат [1,0 M], добавлен 28.01.2009Исследование теоретических основ математического аппарата теории цифровой обработки сигналов. Расчет параметров рекурсивных цифровых фильтров с использованием средств вычислительной техники. Методы проектирования алгоритмов цифровой обработки сигналов.
контрольная работа [572,7 K], добавлен 04.11.2014Сигналы и их характеристики. Линейная дискретная обработка, ее сущность. Построение графиков для периодических сигналов. Расчет энергии и средней мощности сигналов. Определение корреляционных функций сигналов и построение соответствующих диаграмм.
курсовая работа [731,0 K], добавлен 16.01.2015Проблемы современной радиотехники. Преимущества сверхширокополосных сигналов в сравнении с узкополосными. Эллипсные функции и их связь с круговой тригонометрией. Использование оптимального алгоритма обнаружения радиоимпульсов с эллипсными несущими.
дипломная работа [2,2 M], добавлен 09.03.2015Характеристика видов и цифровых методов измерений. Анализ спектра сигналов с использованием оконных функций. Выбор оконных функций при цифровой обработке сигналов. Исследование спектра сигналов различной формы с помощью цифрового анализатора LESO4.
дипломная работа [2,5 M], добавлен 03.05.2018Обработка сигналов при решении прикладных задач в системах телекоммуникаций. Обработка реализаций сигналов ограниченного объема. Структурная схема устройства, реализующая метод кусочного размножения оценок. Временные и частотные характеристики устройства.
курсовая работа [1,1 M], добавлен 05.04.2011Принципы построения беспроводных телекоммуникационных систем связи. Общая характеристика корреляционных и спектральных свойств сигналов. Анализ вероятностей ошибок различения М известных и М флуктуирующих сигналов на фоне помех и с кодовым разделением.
курсовая работа [1,6 M], добавлен 19.05.2010Классификация цифровых приборов. Модели цифровых сигналов. Методы амплитудной, фазовой и частотной модуляции. Методика измерения характеристики преобразования АЦП. Синтез структурной, функциональной и принципиальной схемы генератора тестовых сигналов.
дипломная работа [2,2 M], добавлен 19.01.2013Исследование принципов разработки генератора аналоговых сигналов. Анализ способов перебора адресов памяти генератора аналоговых сигналов. Цифровая генерация аналоговых сигналов. Проектирование накапливающего сумматора для генератора аналоговых сигналов.
курсовая работа [513,0 K], добавлен 18.06.2013Оценка алгоритмов цифровой обработки сигналов в условиях наличия и отсутствия помех. Проектирование модели дискретной свертки в среде Mathcad 14. Анализ кодопреобразователей циклических кодов и их корректирующие способности. Работа цифрового фильтра.
курсовая работа [3,0 M], добавлен 11.02.2013Устройство первичной обработки сигналов как неотъемлемая часть системы, ее значение в процессе сопряжения датчиков с последующими электронными устройствами. Понятие и классификация сигналов, их функциональные особенности и основные критерии измерения.
контрольная работа [39,9 K], добавлен 13.02.2015Схемные решения корреляционных обнаружителей одиночных сигналов и их связь с формированием корреляционного интеграла. Отношение сигнал/шум на выходе схем корреляционной обработки одиночных сигналов. Потенциальная помехоустойчивость. Принятый сигнал.
реферат [2,3 M], добавлен 21.01.2009Методы цифровой обработки сигналов в радиотехнике. Информационные характеристики системы передачи дискретных сообщений. Выбор длительности и количества элементарных сигналов для формирования выходного сигнала. Разработка структурной схемы приемника.
курсовая работа [370,3 K], добавлен 10.08.2009Схема, технические параметры и принцип работы шестиканального цифрового вольтметра. Прототипы схем измерения и отображения информации, подключения клавиатуры, сбора и накопления данных. Обработка аналоговых сигналов в микроконтроллере, его инициализация.
курсовая работа [3,4 M], добавлен 12.03.2013Общее понятие и классификация сигналов. Цифровая обработка сигналов и виды цифровых фильтров. Сравнение аналогового и цифрового фильтров. Передача сигнала по каналу связи. Процесс преобразования аналогового сигнала в цифровой для передачи по каналу.
контрольная работа [24,6 K], добавлен 19.04.2016Эффективность алгоритмов и оценка их вычислительной сложности. Модель вычислительного процесса и классификация алгоритмов по вычислительной сложности. Принцип "разделяй и властвуй". Общие свойства базовых алгоритмов цифровой обработки сигналов.
контрольная работа [29,1 K], добавлен 11.09.2015Сигнал - материальный носитель информации и физический процесс в природе. Уровень, значение и время как основные параметры сигналов. Связь между сигналом и их спектром посредством преобразования Фурье. Радиочастотные и цифровые анализаторы сигналов.
реферат [118,9 K], добавлен 24.04.2011Обеспечение безопасности плавания. Использование низкочастотного диапазона пеленгования. Виды обработки принимаемых сигналов. Определение дистанций обнаружения. Уровни шумовых сигналов от целей. Гидролого-акустические условия в районах эксплуатации.
дипломная работа [641,0 K], добавлен 27.11.2013