Цифровые запоминающие устройства на приборах с зарядовой связью
Принцип работы и структура прибора с зарядовой связью. Достоинства и ограничения ПЗС. Сечение трёхфазного ПЗС с электродами из поликристаллического кремния и с виртуальной фазой. Запоминающее устройство на ПЗС, способ управления записью информации.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 14.10.2015 |
Размер файла | 485,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство науки и образования Украины
Национальный технический университет Украины
«Киевский политехнический институт»
Факультет электроники
Кафедра физической и биомедицинской электроники
Реферат
по курсу «Функциональная электроника»
на тему: «Цифровые запоминающие устройства на приборах с зарядовой связью»
Киев 2013
Содержание
Введение
1. Принцип работы ПЗС
2. Структура ПЗС
3. Достоинства и ограничения ПЗС
4. Параметры и характеристики ПЗС
5. Запоминающее устройство на ПЗС
Завершение
Список литературы
Введение
ПРИБОР С ЗАРЯДОВОЙ СВЯЗЬЮ (ПЗС) - интегральная схема, представляющая собой совокупность МДП-структур, сформированных на общей полупроводниковой подложке таким образом, что полоски электродов образуют линейную или матричную регулярную структуру. Расстояния между соседними электродами столь малы, что существенным становится их взаимовлияние вследствие перекрытия областей пространственного заряда вблизи краёв соседних электродов (рис. 1).
Рис. 1. Структура прибора с зарядовой связью (фрагмент): 1 - кристалл кремния; 2 - вход - выход; з - металлические электроды; 4 - диэлектрик.
В 1970 г. сотрудники фирмы Bell Laboratories У. Бойл и Дж. Смит в поисках электрического аналога схем на цилиндрических магнитных доменах предложили и продемонстрировали экспериментально принцип зарядовой связи. Самый первый ПЗС представлял собой аналоговый регистр сдвига на 8 элементов, изготовленный по p-МОП технологии с молибденовыми затворами, а вскоре появились и двумерные матрицы. Очень быстро стало ясно, что присущее ПЗС свойство самосканирования устраняет необходимость в регистрах развёртки, создававших столько проблем в предшествующих типах датчиков. Дальнейший рывок в технологии и параметрах ПЗС был связан с появлением скрытого канала переноса и применением прозрачных электродов из поликристаллического кремния, что резко повысило чувствительность приборов. Уже в середине 70-х появились первые коммерческие матрицы производства фирм Fairchild, Bell и RCA в США и Philips в Европе, совместимые с ТВ стандартом (т. е. имеющие разрешение по вертикали 476 или 576 строк соответственно для американского или европейского стандартов разложения и, по меньшей мере, 350 элементов разложения по горизонтали). А вскоре в Японии было налажено массовое производство недорогих ПЗС приемлемого качества для бытовой электроники - и на смену кинокамерам в массовом порядке пришли видеокамеры. Революционное воздействие оказали ПЗС на астрономию, где их появление по степени влияния сравнимо разве что с тем, которое оказало применение в качестве средства регистрации фотопластинок вместо человеческого глаза (собственно, именно астрономия стала той первой отраслью человеческой деятельности, где фотоэмульсия уступила место кремнию). С другой стороны, и требования, предъявляемые астрономией, особенно космического базирования, к ПЗС, стимулировали развитие технологии их изготовления, и ныне приборы с числом элементов 4096 на 4096 и с квантовым выходом около 90% уже не являются экзотикой. Ну и, наконец, микроскопия в медицине и биологии, компьютерное зрение и видеоконференции, системы ориентации космических аппаратов и считыватели штрих-кода, телефакс и сканер... - всё это тоже стало возможным и доступным благодаря ПЗС.
1. Принцип работы ПЗС
Для начала отметим, что ПЗС относятся к изделиям функциональной электроники, то есть их нельзя представить как совокупность транзисторов или же конденсаторов. Для начала представим себе МОП - конденсатор (сокращение от слов металл - окисел - полупроводник). Это то, что остаётся от МОП-транзистора, если убрать из него сток и исток, то есть просто электрод, отделённый от кремния слоем диэлектрика. Для определённости будем считать, что полупроводник - p-типа, т. е. концентрация дырок в равновесных условиях много (на несколько порядков) больше, чем электронов.
Что будет, если на такой электрод (его называют затвором) подать положительный потенциал? Электрическое поле, создаваемое затвором, проникая в кремний сквозь диэлектрик, отталкивает подвижные дырки; возникает обеднённая область - некоторый объём кремния, свободный от основных носителей. При параметрах полупроводниковых подложек, типичных для ПЗС, глубина этой области составляет около 5 мкм. Напротив, электроны, если они каким-либо образом (например, в результате фотогенерации) окажутся вблизи, притянутся к затвору и будут накапливаться на границе раздела окисел-кремний непосредственно под затвором, т.е. как бы сваливаются в яму, которая совершенно официально называется потенциальной ямой (Рис.1а). При этом электроны по мере накопления в яме частично нейтрализуют электрическое поле, создаваемое в полупроводнике затвором, и в конце концов могут полностью его скомпенсировать, так что всё электрическое поле будет падать только на диэлектрике, и всё вернётся в исходное состояние - за тем исключением, что на границе раздела образуется тонкий слой электронов.
Рис. 1а. Образование потенциальной ямы при приложении напряжения к затвору.
