Методы обработки сигналов

Алгоритм быстрого преобразования Фурье (БПФ), вычисление в зависимости от способа деления последовательности отсчетов на части. БПФ с прореживанием по времени. Применение комплексного экспоненциального множителя в алгоритме вычитания двух сигналов.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид методичка
Язык русский
Дата добавления 17.09.2015
Размер файла 62,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное государственное образовательное учреждение Высшего профессионального образования

«Южный федеральный университет»

Учебно-методическое пособие

Методы обработки сигналов

М.М. Анишин

Оглавление

1. Алгоритм быстрого преобразования Фурье

2. БПФ с прореживанием по времени

3. БПФ с прореживанием по частоте

1. Алгоритм быстрого преобразования Фурье

Для вычисления одного коэффициента ДПФ по формуле (6) необходимо выполнить N комплексных умножений и сложений. Таким образом, расчет всего ДПФ, содержащего N коэффициентов, потребует N2 пар операций «умножение-сложение». Число операций возрастает пропорционально квадрату размерности ДПФ. Однако, если N не является простым числом и может быть разложено на множители, процесс вычислений можно ускорить, разделив анализируемый набор отсчетов на части, вычислив их ДПФ и объединив результаты. Такие способы вычисления ДПФ называются быстрым преобразованием Фурье (БПФ) и повсеместно используются на практике.

При реализации БПФ возможно несколько вариантов организации вычислении в зависимости от способа деления последовательности отсчетов на части (прореживание по времени либо по частоте) и от того, на сколько фрагментов производится разбиение последовательности на каждом шаге (основание БПФ).

2. БПФ с прореживанием по времени

Рассмотрим идею БПФ с прореживанием по времени на примере деления набора отсчетов пополам.

Итак, пусть N -- четное число. Выделим в формуле (6) два слагаемых, соответствующих элементам исходной последовательности с четными и нечетными номерами:

(8)

Введем обозначения и , а также вынесем из второй суммы общий множитель

(9)

Две суммы в (9) представляют собой ДПФ последовательностей {у(т)} (отсчеты с четными номерами) и {z(m)} (отсчеты с нечетными номерами). Каждое из этих ДПФ имеет размерность N/2. Таким образом,

(10)

где и -- ДПФ соответственно последовательностей отсчетов с четными и нечетными номерами.

Так как ДПФ размерности N/2 дает лишь N/2 спектральных коэффициентов, непосредственно использовать формулу (10) можно только при 0 < n < N/2. Для остальных n (N/2 < n < N) следует воспользоваться периодичностью спектра дискретного сигнала (и, соответственно, периодичностью результатов ДПФ):

,

Следовательно при n ? N/2 формула (10) представляется в виде:

(11)

Процесс вычисления 8-точечного ДПФ путем разбиения его на два 4-точечных ДПФ иллюстрируется на рис. 5.

Рис. 5. Вычисление 8-точечного ДПФ с помощью двух 4-точечных ДПФ

Блоки, выполняющие на рис. 5. объединение результатов двух ДПФ, требуют дополнительных комментариев. Каждый такой блок имеет два входных и два выходных сигнала. Один из входных сигналов умножается на комплексную экспоненту , после чего суммируется со вторым входным сигналом и вычитается из него, формируя таким образом два выходных сигнала. Это соответствует реализации формул (10) и (11). Данная операция получила название «бабочки». Расшифровка ее структуры представлена на рис. 6.

Рис. 6. Условное обозначение «бабочки» БПФ с прореживанием по времени (слева) и ее структурная схема (справа)

Оценим количество операций, необходимое для вычисления ДПФ указанным способом. Каждое из двух ДПФ половинной размерности требует N2/4 операций. Кроме того, при вычислении окончательных результатов каждый спектральным коэффициент Z(n) умножается на экспоненциальный комплексный множитель. Это добавляет еще N/2 операций. Итого получается 2N2/4 + N/2 = N(N + l)/2, что почти вдвое меньше, чем при вычислении ДПФ прямым способом. преобразование фурье алгоритм сигнал

Если N/2 тоже является четным числом (то есть если N делится на 4), можно продолжить описанную процедуру, выразив результат через четыре ДПФ размерности N/4. Это позволяет еще больше сократить число требуемых вычислительных операций.

