Цифровые системы. Аналоговые системы модуляции

Модуляция как процесс изменения параметров несущего сигнала под действием информационного потока. Методы цифровой модуляции и обработки сигналов при демодуляции. Особенности цифровых систем передачи данных. Примеры реализаций сигналов цифровой модуляции.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 23.10.2015
Размер файла 243,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Республики Казахстан

Восточно-Казахстанский государственный технический университет им. Д. Серикбаева

Факультет информационных технологий и энергетики

Кафедра «Приборостроение и автоматизация технологических процессов»

«Радиотехника, электроника и телекоммуникация»

Самостоятельная работа

Цифровые системы. Аналоговые системы модуляции

по дисциплине «Теория электрической связи»

Выполнила: Айдарова Е.А.

Проверила: Байтемирова Г.Ж.

Усть-Каменогорск - 2015

Модуляция - это процесс изменения каких-либо параметров несущего сигнала под действием информационного потока. Данный термин обычно применяют для аналоговых сигналов. Применительно к цифровым сигналам существует другой термин "манипуляция", однако его часто заменяют все тем же словом "модуляция" подразумевая, что речь идет о цифровых сигналах.

Практически во всех современных системах связи с подвижными объектами используются методы цифровой модуляции и цифровая обработка сигналов при демодуляции. Такие системы принято называть цифровыми системами передачи в отличие от аналоговых систем, в которых реализованы аналоговая модуляция и аналоговая демодуляция. Современные достижения радиоэлектроники обеспечивают возможность реализовать б передатчике и приемнике системы связи достаточно сложные алгоритмы цифровой обработки электрических сигналов. В результате качество передачи практически любых сообщений в цифровых системах оказывается выше, чем качество передачи этих сообщений с помощью аналоговых систем связи. Например, оказалось возможным передавать сообщения в присутствии шума и помех с большей точностью или передавать больше сообщений при прочих равных условиях.

Цифровые системы передачи обладают двумя важнейшими особенностями:

* любые сообщения представляются в цифровой форме, т.е. в виде последовательностей битов {aj, j = ...,-1,0,+1,...}; при любом значении индекса j символ аj принимает значения из алфавита {0, 1};

* передатчик системы формирует и передает по очереди в канал передачи конечное число сигналов {sm(t)> m = 1, 2,..., М}, различающихся по форме, которые принято называть канальными символами; для длительности канального символа примем обозначение Ткс; один канальный символ «переносит» один бит или большее число битов, подлежащих передаче; если М = 2, то систему передачи называют двоичной; если М > 2 , то систему называют М-ичной.

Число используемых канальных символов М и их форма в разных системах различны; они известны в точке приема. Поэтому основная функция приемника, точнее его демодулятора, в цифровой системе передачи состоит в том, чтобы оценить, какой из возможных символов (сигналов) был передан передатчиком на очередном интервале времени длительностью Tкс. До формирования канальных символов подлежащие передаче биты обычно сначала преобразуются в последовательность положительных и отрицательных электрических импульсов длительностью Tс прямоугольной формы1, для которой принимаем обозначение v(t); последовательность полученных таким способом импульсов называют модулирующим сигналом. Преобразование последовательности битов в последовательность электрических импульсов осуществляется по следующему правилу: 0 => bv(t), 1 => -bv(t), где b > 0 -амплитуда импульса. При этом модулирующей сигнал:

В этом равенстве суммирование осуществляется по всем возможным значениям индекса i, а множитель bi может принимать значения +b или -b.

На рисунке представлены примеры реализаций сигналов при цифровой модуляции:

Источник генерирует сообщения, представляющие собой либо непрерывные функции от времени, либо потоки дискретных сигналов. Пример непрерывного во времени со-общения-волновой сигнал, передающий человеческую речь. Чтобы передать такой аналоговый сигнал через цифровую систему связи, его необходимо преобразовать в цифровую форму. Делается это путем его дискретизации и последующим квантованием каждого фрагмента. Для этого аналого-цифровой преобразователь(АЦП)разбивает аналоговый сигнал на отсчеты(выборки)с частотой дискретизации fs а затем производит замену каждого отсчета на двоичный блок, определяемый амплитудой фрагмента.

В стандартной телефонии эту операцию выполняет кодер, использующий импульс-но-кодовую модуляцию-ИКМ (англ. Pulse-Code Modulation-РСМ).Он производит дискретизацию поступающего с микрофона аналогового сигнала с частотой8кГц и, применяя стандартизованную нелинейную характеристику, сопоставляет каждому фрагменту8-битную последовательность.