Пусть теперь рядом с затвором расположен ещё один, и на него тоже подан положительный потенциал, причём больший, чем на первый (Рис.1б). Так вот, если только затворы расположены достаточно близко, их потенциальны ямы объединяются, и электроны, находящиеся в одной потенциальной яме, перемещаются в соседнюю, если её потенциал выше (т.е. если она глубже). Теперь уже должно быть ясно, что если мы имеем цепочку затворов, то можно, подавая на них соответствующие управляющие напряжения, передавать локализованный зарядовый пакет вдоль такой структуры.
Рис. 1б. Перекрытие потенциальных ям двух близко расположенных затворов.
Заряд перетекает в яму, в которой потенциальная яма глубже.
Замечательное свойство ПЗС - свойство самосканирования - состоит в том, что для управления цепочкой затворов любой длины достаточно всего трёх тактовых шин. Действительно, для передачи зарядовых пакетов необходимо и достаточно трёх электродов: одного передающего, одного принимающего и одного изолирующего, разделяющего пары принимающих и передающих друг от друга, причём одноимённые электроды таких троек могут быть соединены друг с другом в единую тактовую шину, требующую лишь одного внешнего вывода (Рис.1в). Это и есть простейший трёхфазный регистр сдвига на ПЗС.
Рис. 1в. Простейший трёхфазный ПЗС-регистр.
Рис. 1г. Тактовые диаграммы управления трёхфазным регистром - это три меандра, сдвинутые на 120 градусов.
Рис. 1д. Вид на регистр «сверху». Канал переноса в боковом направлении ограничивается стоп-каналами.
Тактовые диаграммы работы такого регистра показаны на Рис.1г. Видно, что для его нормальной работы в каждый момент времени, по крайней мере, на одной тактовой шине, должен присутствовать высокий потенциал, и по крайней мере на одной - низкий потенциал (потенциал барьера). При повышении потенциала на одной шине и понижении его на другой (предыдущей) происходит одновременная передача всех зарядовых пакетов под соседние затворы, и за полный цикл (один такт на каждой фазной шине) происходит передача (сдвиг) зарядовых пакетов на один элемент регистра.
Для локализации зарядовых пакетов в поперечном направлении формируются так называемые стоп-каналы - узкие полоски с повышенной концентрацией основной легирующей примеси, идущие вдоль канала переноса (Рис.1д). Дело в том, что от концентрации легирующей примеси зависит, при каком конкретно напряжении на затворе под ним образуется обеднённая область (этот параметр есть не что иное, как пороговое напряжение МОП-структуры). Из интуитивных соображений понятно, что чем больше концентрация примеси, т.е. чем больше дырок в полупроводнике, тем труднее их отогнать вглубь, т.е. тем выше пороговое напряжение или же, при одном напряжении, тем ниже потенциал в потенциальной яме (если она вообще образовалась).
Понятно, что на полную передачу заряда из одной ямы в другую требуется время, так что при высокой тактовой частоте (а для ТВ стандарта она составляет в регистре считывания 7-13 МГц в зависимости от числа элементов по горизонтали) этого времени может и не хватить. Величина, показывающая, какая часть зарядового пакета передалась в следующий элемент ПЗС, называется эффективностью переноса е. Часто пользуются и связанной с ней величиной неэффективности м= 1 - е. Однако частотные ограничения - это ещё полбеды. Беда же в том, что для структуры ПЗС, обсуждавшейся до сих пор, все события происходят в очень тонкой (десятки ангстрем) области у границы раздела окисел-кремний. Сколь бы не была совершенной кристаллическая структура подложки, граница раздела - нарушение однородности кристалла, а из физики твёрдого тела известно, что всякое нарушение однородности кристаллической решётки приводит к возникновению разрешённых энергетических уровней в запрещённой зоне. Ясно, что такое нарушение, как граница раздела, даром не проходит, и образующихся при этом энергетических уровней столько, что они образуют квазинепрерывный спектр, а значит, среди них есть такие, которые способны захватывать электроны из зоны проводимости (ловушки), причём время, через которое захваченный электрон вернётся обратно в зону проводимости, зависит от энергии ловушки (и абсолютной температуры). И получается, что, пока над данной точкой границы раздела нет заряда (а это когда-нибудь да так), часть ловушек освобождается, эмитируя электрон обратно в зону проводимости, а когда придёт очередной зарядовый пакет - мгновенно заполняется, чтобы снова освободить захваченные электроны после того, как этот зарядовый пакет ушёл, так что освобождённые электроны попадают в другой, пришедший позднее, зарядовый пакет.
Более того, эмиссия электронов с ловушек обратно в зону проводимости, как всякий тепловой процесс, подвержена термодинамической флуктуации и привносит в распределение зарядов по ячейкам шум переноса. Кроме того, часть электронов, попавшая на глубокий уровень с длительным временем эмиссии, может вовсе не вернуться (это называется фиксированными потерями, и особенно заметно при переносе малых зарядовых пакетов). И наконец, через квазинепрерывный спектр ловушек происходит интенсивная генерация темнового тока (тепловой процесс спонтанного образования электронно-дырочных пар - к сожалению, процесс неизбежный при температуре, отличной от абсолютного нуля, а наличие уровней в запрещённой зоне резко повышает его вероятность).
