Дискретные системы автоматического управления
Особенности дискретного управления. Преобразование последовательности импульсов. Параметры импульсных элементов. Функциональные схемы цифровых систем. Цифровые средства обработки информации в системах. Аналоговые электронно-вычислительные машины.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 08.11.2015 |
Размер файла | 31,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение.
1. Метод аналитического конструирования регуляторов
2. Особенности дискретного управления
3. Преобразователи АЦП0
4. Функциональная схема электропривода с цифровым управлением
Заключение
Список литературы
ВВЕДЕНИЕ
Дискретные системы отличаются от непрерывных тем, что среди сигналов, действующих в системе, имеются дискретные сигналы. Дискретные сигналы получаются из непрерывных квантованием по уровню, по времени или одновременно и по уровню, и по времени. Системы, в структуре которых используются цифровые устройства, контроллеры, микропроцессоры, ЭВМ, являются дискретными.
Дискретные системы (ДС) находят широкое применение в управлении разнообразными техническими устройствами. Область применения ДС - управление различными электромеханическими и электромагнитными устройствами, системами телеизмерения и телеуправления, многоканальными системами связи, системами радиоуправления и т. д.
В современных условиях сохраняется устойчивая тенденция увеличения доли цифровых методов преобразования, обработки, передачи и хранения информации во всех сферах деятельности человека, идёт смена поколений технических средств обработки информации и информационного обмена. Эти средства могут непосредственно не затрагивать традиционные области автоматизации: датчики, приводы, регуляторы, однако меняют среду существования средств автоматизации в целом.
В период бурного развития микропроцессорной техники (80-е годы 20-го века) было разработано и внедрено огромное количество технических устройств для систем автоматического управления с жёсткой логической структурой, обладавших вполне удовлетворительными характеристиками. Вместе с тем становилось ясно, что только использование перепрограммируемых и универсальных устройств обеспечит будущее технических средств автоматики. На этом этапе произошло разделение путей развития систем управления на две линии: на основе универсальных ЭВМ, и на основе контроллеров и более простых ЭВМ, но зато оптимизированных для требуемой задачи. Оба подхода получили право на жизнь, а их разумное сочетание обеспечивает высокое качество систем автоматического управления (САУ).
Современные проекты объединяет широкое использование готовых аппаратных и программных технологий открытого типа, апробированных и стандартизованных на рынке общепромышленных гражданских приложений, наряду с развитием и совершенствованием традиционных средств автоматизации. Контроллеры средств автоматизации обычно вынуждены работать в жёстких условиях эксплуатации, а цена сбоя в системе автоматического управления также может быть гораздо выше, чем в других информационных системах, так как объект управления нуждается в управлении постоянно и в реальном времени.
В САУ обычно имеется большое количество разнообразных датчиков и преобразователей информации физических величин, таких, как температура, давление, расход жидкостей, скорость и т.п. Датчики преобразуют исходную физическую величину в некоторую стандартную величину, например, напряжение. При использовании в САУ ЭВМ встаёт задача преобразования этой промежуточной величины в цифровую форму, появилось и стремительно развивается новое поколение датчиков, в которых имеются встроенные контроллеры, осуществляющие такое преобразование. Такой интеллектуальный датчик сам становится элементом вычислительной сети, поддерживающим сетевой протокол и передающим данные в цифровой форме. Часто в контроллере такого датчика производится предварительная цифровая обработка сигнала, например, коррекция систематической погрешности преобразователя, предварительная фильтрация случайных помех, а также контроль работоспособности. Всё больше технических средств САУ становятся чисто цифровыми, в которых преобразование физических данных происходит непосредственно в цифровую форму, подготовленную к передаче по каналу связи.
Цифровыми и интеллектуальными (со встроенными микроконтроллерами) в САУ могут быть и другие составные части: исполнительные устройства, каналы связи, задатчики воздействий, фильтры и т.п. Кроме перепрограммируемости, это даёт повышение надёжности за счёт гибкости конфигурации. Количество компьютеров, используемых для управления процессами производства и в задачах управления, нарастает практически экспоненциально.
дискретные системы автоматического управления
Особенности дискретного управления
Работа дискретных систем связана с воздействием, передачей и преобразованием последовательности импульсов. В отдельные точки ДС сигналы управления поступают в некоторые заданные или произвольные промежутки времени. Характерной чертой любой ДС является наличие импульсных элементов (ИЭ), с помощью которых осуществляется преобразование непрерывных величин в последовательности дискретных сигналов.
