Электропроводность металлов. Работа и мощность тока. Правила Кирхгофа
Выяснение зависимости сопротивления проводника от температуры. Изучение явления сверхпроводимости. Анализ теории электропроводности металлов. Расчет работы и мощности тока по закону Джоуля-Ленца. Исследование правил Кирхгофа для разветвленных цепей.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 01.10.2015 |
Размер файла | 75,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Зависимость сопротивления проводника от температуры. Сверхпроводники
С увеличением температуры сопротивление проводника возрастает по линейному закону
где R0 - сопротивление при t=0? С; R- сопротивление при температуре t, б - термический коэффициент сопротивления, показывает как меняется сопротивление проводника при изменении температуры на 1 градус. Для чистых металлов при не очень низких температурах , т.е. можно записать
При определенных температурах (0,14-20 К), называемых «критическими» сопротивление проводника резко уменьшается до 0 и металл переходит в сверхпроводящее состояние. Впервые в 1911 г. Это обнаружил Камерлинг-Оннес для ртути. В 1987 г. разработаны керамики, переходящие в сверхпроводящее состояние при температурах превышающих 100 К, так называемые высокотемпературные сверхпроводники - ВТСП.
2. Элементарная классическая теория электропроводности металлов
1. Носителями тока в металлах являются свободные электроны, т.е. электроны слабо связанные с ионами кристаллической решетки металла. Наличие свободных электронов объясняется тем, что при образовании кристаллической решетки металла при сближении изолированных атомов валентные электроны, слабо связанные с атомными ядрами, отрываются от атома металла, становятся "свободными", обобществленными, принадлежащими не отдельному атому, а всему веществу, и могут перемещаться по всему объему. В классической электронной теории эти электроны рассматриваются как электронный газ, обладающий свойствами одноатомного идеального газа.
Электроны проводимости в отсутствии электрического поля внутри металла хаотически двигаются и сталкиваются с ионами кристаллической решетки металла. Тепловое движение электронов, являясь хаотическим, не может, привести к возникновению тока. Средняя скорость теплового движения электронов
при Т = 300 К.
2. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Выразим силу и плотность тока через скорость v упорядоченного движения электронов в проводнике.
За время dt через поперечное сечение S проводника пройдет N электронов
, ;
следовательно, даже при очень больших плотностях тока средняя скорость упорядоченного движения электронов , обуславливавшего электрический ток, значительно меньше их скорости теплового движения .
1. Электрический ток в цепи устанавливается за время , где L- длина цепи, с = 3·108 м/с - скорость света в вакууме. Электрический ток возникает в цепи практически одновременно с ее замыканием.
2. Средняя длина свободного пробега электронов л по порядку величины должна быть равна периоду кристаллической решетки металла л 10-10 м.
3. С ростов температуры увеличивается амплитуда колебаний ионов кристаллической решетки и электрон чаше сталкивается с колеблющимися ионами, поэтому его длина свободного пробега уменьшается, а сопротивление металла растет,
Недостатки классической теории электропроводности металлов:
1. (1)
т.к. ~ , n и л f(T) с ~ ,
т.е. из классической теории электропроводности следует, что удельное сопротивление пропорционально корню квадратному из температуры, а из опыта следует, что оно линейно зависит от температуры, с ~ Т
2. Дает неправильное значение молярной теплоемкости металлов. Согласно закону Дюлонга и Пти См = 3R, а по классической теории С = 9 / 2R=См ионной решетки = 3R + Смдноатомного электронного газа = 3/2R.
3. Средняя длина свободного пробега электронов из формулы (1) при подстановке экспериментального значения с и теоретического значения дает 10 -8, что на два порядка больше средней длины пробега принимаемой в теории (10-10).
3. Работа и мощность тока. Закон Джоуля-Ленца
Т.к. заряд переносится в проводнике под действием электростатического поля, то его работа равна
МОЩНОСТЬ - работа, совершаемая в единицу времени
[Р]=Вт (Ватт). электропроводность работа мощность кирхгоф
Если ток проходит по неподвижному проводнику, то вся работа тока идет на нагревание металлического проводника, и по закону сохранения энергии
-Закон Джоуля-Ленца.