Все эти неприятности, связанные с поверхностным каналом переноса, удалось полностью (или почти полностью) устранить инженерам фирмы Philips, в 1972 году предложившим ПЗС со скрытым каналом. Это решение, разом убивавшее несколько зайцев, оказалось настолько удачным, что с тех пор все ПЗС выпускаются только со скрытым каналом. От обычного он отличается тем, что в поверхностной области кремния создаётся тонкий (порядка 0,3 - 0,5 мкм) слой с проводимостью противоположного подложке типа и с концентрацией примеси такой, чтобы он мог полностью обедняться при подаче на него напряжения через соответствующий контакт. Что же происходит в такой структуре?
Для простоты предположим, что скрытый канал имеет однородную концентрацию примеси по всей глубине. При полном обеднении скрытого канала в нём остаётся нескомпенсированный заряд легирующей примеси (будем считать её примесью N- типа, т. е. остаются положительно заряженные атомы примеси). Кроме того, обеднённая область будет простираться и в подложку, как и для ПЗС с поверхностным каналом, причём в подложке заряд нескомпенсированной примеси - отрицательный. Распределение потенциала при таком ступенчатом распределении объёмного заряда, как следует из уравнения Лапласа, будет кусочно-параболическим с максимумом потенциала, лежащем на некоторой глубине от границы раздела (фактически вблизи металлургической границы pn- перехода скрытый канал - подложка; см. Рис.2а).
Рис. 2а. Распределение зарядов в скрытом канале.
Рис. 2б. Распределение потенциалов в ПЗС со скрытым каналом: при отсутствии сигнального заряда, с сигнальным зарядом и при фиксации поверхностного потенциала
Всё. Задача решена. Ведь теперь сигнальные электроны собираются именно в области максимума потенциала, нейтрализуя по мере накопления атомы примеси (зелёная линия на Рис.2б; это, в частности, означает, что максимальная плотность накопленного заряда не может превышать поверхностной концентрации примеси - порядка 1,5*1012 см-2), и не достигают поверхности. А значит, уходят все отрицательные моменты, связанные с взаимодействием зарядового пакета с границей раздела. Для дальнейшего изложения отметим ещё, что потенциал канала в максимуме пропорционален дозе легирования канала.
Степень совершенства кристаллической решётки в современных материалах весьма высока, и ныне эффективность переноса в ПЗС со скрытым каналом (собственно, далее речь будет идти только о них) достигает в лучших приборах потрясающих величин 99,9999% (или м = 10-6 на перенос), т.е. после тысячи переносов искажения от неэффективности составляют 0,1%. Достигается это не только из-за крайне низкой плотности ловушек в объёме полупроводника, но и из-за того, что перенос происходит на некотором удалении от затворов, а значит, становятся заметными двумерные эффекты - электрическое поле одного затвора проникает под соседний, создавая тем самым дрейфовую составляющую переноса (тянущее поле), что вытягивает заряд гораздо быстрее, чем просто тепловая диффузия, так что частотные ограничения эффективности в диапазоне частот, характерном для телевизионных матриц, практически незаметны.
Отметим ещё одно отличие ПЗС со срытым каналом от ПЗС с поверхностным каналом: уровни управляющих напряжений для них биполярные, т. е. напряжение барьера - отрицательное. Причём при некотором его значении потенциал на границе раздела достигает нуля и дальше изменяться не может, так как дырки из стоп-канала заполняют поверхность, закорачивая её на стопор и экранируя канал от дальнейшего изменения электрического поля затвора. Это явление называется фиксацией поверхностного потенциала (pin) и используется в ПЗС с виртуальной фазой и т. н. приборах МРР (multi-pin phase. И ещё: скрытый канал невозможно закрыть; как только наступает фиксация, дальнейшее изменение потенциала канала прекращается.
2. Структура ПЗС
Простейший её вариант изображён на Рис.4а. В нём можно выделить два вертикальных регистра сдвига на ПЗС, образующие секцию накопления и секцию хранения с равным числом строк (каждая строка секции образована одной тройкой электродов), горизонтальный регистр сдвига и выходное устройство. Рассмотрим подробнее работу такой структуры.
Рис. 4а. Простейшая структура двумерной матрицы ПЗС
В течение времени прямого хода по кадру секция накопления стоит, т. е. на неё подаются неизменные напряжения, формирующие потенциальные ямы только под одним электродом каждой тройки, скажем, под электродом первой фазы (VS1), причём потенциальные ямы образуются во всех элементах всех строк секции. По горизонтали отдельные ячейки накопления отделены стоп-каналами (выделены на рисунке красным цветом). Изображение, проецируемое на секцию накопления, вызывает фотогенерацию - образование электронно-дырочных пар. При этом фотогенерированные электроны остаются в потенциальной яме, дырки же, соответственно, уйдут в подложку или в вдоль поверхности в стоп-каналы. Таким образом, под действием света в ячейках накапливается зарядовый рельеф, т.е. в каждой ячейке собирается заряд, пропорциональный её освещённости и времени накопления.
По окончании прямого хода по кадру на обе секции подаются тактовые импульсы, вызывающие синхронный перенос заряда, при этом важно (и это показано на рисунке), что обе секции образуют непрерывный регистр сдвига. После числа тактов, равного числу строк в каждой секции (напомним, что каждая строка образована тремя электродами), весь накопленный зарядовый рельеф целиком переместится в секцию памяти, закрытую от света, а секция накопления будет очищена от заряда. Этот перенос секции в секцию происходит достаточно быстро (фактически он занимает малую часть времени обратного хода по кадру). Теперь, во время следующего цикла накопления (это следующее поле кадровой развёртки), секция накопления накапливает следующий кадр изображения, а из секции памяти заряды построчно, во время обратного хода по строке, передаются в горизонтальный регистр (каждый элемент регистра имеет зарядовую связь с соответствующим столбцом секции памяти, и за один раз передаётся одна строка), и затем выводятся в выходное устройство регистра за время прямого хода по строке, формируя видеосигнал.