Современная теория управления располагает универсальным методом исследования дискретных систем на основе специального математического аппарата - дискретного преобразователя Лапласа, который позволил максимально приблизить методологию исследования ДС к методологии исследования непрерывных систем. Однако работа ДС связана с квантованием непрерывных сигналов и теория управления дискретными системами имеет особенности, обусловленные наличием в этих системах импульсных элементов.
x = const. Системы, в которых используются сигналы, квантованные по конечному числу уровней (часто 2-3 уровня), называются релейными системами. Квантование по уровню является нелинейным преобразованием сигналов, следовательно, релейные системы относятся к классу нелинейных систем.При квантовании по уровню непрерывный сигнал х(t) преобразуется в последовательность дискретных сигналов, фиксированных в произвольные моменты времени при условии
t = const. При этом уровни сигнала могут принимать произвольные значения. Системы, реализующие квантование сигналов по времени, называются импульсными системами (ИС). Квантование по времени осуществляется импульсным элементом, который в частном случае пропускает входной сигнал х(t) лишь в течение некоторого времени.При квантовании по времени сигналы фиксируются в дискретные моменты времени
t = const. Дискретные системы, реализующие сигналы, квантованные по уровню и по времени, называются релейно-импульсными, или цифровыми. В этих системах квантование по уровню и по времени осуществляется кодоимпульсным модулятором или цифровым вычислительным устройством.При квантовании по уровню и по времени непрерывный сигнал заменяется дискретными уровнями, ближайшими к значениям непрерывного сигнала в дискретные моменты времени
Решетчатой функцией называется функция, получающаяся в результате замены непрерывной переменной на дискретную, определенную в дискретные моменты времени nТ, n=0,1, 2, … Непрерывной функции x(t) соответствует решетчатая функция х(nТ), где Т - период квантования, при этом непрерывная функция является огибающей решетчатой функции. При заданном значении периода квантования Т непрерывной функции x(t) соответствует однозначная решетчатая функция х(nТ). Однако обратного однозначного соответствия между решетчатой и непрерывной функцией в общем случае не существует, так как через ординаты решетчатой функции можно провести множество огибающих.
xn.) будет соответствовать решетчатая функция х(n) =t/T, при этом непрерывной функции x(Отсчеты по шкале времени удобно вести в целочисленных единицах периода квантования Т. С этой целью вместо переменной t непрерывной функции введем новую переменную
Импульсная модуляция, и период повторения Т. Величина, определяющая закон модуляции, называется модулирующей величиной.Последовательность импульсов в ИС подвергается импульсной модуляции. Процесс импульсной модуляции состоит в изменении какого-либо параметра периодически повторяющихся импульсов. Применительно к немодулированной последовательности импульсов (рис. 5.1.1, а) такими параметрами являются амплитуда импульсов А, длительность
Если по закону изменения модулирующей величины изменяется амплитуда импульсов, то модуляция называется амплитудно-импульсной (АИМ), если изменяется ширина - широтно-импульсной (ШИМ), при изменении периода - временно-импульсной модуляцией (ВИМ).
Вид модуляции, при которой параметры последовательности импульсов изменяются в зависимости от значений модулирующей величины в фиксированные равноотстоящие друг от друга моменты времени, называется импульсной модуляцией первого рода (рис. 5.1.1, в). В этом случае модулируемый параметр амплитуда, ширина или частота импульса, определяется значением модулирующей величины в равноотстоящие дискретные моменты времени.
Вид модуляции, при которой модулируемые параметры последовательности импульсов изменяются в соответствии с текущим значением модулирующей величины, называется импульсной модуляцией второго рода (рис. 5.1.1, г). В этом случае модулируемый параметр изменяется в течение времени существования импульса.
Параметры импульсных элементов (ИЭ), выполняющих в системах управления дискретизацию аналоговых сигналов и модуляцию импульсов.
Коэффициент усиления kи импульсного элемента - отношение величины модулируемого параметра импульсов к величине входного сигнала хвх(t) в соответствующий дискретный момент времени. Например, коэффициент усиления амплитудного импульсного элемента kи = А/xвх, где А - амплитуда импульса, хвх - соответствующее дискретное значение входной величины.
Период повторения импульсов /Т.0 = 2Т или частота повторения импульсов
Длительность импульсов - скважность импульсов, показывающая, какую часть периода повторения импульсов занимает длительность импульса.Т, где =
Форма импульса S(t) может быть прямоугольной, треугольной, синусоидальной, экспоненциальной, и пр.
Характеристика импульсного элемента - зависимость величины модулируемого параметра импульсов от соответствующих дискретных значений входной величины. Может быть как линейной, так и нелинейной (например, логарифмической), а также комбинированной.
Импульсные элементы разнообразны по конструкции (механические, электромеханические, фотоэлектрические, электронные). В качестве импульсного элемента может быть как простейший ключ, так и любое сложное устройство, например, контроллер. Наиболее широкое применение на практике получили амплитудные импульсные элементы, осуществляющие амплитудно-импульсную модуляцию первого и второго рода. В дальнейшем будем рассматривать, в основном, импульсные системы с амплитудными импульсными элементами первого рода.