При квантовании с заданным шагом часть информации, содержащейся в исходном сигнале, утрачивается. В результате появляется так называемый шум квантования.

Нелинейный квантователь, сопоставляющий фрагментам речевого сигнала двоичные последовательности, определим, как кодер источника.

Благодаря тому, что нелинейность характеристик преобразования учитывает динамические характеристики человеческого уха,для представления каждой определенной выборки достаточно8-ми битного кодового слова. При использовании линейного аналого-цифрового преобразования сравнимое качество достижимо при длине слова в12- 13бит.

Другой пример кодера речевого сигнала-это кодер дифференциальной импульсно-кодовой модуляции-ДИКМ (англ. Differential Pulse-Code Modulation-DPCM).Принцип действия кодера основан на четкой взаимосвязи между соседними отсчетами голосового сигнала, поэтому кодируется только их разность.

Аналоговая модуляция - преобразование непрерывного низкочастотного сигнала x(t) (рис.2.20,а) в непрерывный высокочастотный сигнал y(t), называемый несущей и обладающий более высокими характеристиками в отношении дальности передачи и затухания. Аналоговая модуляция может быть реализована двумя способами:

1) амплитудная модуляция, при которой амплитуда высокочастотного сигнала y(t) изменяется в соответствии с исходной функцией x(t) так, как это показано на рис.2.20, б: огибающая амплитуды несущей повторяет форму исходной функции x(t);

2) частотная модуляция (рис.2.20, в), при которой в соответствии с исходной функцией x(t) изменяется частота несущей - чем больше значение x(t), тем больше частота несущей y(t).

цифровой модуляция информационный сигнал

Аналоговая модуляция используется в радиовещании при работе множества радиостанций в одной общей среде передачи (радиоэфире): амплитудная модуляция для работы радиостанций в АМ-диапазоне (Amplitude Modulation) и частотная модуляция для работы радиостанций в FM-диапазоне (Frequence Modulatin).

При передаче дискретных данных по каналам связи применяются два основных типа физического кодирования:

1) На основе синусоидального несущего сигнала;

2) На основе последовательности прямоугольных импульсов.

Первый способ называется аналоговой модуляцией, а второй цифровым кодированием. Эти способы отличаются шириной спектра результирующего сигнала и сложность аппаратуры необходимой для их реализации. При использовании прямоугольных импульсов спектр результирующего сигнала получается весьма широким. Применение синусоиды приводит к спектру гораздо меньшей ширины при той же скорости передачи информации. Однако для реализации синусоидальной модуляции требуются более дорогая аппаратура. В настоящее время все чаще данные изначально имеющие аналоговую форму, передаются по каналам связи в дискретном виде, что называется дискретной модуляцией. Аналоговая модуляция применяется для передачи дискретных данных по каналам с узкой полосой частот. Типичным представителем, которых является канал тональной частоты, предоставляемый распоряжение пользователей телефонных сетей.

Размещено на Allbest.ru

...

Подобные документы

  • Анализ структурной схемы системы передачи информации. Помехоустойчивое кодирование сигнала импульсно-кодовой модуляции. Характеристики сигнала цифровой модуляции. Восстановление формы непрерывного сигнала посредством цифро-аналогового преобразования.

    курсовая работа [2,6 M], добавлен 14.11.2017

  • Дискретные способы модуляции, основанные на дискретизации непрерывных процессов как по амплитуде, так и по времени. Преимущество цифровых методов записи, воспроизведения и передачи аналоговой информации. Амплитудная модуляция с одной боковой полосой.

    реферат [1,7 M], добавлен 06.03.2016

  • Виды модуляции в цифровых системах передачи. Сравнение схем модуляции. Обоснование основных требований к системе связи. Влияние неидеальности параметров системы на характеристики ЦСП. Разработка функциональной схемы цифрового синтезатора частот.

    курсовая работа [3,3 M], добавлен 11.03.2012

  • Использование модуляции для определения требуемых свойств каналов, сокращения избыточности модулированных сигналов, расчета потенциальной помехоустойчивости и электромагнитной совместимости различных систем передачи информации. Виды амплитудной модуляции.

    контрольная работа [767,1 K], добавлен 31.03.2013

  • Специфика сигналов с частотной модуляцией. Спектры сигналов различных индексов модуляции. Факторы передачи сигналов с паразитной амплитудной модуляцией. Особенности приемников частотно-модулированного сигнала. Классификация ограничителей, их действие.

    презентация [306,0 K], добавлен 12.12.2011

  • Анализ причин использования в радиоэлектронике гармонического колебания высокой частоты как несущего колебания. Общая характеристика амплитудной, угловой, импульсной и импульсно-кодовой модуляции сигналов. Комплекс форм передачи сигналов в электросвязи.