Сразу отметим одно важное обстоятельство. Первые матрицы выглядели именно так, как показано на рисунке, с электродами, сформированными из металла (молибдена). Понятно, что для обеспечения зарядовой связи и возможно полного переноса заряда от затвора к затвору зазор между ними не мог быть большим, что приводило к крайне низкой чувствительности: действительно, почти вся площадь элемента оказывалась непрозрачной для света. Кроме того, при ширине зазора 2 микрона и суммарной его длине для всей матрицы несколько метров весьма вероятно замыкание металлических фаз друг на друга, что приводит к потере работоспособности матрицы.
Радикальным выходом стало предложенное в 1974 г. К. Секеном и М. Томпсеттом из Bell Labs использование электродов из поликристаллического кремния, прозрачного почти во всём видимом диапазоне. В таких приборах для формирования трёхфазной системы электродов используются три последовательно наносимых на подложку уровня поликремния, каждый для своей фазы, которые после формирования электродного рисунка окисляются. Чтобы при окислении поликремния не изменялась толщина подзатворного диэлектрика, в современных приборах он делается двухслойным - окисел + нитрид кремния (Si3N4). Первые же приборы с поликремниевыми затворами превзошли по чувствительности вакуумные трубки и даже фотоэмульсию. Кроме того, выращенный на каждом слое поликремния изолирующий окисел резко снизил вероятность межфазного замыкания, а межфазный зазор уменьшился до 0,2 мкм - толщины межфазного окисла.
прибор зарядовый связь информация
3. Достоинства и ограничения ПЗС
Прежде всего, отметим жёсткий растр. В трубках растр создавался сканирующим электронным лучом, и его геометрическое качество зависело от массы факторов - линейности напряжений развёрток, стабильности питающих напряжений, температурных эффектов и т. д. В твердотельных приборах растр задаётся с высокой точностью в процессе изготовления структуры прибора, так что геометрические искажения получаемого изображения определяются только качеством оптики.
С жёсткостью растра связаны и такие достоинства, как отсутствие микрофонного эффекта (т.е. изменения параметров электровакуумного прибора из-за акустического воздействия) и нечувствительность к магнитным полям - а ведь искажения в трубках, если не принимать специальных мер, могли возникать даже от изменения её положения относительно магнитного поля Земли.
Ещё одно достоинство - отсутствие эффекта выжигания. В трубках чрезмерно яркий свет (например, случайно попавший в поле зрения яркий источник света или, не приведи бог, Солнце), приводил к выжиганию - длительному, а иногда и необратимому изменению параметров фотокатода - и изображение этого источника (причём негативное) ещё долгое время можно было наблюдать, даже не открывая объектив. Ещё один неприятный эффект, свойственный трубкам (кстати, и фоторезисторным матрицам) и полностью отсутствующий в ПЗС - инерционность. Даже после исчезновения освещенности данной точки фотокатода сигнал с неё не спадает мгновенно. В матрицах ПЗС накопленный сигнальный заряд полностью выводится при переносе кадра - и к началу следующей экспозиции секция накопления как новенькая.
По сравнению с твердотельными приборами с координатной адресацией (КА) ПЗС сильно выигрывают в однородности сигнала, так как все зарядовые пакеты детектируются одним усилителем. Помимо одинакового для всех зарядовых пакетов коэффициента преобразования заряд-напряжение, усилитель ПЗС характеризуется и значительно меньшим по сравнению с матрицами с КА.
И ещё одно достоинство по сравнению с конструкцией, о которой речь пойдёт ниже: вся площадь секции накопления является фоточувствительной, т. е. коэффициент заполнения (fill factor) равен 100%. Эта особенность делает приборы данной организации монополистами в астрономии и вообще везде, где идёт борьба за чувствительность.
При всей несомненной простоте, у матриц с рассмотренной организацией (они называются ПЗС с кадровым переносом) есть один существенный недостаток - собственно, сам кадровый перенос (КП). Тактовая частота, подаваемая на секции во время КП, составляет, как правило, несколько сот КГц (редко 1-2 МГц), что связано с большой ёмкостью фаз секций (до 10 000 пФ) и тем, что сами электроды имеют распределённые параметры (RC), и тактовые импульсы при их высокой частоте могут просто не дойти до середины электрода. Раз так, то КП занимает существенное время - доли мс. Если теперь учесть, что во время КП секция накопления остаётся освещённой, то яркие участки изображения успевают дать вклад в чужой зарядовый пакет даже за то короткое время, когда он проходит через них. Так на сигнале появляется смаз - вертикальный след от ярких участков изображения размером во весь кадр. Для борьбы с ним применяются разные ухищрения. Так, в малокадровых системах (прикладные системы с низкой кадровой частотой; яркий пример, астрономия, где время накопления составляет порой часы) используется механический затвор, или же, если есть возможность, просто отключают источник света. В цифровых камерах для компенсации смаза используются достаточно простые алгоритмы обработки изображения (отдельно запоминается картинка смаза - её можно получить, например, при нулевом времени накопления - и затем она вычитается из «суммарного» изображения). Однако радикально проблема смаза решается в приборах с межстрочным переносом (МП), завоевавших доминирующее положение на рынке бытовой видеотехники (см. Рис.4б). В отличие от матриц с КП, функции накопления заряда и его переноса здесь разделены. Заряд из элементов накопления (как правило, фотодиоды - они тоже обладают ёмкостью и способны накапливать заряд) передаётся в закрытые от света ПЗС-регистры переноса, т.е. секция переноса как бы вставлена в секцию накопления.