Наибольшая степень ускорения вычислений может быть достигнута при N = 2k, в этом случае деление последовательностей на две части можно продолжать до тех пор, пока не получатся двухэлементные последовательности, ДПФ которых рассчитывается вообще без использования операций умножения (достаточно вычислить сумму и разность двух отсчетов). Число требуемых при этом пар операций «умножение -- сложение» можно оценить как Nlog2(N). Таким образом, вычислительные затраты по сравнению с непосредственным использованием формулы (6) уменьшаются в N/log2(N) раз.

3. БПФ с прореживанием по частоте

Формулы прямого и обратного ДПФ (6) и (7) отличаются только знаком в показателе экспоненты и множителем перед суммой. Поэтому можно получить еще один вариант алгоритма БПФ, выполнив преобразования, показанные на схеме рис. 5, в обратном порядке. Этот способ вычислений называется прореживанием по частоте. Покажем, как получить описание этого метода на основе формулы прямого ДПФ (6).

Разделим исходную последовательность {x(k)} на две следующие друг за другом половины (как и в предыдущем случае, N должно быть четным числом):

Из второй суммы можно выделить множитель

Этот множитель равен 1 или - 1 в зависимости от четности номера вычисляемого спектрального отсчета n, поэтому дальше рассматриваем четные и нечетные n по отдельности. После выделения множителя ±1 комплексные экспоненты в обеих суммах становятся одинаковыми, поэтому выносим их за скобки, объединяя, две суммы:

, (12)

(13)

Фигурирующие здесь суммы представляют собой ДПФ суммы и разности половин исходной последовательности, при этом разность перед вычислением ДПФ умножается на комплексные экспоненты ехр(-j2m/N). Каждое из двух используемых здесь ДПФ имеет размерность N/2.

Итак, при прореживании по частоте вычисления организуются следующим образом:

1. Из исходной последовательности {x(k)} длиной N получаются две последовательности {у(m)} и {z(m)} длиной N/2 согласно следующим формулам:

2. ДПФ последовательности {у(m)} дает спектральные отсчеты с четными номерами, ДПФ последовательности {z(m)} - с нечетными:

Все сказанное в предыдущем разделе о возможности деления последовательности на иное, отличное от двух, число частей и об уменьшении числа операций, требуемых для расчетов, относиться и к алгоритму прореживания по частоте.

Процесс вычисления 8-точечного ДПФ путем разбиения его на два 4-точечных ДПФ с прореживанием по частоте показан на рис. 7.

Рис. 7. Вычисление 8-точечного ДПФ с помощью двух 4-точечных ДПФ путем прореживания по частоте

Поскольку комплексный экспоненциальный множитель в данном алгоритме применяется к результату вычитания двух сигналов, «бабочка» БПФ с прореживанием по частоте имеет несколько иную структурную схему (рис. 8.).

Рис. 8. Условное обозначение «бабочки» БПФ с прореживанием по частоте (слева и ее структурная схема (справа)

Размещено на Allbest.ru

...

Подобные документы

  • Методика анализа преобразования сигналов линейными цепями, их физические процессы в различных режимах. Особенности применения дискретного преобразования Фурье и алгоритма быстрого преобразования Фурье в инженерных расчетах. Выходная реакция линейной цепи.

    курсовая работа [171,1 K], добавлен 19.12.2009

  • Расчет спектра сигнала через ряд Фурье. Диапазон частот, в пределах которого заключена часть энергии колебания. Восстановленный сигнал из гармоник. Алгоритм восстановления и дискретные значения времени. Изучение спектрального представления сигналов.

    лабораторная работа [356,3 K], добавлен 18.05.2019

  • Общие сведения об эхокомпенсации. Алгоритм быстрого преобразования Фурье. Физический смысл дискретного преобразования. Вычислительные алгоритмы, использующие симметрию и периодичность последовательности. Тестирование проектируемого эхокомпенсатора.

    курсовая работа [905,4 K], добавлен 03.02.2012

  • Сигнал - материальный носитель информации и физический процесс в природе. Уровень, значение и время как основные параметры сигналов. Связь между сигналом и их спектром посредством преобразования Фурье. Радиочастотные и цифровые анализаторы сигналов.

    реферат [118,9 K], добавлен 24.04.2011

  • Вычисление Z-преобразования дискретной последовательности отсчетов сигнала. Определение дискретной свертки. Порядок построения схемы нерекурсивного фильтра, которому соответствует системная функция. Отсчеты дискретного сигнала по заданным параметрам.