    реферат [206,6 K], добавлен 22.08.2011

  • Классификация цифровых приборов. Модели цифровых сигналов. Методы амплитудной, фазовой и частотной модуляции. Методика измерения характеристики преобразования АЦП. Синтез структурной, функциональной и принципиальной схемы генератора тестовых сигналов.

    дипломная работа [2,2 M], добавлен 19.01.2013

  • Виды модуляции в цифровых системах передачи. Построение цифрового передатчика на примере формирования сигнала формата 64КАМ. Структурная схема синтезатора частот, цифрового приемника и приёмопередающего тракта. Расчет элементов функциональной схемы СВЧ-Т.

    курсовая работа [3,2 M], добавлен 06.02.2012

  • Понятие цифрового сигнала, его виды и классификация. Понятие интерфейса измерительных систем. Обработка цифровых сигналов. Позиционные системы счисления. Системы передачи данных. Режимы и принципы обмена, способы соединения. Квантование сигнала, его виды.

    курсовая работа [1,0 M], добавлен 21.03.2016

  • Разработка структурной схемы системы связи, предназначенной для передачи данных для заданного вида модуляции. Расчет вероятности ошибки на выходе приемника. Пропускная способность двоичного канала связи. Помехоустойчивое и статистическое кодирование.

    курсовая работа [142,2 K], добавлен 26.11.2009

  • Методические рекомендации для выполнения анализа и оптимизации цифровой системы связи. Структурная схема цифровой системы связи. Определение параметров АЦП и ЦАП. Выбор вида модуляции, помехоустойчивого кода и расчет характеристик качества передачи.

    курсовая работа [143,9 K], добавлен 22.08.2010

  • Структурная схема системы связи. Сущность немодулированных сигналов. Принципы формирования цифрового сигнала. Общие сведения о модуляции и характеристики модулированных сигналов. Расчет вероятности ошибки приемника в канале с аддитивным "белым шумом".

    курсовая работа [1,9 M], добавлен 07.02.2013

  • Обзор методов кодирования информации и построения системы ее передачи. Основные принципы кодово-импульсной модуляции. Временная дискретизация сигналов, амплитудное квантование. Возможные методы построения приемного устройства. Расчет структурной схемы.

    дипломная работа [823,7 K], добавлен 22.09.2011

  • Информационные характеристики источника сообщений и первичных сигналов. Структурная схема системы передачи сообщений, пропускная способность канала связи, расчет параметров АЦП и ЦАП. Анализ помехоустойчивости демодулятора сигнала аналоговой модуляции.

    курсовая работа [233,6 K], добавлен 20.10.2014

  • Разработка структурной схемы системы связи, предназначенной для передачи данных и аналоговых сигналов методом импульсно-кодовой модуляции для заданного диапазона частот и некогерентного способа приема сигналов. Рассмотрение вопросов помехоустойчивости.

    курсовая работа [139,1 K], добавлен 13.08.2010

  • Технические свойства фазоманипулированных сигналов. Параметры повышенной скорости передачи данных стандарта GSM. Виды фазовой манипуляции. Спектр сигнала двоичной фазовой модуляции. Фазовые созвездия для EDGE и GPRS. Сравнение пропускной способности.

    презентация [1014,7 K], добавлен 14.09.2010

  • Разработка функциональной схемы модулятора. Анализ способа передачи. Представление сигнала цифровой модуляции. Обзор устройств и разработка функциональной схемы демодулятора. Описание модулятора и демодулятора. Особенности формирования сигнала КАМ-4.

    курсовая работа [401,0 K], добавлен 19.11.2012

  • Вычисление информационных параметров сообщения. Характеристика статистического и помехоустойчивого кодирования данных. Анализ модуляции и демодуляция сигналов. Расчет функции корреляции между принимаемым входным сигналом и ансамблем опорных сигналов.

    курсовая работа [544,1 K], добавлен 21.11.2021

  • Характеристика амплитудной модуляции, ее применения для радиовещания на низких частотах. Изучение энергии однотонального АМ-сигнала. Рассмотрение сигналов с угловой модуляцией. Спектр прямоугольного ЛЧМ-сигнала. Модуляция символьных и кодовых данных.

    курсовая работа [371,9 K], добавлен 27.05.2015

  • Понятие нелинейной цепи, её сопротивление, сила сигнала и тока. Особенности прохождения сигналов через параметрические системы. Амплитудные и балансные модуляции радиосигналов, преобразование частоты. Детектирование амплитудно-модулированных колебаний.

    контрольная работа [1,3 M], добавлен 13.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.