Рис. 4б. Приборы с межстрочным переносом
Теперь перенос зарядового рельефа всего кадра происходит за один такт, и смаз, связанный с переносом, не возникает. Чтобы побороть ещё и искажения, возникающие из-за попадания в каналы переноса носителей, генерируемых в глубине подложки (если только не применяется фильтр ИК отсечки - а в видеокамерах о нвсегда применяется), к матрице с МП добавляется ещё одна секция памяти с соответствующим числом элементов (Рис.4в). Смаз в такой матрице со строчно-кадровым переносом (СКП) пренебрежимо мал. По сравнению с матрицами с КП фактор заполнения в матрицах с МП или СКП примерно вдвое меньше, так как около половины площади фоточувствительной поверхности закрыто от света. Чтобы повысить эффективность сбора фотонов, используется микрорастр - массив небольших линзочек. Он формируется очень просто: на поверхность пластины с уже формированными структурами матрицы наносится слой оптической легкоплавкой пластмассы, из которого методом фотолитографии вырезаются изолированные квадратики, лежащие над каждым элементом. Зазор между отдельными квадратиками невелик. Затем пластина нагревается, пластмасса подплавляется и поверхность отдельных квадратиков приобретает близкую к сферической форму, фокусируя приходящий на её поверхность свет точно на фоточувствительный элемент матрицы.
4. Параметры и характеристики ПЗС
Прежде всего, остановимся на их спектральных характеристиках - зависимости выходного сигнала от длины волны, или, что эквивалентно, квантовом выходе - количестве фотоэлектронов на один фотон падающего излучения. Спектральная характеристика (СХ) ПЗС определяется, причём мультипликативно, двумя факторами - прохождением света через электродную структуру и фотогенерацией, вызванной поглощением света непосредственно в полупроводнике (внутренний квантовый выход). Начнём с последнего. Поглощение света в полупроводнике описывается коэффициентом поглощения - величиной, обратной длине, на которой интенсивность излучения падает в е раз. Далее, фотогенерацию вызывают только фотоны с энергией, превышающей ширину запрещённой зоны - около 1,2 эВ (что соответствует длине волны чуть больше 1,05 мкм - это ближний ИК диапазон). Фотоны с большей длиной волны просто не поглощаются и соответственно не дают вклада в выходной сигнал, а длина ~1,05 мкм оказывается красной границей фотоэффекта в кремнии. При уменьшении длины волны коэффициент поглощения постепенно растёт; так при л = 1 мкм свет затухает в е раз на 100 мкм, при л = 0,7 мкм (красный цвет) на 5 мкм, а при л = 0,5 мкм (зелено-голубой) на 1 мкм. Что же из этого следует? Вспомним, что глубина обеднённого слоя (глубина, на которую распространяется электрическое поле затвора вглубь полупроводника) - около 5 мкм. Ясно, что для света, который целиком поглощается внутри этого слоя (при длине волны менее примерно 0,6 мкм), внутренний квантовый выход будет почти 100%, так как происходит мгновенное разделение электронно-дырочных пар электрическим полем. Для более длинных волн значительная доля фотонов поглощается в нейтральной подложке, откуда носители могут попасть в потенциальные ямы только за счёт тепловой диффузии - на что шансов тем меньше, чем глубже родился каждый конкретный электрон. Надо ещё учесть, что сама подложка по своим свойствам неоднородна. Так практически все западные приборы изготавливаются на эпитаксиальных подложках с толщиной эпитаксиального слоя 10-12 мкм, а российские ПЗС - на подложках с внутренним геттерированием (это специальный процесс, при котором дефекты кристаллической решётки загоняются вглубь подложки, так что поверхностный слой толщиной около 20 мкм становится свободным от дефектов). В обоих этих случаях время жизни свободных носителей вне поверхностного слоя чрезвычайно мало, и они просто не успевают попасть в потенциальные ямы. Это ещё больше снижает внутренний квантовый выход ПЗС для длинноволнового участка спектра.
Для очень коротких длин волн (менее 270 нм) энергия фотонов достаточна для генерации двух электронно-дырочных пар, так что для них внутренний квантовый выход, на первый взгляд, может превышать 100%. При коротких длинах волн коэффициент поглощения становится настолько большим, а длина поглощения настолько маленькой, что становятся существенным вклад поверхностной рекомбинации, то есть только что рождённые пары успевают рекомбинировать, не успев разделиться. Так что в области коротких длин волн внутренний квантовый выход тоже падает, хотя и не до нуля.
Рис. 5. Сечение трёхфазного ПЗС с электродами из поликристаллического кремния (вверху) и с виртуальной фазой (внизу).
Около половины площади ячейки свободно от поликремния.