    контрольная работа [602,7 K], добавлен 23.04.2013

  • Алгоритм расчета фильтра во временной и частотной областях при помощи быстрого дискретного преобразования Фурье (БПФ) и обратного быстрого преобразования Фурье (ОБПФ). Расчет выходного сигнала и мощности собственных шумов синтезируемого фильтра.

    курсовая работа [679,2 K], добавлен 26.12.2011

  • Расчет спектральной плотности экспоненциального импульса цифрового устройства с помощью формулы прямого преобразования Фурье. Построение АЧХ и ФЧХ спектральной плотности. Построение амплитудного спектра периодического дискретизированного сигнала.

    контрольная работа [197,1 K], добавлен 23.04.2014

  • Использование в системах последовательности одиночных сигналов. Последовательности одиночных сигналов. Корреляционная функция закона модуляции последовательности одиночных сигналов. Монохроматический сигнал. Энергетический спектр принятого сигнала.

    реферат [1,3 M], добавлен 20.01.2009

  • Использование спектра в представлении звуков, радио и телевещании, в физике света, в обработке любых сигналов независимо от физической природы их возникновения. Спектральный анализ, основанный на классических рядах Фурье. Примеры периодических сигналов.

    курсовая работа [385,8 K], добавлен 10.01.2017

  • Исследование математических методов анализа сигналов с помощью преобразований Фурье и их связь. Соотношение Парсеваля, которое выполняется для вещественной, частотно-ограниченной функции f(t), интегрируемой на интервале, соответствующем одному периоду.

    контрольная работа [903,7 K], добавлен 16.07.2016

  • Расчет спектра и энергетических характеристик колоколообразного, экспоненциального, осциллирующего сигналов. Вычисление интервала дискретизации и разрядности кода. Согласование источника информации с каналом связи. Определение вероятности ошибки.

    курсовая работа [1,1 M], добавлен 07.02.2013

  • Спектральный анализ аналоговых непериодического и периодического сигналов. Анализ аналоговой линейной электрической цепи во временной и частотной области. Расчет и построение спектра коэффициентов комплексного ряда Фурье. Расчет шины спектра сигнала.

    курсовая работа [582,6 K], добавлен 02.09.2013

  • Определение спектров тригонометрического и комплексного ряда Фурье, спектральной плотности сигнала. Анализ прохождения сигнала через усилитель. Определение корреляционной функции. Алгоритм цифровой обработки сигнала. Исследование случайного процесса.

    контрольная работа [272,5 K], добавлен 28.04.2015

  • Сущность линейной обработки дискретных сигналов. Характеристика основных структурных элементов цифровых фильтров - элемента единичной задержки (на интервал дискретизации сигнала), сумматора и умножителя. Виды последовательности дискретных отчетов.

    презентация [79,8 K], добавлен 19.08.2013

  • Разработка структурной и функциональной схем устройства преобразования аналоговых сигналов на микропроцессоре PIC. Входное буферное устройство, аналого-цифровой преобразователь. Устройство цифровой обработки сигнала, широтно-импульсный модулятор.

    контрольная работа [612,9 K], добавлен 11.04.2014

  • Разработка функциональной схемы устройства, осуществляющего обработку входных сигналов в соответствии с заданным математическим выражением зависимости выходного сигнала от двух входных сигналов. Расчет электрических схем вычислительного устройства.

    курсовая работа [467,5 K], добавлен 15.08.2012

  • Математические модели сообщений, сигналов и помех. Основные методы формирования и преобразования сигналов в радиотехнических системах. Частотные и временные характеристики типовых линейных звеньев. Основные законы преобразования спектра сигнала.

    курсовая работа [1,8 M], добавлен 09.01.2013

  • Классификация цифровых приборов. Модели цифровых сигналов. Методы амплитудной, фазовой и частотной модуляции. Методика измерения характеристики преобразования АЦП. Синтез структурной, функциональной и принципиальной схемы генератора тестовых сигналов.

    дипломная работа [2,2 M], добавлен 19.01.2013

  • Основные методы анализа преобразования и передачи сигналов линейными цепями. Физические процессы в линейных цепях в переходном и установившемся режимах. Нахождение реакции цепи операционным методом, методами интеграла Дюамеля и частотных характеристик.

    курсовая работа [724,2 K], добавлен 04.03.2012

  • Изучение линейных систем перевода сигнала. Сущность дискретного преобразования Фурье. Объяснения, демонстрации и эксперименты по восстановлению искаженных и смазанных изображений. Рассмотрение теории деконволюции и модели процесса искажения и шума.

    дипломная работа [8,0 M], добавлен 04.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.