УДЕЛЬНОЙ МОЩНОСТЬЮ тока называется количество теплоты, выделенное в единице объема, проводника за единицу времени.
-Закон Джоуля-Ленца в дифференциальной форме.
4. Правила Кирхгофа для разветвленных цепей
Любая точка разветвленной цепи, в которой сходится не менее трех проводников, с током называется УЗЛОМ. При этом ток, входящий в узел, считается положительным, а выходящий - отрицательный,
ПЕРВОЕ ПРАВИЛО КИРХГОФА: алгебраическая сумма токов, сходящихся в узле, равна нулю.
Первое правило Кирхгофа вытекает из закона сохранения заряда (заряд, вошедший в узел, равен вышедшему заряду).
ВТОРОЕ ПРАВИЛО КИРХГОФА: в любом замкнутом контуре произвольно выбранном в разветвленной электрической цепи, алгебраическая сумма произведений сил токов на сопротивления соответствующих участков этого контура равна алгебраической сумме ЭДС. встречающихся в контуре.
При расчете сложных цепей постоянного тока с применением правил Кирхгофа необходимо:
1. Выбрать произвольное направление токов на всех участках цепи; действительное направление токов определится при решении задачи; если искомый ток получился положительным, то направление выбрано правильно, если отрицательным, то его истинное направление противоположно выбранному.
2. Выбрать направление обхода контура. Произведение положительно, если ток на данном участке совпадает с направлением обхода, и наоборот. ЭДС положительны, если они создают ток направленный в сторону обхода контура, против - отрицательны.
3. Записывается первое правило для N -1 узла.
4. Записать второе правило Кирхгофа для замкнутых контуров, которые могут быть выделены в цепи. Каждый рассматриваемый контур должен содержать хотя бы один элемент, не содержащийся в предыдущих контурах.
Число независимых уравнений, составленных в соответствии с первым и вторым правилом Кирхгофа, оказывается равным числу различных токов, текущих в разветвленной цепи. Поэтому, если заданы ЭДС и сопротивления для всех неразветвленных участков, то могут быть вычислены все токи.
Размещено на Allbest.ru
...Подобные документы
Составление баланса мощностей для электрической схемы. Расчет сложных электрических цепей постоянного тока методом наложения токов и методом контурных токов. Особенности второго закона Кирхгофа. Определение реальных токов в ветвях электрической цепи.
лабораторная работа [271,5 K], добавлен 12.01.2010Изучение общей методики расчета линейной электрической цепи постоянного тока, содержащей независимый источник электродвижущей силы. Описательная характеристика разветвленных электрических цепей однофазного синусоидального и несинусоидального тока.
методичка [342,2 K], добавлен 01.12.2015Расчет линейных электрических цепей постоянного тока. Расчет однофазных и трехфазных линейных электрических цепей переменного тока. Определение токов во всех ветвях схемы на основании законов Кирхгофа. Метод контурных токов. Баланс мощностей цепи.
курсовая работа [876,2 K], добавлен 27.01.2013Метод уравнений Кирхгофа и расчет режима простейших цепей методом сворачивания или свертки. Способ наложение и теорема об эквивалентном генераторе. Передача мощности от активного двухполюсника в нагрузку. Соответствующие преобразования структуры цепи.
реферат [1,3 M], добавлен 24.11.2010Расчет параметров элементов цепей смещения путем решения системы, составленной по правилам Кирхгофа. Анализ стабильности режима схемы по постоянному току при воздействии температуры. Зависимость изменения тока коллектора при изменении напряжения питания.
лекция [497,8 K], добавлен 16.03.2011Экспериментальное и расчетное определение эквивалентных параметров цепей переменного тока, состоящих из различных соединений активных, реактивных и индуктивно связанных элементов. Применение символического метода расчета цепей синусоидального тока.