Теперь поговорим о пропускании света электродной структурой. Как можно судить по Рис.5а, где схематично изображено сечение трёхфазного ПЗС с поликремневыми затворами, свет, попадая в полупроводник, проходит через несколько слоёв с различными оптическими характеристиками, так что неизбежна его интерференция. И действительно, СХ ПЗС довольно причудлива. Далее, поликристаллический кремний, из которого сделаны электроды, совершенно непрозрачен в области длин волн до 430-450 нм (синий и фиолетовый цвета). В итоге СХ обычного трёхфазного ПЗС с поликремневыми затворами выглядит так, как показано на Рис.6 красной линией.
Рис. 6. Спектральные характеристики абсолютного квантового выхода: обычного ПЗС, ПЗС с люминофорным покрытием, с освещением с обратной стороны подложки, с виртуальной фазой.
Использование фотодиодов в матрицах МП и СКП значительно улучшает СХ ПЗС, особенно в коротковолновой части спектра, поскольку уходят проблемы, связанные с электродами. Именно это обстоятельство позволяет таким приборам успешно работать в вещательных и бытовых камерах цветного телевидения. В камерах прикладного и научного направления, где доминируют всё же приборы с КП, применяются совершенно другие подходы. Самый простой - нанесение люминофора, специального вещества, прозрачного для длинных волн, но преобразующего коротковолновый свет в кванты с большей длиной волны. Этот приём позволяет расширить СХ ПЗС в синюю и УФ область спектра (на Рис.6 показано жёлтым цветом), не затрагивая, впрочем, средне- и длинноволновую часть СХ. Существенным недостатком этого способа является ограниченный температурный диапазон работы такого прибора - люминофорные покрытия не выдерживают глубокого охлаждения. Второй способ, пожалуй, самый трудоёмкий и дорогой, но именно он позволяет добиться фантастических результатов. Состоит он в том, что кристалл ПЗС, уже после изготовления, утоньшается до толщины 10 мкм и менее (и это при размере кристалла в несколько сантиметров), а свет падает на обратную сторону подложки, специальным образом обработанную. При столь тонкой подложке носители успевают добраться до потенциальных ям (напомним, что они простираются на глубину до 5 мкм), а полное отсутствие каких бы то ни было электродов гарантирует, что практически весь свет, за исключением потерь на отражение, проникает в кремний. Квантовая эффективность таких матриц (зелёная кривая на Рис.6) достигает иногда 90%, а спектральный диапазон простирается от 180 до 950 нм. Именно такие матрицы, несмотря на дороговизну, применяются в большинстве серьёзных астрономических проектов, включая космический телескоп «Хаббл» или недавно построенную Южную Европейскую Обсерваторию в Чили с несколькими 8-м телескопами. И, наконец, третий способ улучшения спектральных характеристик ПЗС - виртуальная фаза, способ, предложенный в 1980 году Ярославом Хинечеком, в то время работавшим в фирме Texas Instruments, для американского проекта Galileo по запуску космического аппарата к Юпитеру. Суть этого способа в том, что один из электродов обычного ПЗС заменяется на мелкий слой p-типа (виртуальный затвор) непосредственно на поверхности кремния, замкнутый на стоп-каналы (сам Хинечек модифицировал двухфазный ПЗС; автору ближе ПЗС с виртуальной фазой, полученные из обычных трёхфазных - см. Рис.5б). Доза канала под виртуальным затвором делается больше, чем под тактовыми затворами. Вспомним то, что говорилось про ПЗС со скрытым каналом по поводу фиксации поверхностного потенциала и зависимости глубины потенциальной ямы от дозы легирования канала. Структура с виртуальным затвором, замкнутым на подложку, с точки зрения канала переноса не отличается от состояния фиксации в обычном ПЗС со скрытым каналом. Если к тому же выбрать дозу легирования канала в области виртуальной ямы надлежащим образом, то потенциал канала в ней будет средним между ямой и барьером под тактовыми электродами, так что условия для тактируемого переноса заряда сохраняются.
Достоинства такой структуры несомненны. По сравнению с обычными ПЗС, в ней около половины площади ячейки свободны от поликремния, отсюда высокая чувствительность в синей и УФ области спектра (теоретически даже и до мягкого рентгена). Вместе с тем достигается она при освещении с фронтальной стороны подложки, что явно положительным образом сказывается на их цене.
5. Запоминающее устройство на ПЗС
На фиг. 1 показана схема устройства, реализующего управление записью информации в ПЗС. На фиг. 2 - структура входного устройства на ПЗС, состоящая из кремниевой подложки, диффузионной области, первого отдельно выведенного потенциала на границе раздела диэлектрик-полупроводник под указанными выше затворами и со входной диффузионной области.
Способ управления записью информации в ПЗС осуществляется следующим образом:
На плавающий затвор ПЗС (фиг. 1), под которым формируется сигнальный зарядовый пакет, подается начальное напряжение питания, которое заведомо больше напряжения входного сигнала. При этом под плавающим затвором формируется потенциальная яма. Затем плавающий затвор отключается от источника питания и переводится в плавающий режим работы, который характеризуется изменением напряжения на затворе при изменении поверхностного потенциала под ним. На входной диффузионной области ПЗС формируется низкий уровень напряжения, которое меньше чем на 0,1 В опорного напряжения, подаваемого с генератора опорного напряжения на входной затвор ПЗС. При этом обеспечивается инжекция заряда из входной диффузионной области под затвор ПЗС. Количество заряда, попавшего в потенциальную яму под плавающим затвором, изменяет величину поверхностного потенциала (фиг. 2) от величины напряжения питания до напряжения плавающего затвора. Изменяемое напряжение с плавающего затвора ПЗС подается на второй вход схемы сравнения, а напряжение входного сигнала подается на первый вход схемы сравнения и в случае равенства этих напряжений на выходе схемы сравнения формируется напряжение, которое превышает величину опорного напряжения не меньше чем на 1 В, что обеспечивает прекращение инжекции заряда в потенциальную яму под плавающий затвр ПЗС. Этот способ обеспечивает осуществление автоматического управления записью информации в ПЗС.
Для реализации этого способа управления записью информации в ПЗС используется устройство, которое содержит фрагмент прибора с зарядовой связью 1, состоящее из кремниевой подложки 2, входной диффузионной области 3, входного и плавающего затворов 4 и 5, схему 6 сравнения, генератор 7 опорного напряжения, ключ 8, шину 9 питания, шину 10 управления работой плавающего затвора 5 ПЗС. Первый вход ключа 8 соединен с шиной 10 управления, а второй вход ключа 8 соединен с шиной 9 питания. С приходом разрешающего импульса по шине 10 управления на ключ 8 на плавающий затвор 6 ПЗС с выхода генератора 7 подается напряжение питания. С окончанием разрешающего импульса плавающий затвор 5 отключается от шины 9 питания. НА входной затвор 4 ПЗС подается опорное напряжение с выхода генератора опорного напряжения. Первый вход схемы 6 сравнения является информационным входом и на него подается входное сигнальное напряжение, а второй вход соединен с плавающим затвором 5 ПЗС, вход схемы 6 сравнения соединен с входной диффузионной областью 3 ПЗС. В начале записи информации в ПЗС на входе схемы 6 сравнения сформировано низкое напряжение (относительно опорного напряжения), что обеспечивает инжекцию заряда под плавающий затвор 5 ПЗС. Изменение напряжения на плавающем затворе 5 передается на второй вход схемы 6 сравнения и, в случае равенства входного напряжения и напряжения на плавающем затворе 5, на выходе схемы 6 сравнения формируется высокое напряжение (относительно опорного напряжения), что обеспечивает прекращение инжекции заряда в ПЗС.
Завершение
Нельзя сказать, что сейчас ПЗС достигли совершенства, хотя за истекшие годы в технологии их изготовления и был достигнут потрясающий прогресс. Диапазон выпускаемых приборов охватывает как миниатюрные матрицы с шагом элементов примерно 3 на 5 мкм (одна из последних разработок Sony), так и гигантские кристаллы форматом 5 тыс. на 5 тыс. элементов и размером кристалла почти 8 на 8 см (фирма DALSA, Канада). Не за горами и появление однокристальных приборов форматом 8 на 8 тысяч элементов, тогда как сейчас приборы сверхбольшого формата собираются из двух или четырёх отдельных кристаллов, монтируемых встык на общее основание. Разумеется, у ПЗС есть и свои проблемы. Самая серьёзная из них - специфическая, ни на что не похожая технология изготовления и чрезвычайно жёсткие требования к однородности исходного кремния и степени совершенства технологического процесса. Если при производстве цифровых приборов разброс параметров по пластине может достигать нескольких крат без заметного влияния на параметры получаемых приборов (поскольку работа идёт с дискретными уровнями напряжения), то в ПЗС изменение, скажем, концентрации легирующей примеси на 10% уже заметно на изображении. Свои проблемы добавляет и размер кристалла, и невозможность резервирования, как в БИС памяти, так что дефектные участки приводят к негодности всего кристалла. Специфическим ограничением является и присущий им по принципу действия последовательный вывод информации, тогда как в ряде применений (например, оптические системы наведения или устройства ориентации космических аппаратов) удобнее иметь датчики с произвольным опросом. Всё это привело к тому, что в последние годы заметный интерес проявляется к т. н. приборам с активной ячейкой (APS - active pixel sensors), изготавливаемым по стандартной КМОП-технологии. Пока уступая по своим параметрам ПЗС, эти приборы быстро прогрессируют. В будущем, вероятно, произойдёт определённое разделение «зон влияния» каждого из этих классов приборов, а может быть, появится что-нибудь совершенно новое.
Список литературы
1. Носов Ю.Р., Шилин В.А. Основы физики приборов с зарядовой связью. - М.: Наука, 1986.
2. Кравченко А.Ф. Физические основы функциональной электроники: Учебное пособие. - Новосибирск: Изд-во Новосиб. ун-та, 2000.
3. Щука А.А. Функциональная электроника: Учебник для вузов: - М.: МИРЭА, 1998.
4. Носов Ю.Р., Шилин В.А. Полупроводниковые приборы с зарядовой связью.-М.; Сов. радио, 1976.
Размещено на Allbest.ru
...Подобные документы
Сравнительный анализ существующих способов построения телевизионных камер на приборах с зарядовой связью (ПЗС). Этапы синтеза схем управления вертикальным и горизонтальным переносом зарядов в матрице ПЗС. Разработка блока обработки видеосигнала.
курсовая работа [2,8 M], добавлен 27.11.2013Физические принципы работы фотоприемников на приборах с зарядовой связью. Матричный ПЗС с разделением цветовых сигналов. Технологии комплементарных структур метал–оксид–полупроводник (КМОП). Фотоприёмники с координатной адресацией; телевизионный сигнал.
презентация [1,8 M], добавлен 14.12.2013Разработка системы на основе микроконтроллера для обработки изображения, принимаемого от прибора с зарядовой связью (ПЗС). Принцип работы ПЗС. Схема электрическая принципиальная. Программы для захвата сигналов от ПЗС на микроконтроллер и их обработки.