курсовая работа [1,5 M], добавлен 07.02.2013Опытная проверка законов Кирхгофа и принципа наложения. Расчет токов в ветвях заданной электрической цепи методами контурных токов, узловых потенциалов, эквивалентного генератора. Построение потенциальной диаграммы. Сравнение результатов опыта и расчета.
контрольная работа [1,0 M], добавлен 09.02.2013Исследование электрической цепи переменного тока при последовательном соединении активного, индуктивного емкостного сопротивления. Изменение активного сопротивления катушки индуктивности. Параметры электрической схемы переменного однофазного тока.
лабораторная работа [701,1 K], добавлен 12.01.2010Методы измерения тока и напряжения. Проектирование цифрового измерителя мощности постоянного тока. Выбор элементной базы устройства согласно схеме электрической принципиальной, способа установки элементов. Расчет экономической эффективности устройства.
курсовая работа [1,1 M], добавлен 21.07.2011Постоянный и переменный электрический ток. Закон Ома для участка и полной цепи. Работа и мощность электрического тока. Активная и реактивная мощность трехфазных цепей. Переходные процессы в линейных электрических цепях. Составные и полевые транзисторы.
шпаргалка [480,2 K], добавлен 04.05.2015Анализ генератора Колпитца. Исследование биполярного транзистора, зависимости тока коллектора от тока базы и напряжения база-эмиттер. Структура и алгоритмы работы асинхронных и синхронных триггеров. Функции переходов и возбуждения их основных типов.
лабораторная работа [967,1 K], добавлен 11.05.2013Анализ основных методов расчёта линейных электрических цепей постоянного тока. Определение параметров четырёхполюсников различных схем и их свойства. Расчет электрической цепи синусоидального тока сосредоточенными параметрами при установившемся режиме.
курсовая работа [432,3 K], добавлен 03.08.2017Исследование и расчет цепей синусоидального и постоянного тока. Нахождение линейных однофазных цепей при несинусоидальном питающем напряжении. Исследование и применение методов расчета трехфазной цепи. Задача на определение параметров четырехполюсника.
курсовая работа [2,3 M], добавлен 09.02.2013Основные характеристики электропривода. Расчет цепи постоянного и переменного тока по законам Кирхгофа, по методу контурных токов и узловых потенциалов. Сравнение результатов, полученных разными методами. Построение потенциальной и векторной диаграммы.
курсовая работа [3,1 M], добавлен 02.07.2014Принципы действия приборов для измерения электрического тока, напряжения и сопротивления; расчет параметров многопредельного амперметра магнитоэлектрической системы и четырехплечего уравновешенного моста постоянного тока; метрологические характеристики.
курсовая работа [2,2 M], добавлен 18.06.2012Краткий обзор коммутационных устройств ручного управления. Разработка кнопки для коммутации электрических цепей постоянного и переменного тока низкой частоты: определение контактного усилия, переходного сопротивления и температур локального перегрева.
контрольная работа [39,8 K], добавлен 29.08.2010Разработка и расчет схемы двухтактного усилителя мощности с заданными параметрами. Расчет оконечного, промежуточного и входного каскада. Выбор цепи стабилизации тока покоя. Результирующие характеристики усилителя. Требования к мощности источника питания.
курсовая работа [617,9 K], добавлен 16.10.2011Назначение и описание выводов инвертирующего усилителя постоянного тока К140УД8. Рассмотрение справочных параметров и основной схемы включения операционного усилителя. Расчет погрешностей дрейфа напряжения смещения от температуры и входного тока.
реферат [157,8 K], добавлен 28.05.2012Структурная схема системы регулирования скорости двигателя постоянного тока. Расчет и определение параметров регуляторов тока и скорости. Логарифмические частотные характеристики контура тока. Передаточные функции разомкнутых контуров тока и скорости.
лабораторная работа [147,4 K], добавлен 14.05.2012Усилитель звуковых частот. Расчёт оконечного каскада. Выбор транзисторов по допустимой мощности рассеяния на коллекторе и максимальной амплитуде коллекторного тока. Выбор входного транзистора, расчет входных элементов. Расчет мощности элементов схемы.
курсовая работа [618,3 K], добавлен 12.03.2016