курсовая работа [1,3 M], добавлен 22.09.2012Понятие и функциональные особенности прибора с зарядовой связью (ПЗС). Физические основы работы и конструкции ПЗС. Понятие и характеристика формирователя сигналов изображений (ФСИ). Строчные и матричные ФСИ на ПЗС. Перспективы развития ФСИ на ПЗС.
реферат [1,9 M], добавлен 16.08.2010Проведение анализа устройства и применения фоточувствительных приборов с зарядовой связью (ФПЗС) на метало-диэлектрик-полупроводниковых интегральных схемах. Физические механизмы, определяющие перенос зарядов. Металл, используемый для получения контактов.
курсовая работа [1,3 M], добавлен 09.12.2015Конструкции полевых транзисторов с управляющим р-п переходом. Стоко-затворная и стоковая (выходная) характеристики, параметры и принцип действия транзисторов. Структура транзисторов с изолированным затвором. Полупроводниковые приборы с зарядовой связью.
реферат [822,3 K], добавлен 21.08.2015Типы структур фотоприемных ячеек фоточувствительных приборов с зарядовой связью (ФПЗС). Накопление заряда в пикселях ФПЗС и его перенос. Метод краевой функции рассеяния. Зависимость модуляции от параметров. Моделирование ФПЗС с обратной засветкой.
дипломная работа [1,9 M], добавлен 03.07.2014Сравнительный анализ существующих способов построения телевизионных камер на приборах с зарядовой связью. Разработка структурной схемы. Синтез схемы управления выходным регистром, а также разработка принципиальной схемы генератора тактовых импульсов.
дипломная работа [2,6 M], добавлен 20.11.2013Рассмотрение общих сведений о приборах с зарядовой связью. Изучение истории создания и развития, характеристик современных ПЗС-камер инфракрасного диапазона. Анализ разрешения матрицы, физического размера пикселя, размера матрицы, электронного затвора.
курсовая работа [304,0 K], добавлен 20.07.2015Основные понятия оптики. Построение изображений с помощью интегральных линз Френеля. Защита интеллектуальной собственности, водяные знаки. Методика расчета кремниевых фотодиодов. Обработка и реконструкция изображений. Камеры и приборы с зарядовой связью.
реферат [554,3 K], добавлен 19.07.2010Буферные запоминающие устройства буквенно-цифровых СОИ. Функциональная схема модуля БЗУ емкостью 3Кх8. Вспомогательное запоминающее устройство телевизионных графических СОИ. Кодирование информации о графике знаков в ПЗУ знакогенераторов телевизионных СОИ.
контрольная работа [41,6 K], добавлен 01.12.2010Выпускаемые накопители информации. Основное описание внешних запоминающих устройств на гибких магнитных дисках. Физическое форматирование. Сущность накопителя на жестком магнитном диске. Описание работы стримера и оптических запоминающих устройств.
реферат [145,0 K], добавлен 26.11.2008Модель взаимодействия открытых систем. Сведения о сетях электросвязи. Цифровые системы передачи. Система сигнализации SSN7. Цифровая коммутационная система "Матрица". Технические характеристики системы. Цифровые системы уплотнения аналоговых линий.
реферат [1,2 M], добавлен 28.03.2009- Проектирование системы управления модулятором добротности лазера с импульсной модуляцией добротности
Структура лазера с импульсной модуляцией добротности. Расчет первого и второго ждущего мультивибратора с эмиттерной связью (строб задержки и работы). Схема ключа с резистивно-емкостной связью. Применение мультивибраторов с коллекторно-базовыми связями.
курсовая работа [993,6 K], добавлен 28.12.2014 Разработка системы управления коротковолнового радиопередатчика на основе современной отечественной элементной базы. Документация для блока автоматизированного управления связью. Тепловой режим блока, технологичность и экономическая эффективность.
дипломная работа [468,7 K], добавлен 10.06.2009Параметры устройства защиты от ошибок на основе системы с обратной связью. Разработка варианта оптимизации УЗО по критерию сложности, обеспечивающего передачу информации в системе документальной электросвязи по дискретному каналу с заданным качеством.
курсовая работа [341,4 K], добавлен 26.11.2011Проектирование многокаскадного усилителя переменного тока с отрицательной обратной связью. Расчет статических и динамических параметров электронного устройства, его схематическое моделирование на ЭВМ с использованием программного продукта Microcap 3.
курсовая работа [664,4 K], добавлен 05.03.2011Спроектированная схема комбинированного устройства на языках релейно-контактной логики и функциональных блоков. Принцип работы и схема мультиплексора, особенности его использования. Постоянное запоминающее устройство: микросхема и массив данных.
курсовая работа [142,3 K], добавлен 05.02.2014Выбор и обоснование блок-схемы системы управления. Расчёт первого и второго ждущих мультивибраторов с эмиттерной связью. Определение контура ударного возбуждения (генерации колебаний заданной частоты). Триггер с эмиттерной связью "усилитель-ограничитель".
курсовая работа [1,2 M], добавлен 19.05.2014Простые схемы дросселей насыщения. Софтстартеры: назначение, область применения. Транзисторные усилители с обратной связью. Тиристорные коммутационные аппараты постоянного тока. Цифровые устройства плавного пуска серии STAT. Основные технические данные.
курсовая работа [1,8 M], добавлен 28.05.2014