Импульсные системы также могут быть линейными и нелинейными. В линейных ИС соблюдается принцип суперпозиции: реакция ИС на сумму воздействий равна сумме реакций на каждое воздействие в отдельности. В этих системах параметры импульсного элемента не зависят от внешних воздействий и переменных, характеризующих состояние системы. К линейным ИС относятся, например, амплитудно-импульсные системы с линейной непрерывной частью и с линейной характеристикой импульсного элемента. В дальнейшем будут рассматриваться линейные импульсные системы, в которых ИЭ может быть включен до непрерывной части, после нее или между отдельными частями непрерывной системы. В замкнутых ИС импульсный элемент может находиться в прямой части системы, в цепи обратной связи или вне замкнутого контура.
САУ с цифровыми ЭВМ или цифровыми вычислительными устройствами (ЦВУ) называются цифровыми системами автоматического управления, или цифровыми автоматическими системами (ЦАС).
Функциональные схемы цифровых систем
В системы автоматического управления ЦВУ можно включать вне замкнутого контура управления, в замкнутый контур управления и в качестве элемента сравнения. Наиболее характерные примеры включения ЦВУ в состав систем управления приведены на рис. 5.1.2.
В системах первого типа (ЦВУ вне замкнутого контура управления, рис. 5.1.2-1) с помощью аналогово-цифрового преобразователя (АЦП) непрерывное (аналоговое) воздействие u(t) преобразуется в цифровой код uk. ЦВУ на основании поступающей информации вырабатывает оптимальное задающее воздействие u'k. Последнее с помощью цифро-аналогового преобразователя (ЦАП) преобразуется в непрерывный сигнал u'(t) и поступает на элемент сравнения (ЭС) замкнутой системы, сигнал которого поступает на вход объекта управления (ОУ). Замкнутый контур системы может быть непрерывным либо импульсным. Достоинство такой ЦАС состоит в простоте изменения программы ЦВУ, в соответствии с которой вырабатывается задающее воздействие.
В системах второго типа (ЦВУ в контуре управления, рис. 5.1.2-2) вычислительное устройство, включенное в прямую цепь замкнутого контура системы, выполняет функцию последовательного корректирующего устройства. В системах третьего типа (рис. 5.1.2-3) ЦВУ включено в цепь местной обратной связи, охватывающей непрерывную часть ОУ системы, и является параллельным корректирующим устройством. Цифровые корректирующие устройства в этих системах позволяют реализовать сложные алгоритмы управления.
В системах четвертого типа (рис. 5.1.2-4) ЦВУ выполняет функции элемента сравнения и корректирующего устройства. В этой системе на цифровой элемент сравнения задающее воздействие uk и управляемая величина yk поступают в цифровой форме через соответствующие АЦП. На выходе элемента сравнения сигнал рассогласования также получается в виде кода ek. С помощью преобразователя ЦАП цифровой код преобразуется в непрерывный сигнал e(t), поступающий на ОУ системы. ЦАС четвертого типа обладает всеми качествами первого, второго и третьего типов, а благодаря более высокой разрешающей способности элемента сравнения обладает более высокой точностью.
Преобразователи АЦП (аналог > код) являются устройствами, осуществляющими автоматическое преобразование непрерывно изменяющихся во времени аналоговых физических величин в дискретную цифровую форму с эквивалентными значениями числовых кодов в определенной системе счисления (двоичной, восьмеричной, десятичной и т.п.).
В качестве входных аналоговых величин обычно действуют временные интервалы, углы поворота, электрические напряжения или токи, частота колебаний, фазовые сдвиги. Важной характеристикой АЦП является количество каналов, определяющее максимальное число датчиков аналоговых величин, которые могут быть одновременно подключены к преобразователю.
Из множества применяемых преобразователей можно выделить три основных группы:
1) преобразователи пространственных перемещений и углов поворота в цифровой код;
2) преобразователи электрических величин (напряжений, токов, и др.) в код;
3) преобразователи интервалов времени в цифровой код.
Преобразователи угол-код делятся на преобразователи считывания и преобразователи последовательного счета. В преобразователях считывания угол поворота вала выдается со считывающего устройства непосредственно в двоичном коде. Основным элементом преобразователя является диск или барабан с кодовой шкалой (маской). Съем кодированных сигналов осуществляется с помощью фотоэлектрических устройств, контактных щеток, магнитных головок и другими способами (одно считывающее устройство на один разряд кода). Высокая точность обычно реализуется с помощью фотоэлектрических преобразователей (до 14-18 кодовых разрядов).
Преобразователи угол - код с обычной двоичной кодовой шкалой, как правило, не применяются, так как имеется вероятность появления ошибок считывания из-за того, что в двоичной системе счисления при переходе от одного числа к другому могут меняться цифры сразу в нескольких разрядах. Для устранения этого недостатка применяются диски с масками специальных кодов - двоичного кода Грея или двоично-сдвинутого кода Баркера, ошибки считывания в которых не превышают единицы младшего разряда.
В преобразователях последовательного счета угол поворота вала преобразуется в количество импульсов. Для этого используется закрепленный на валу диск или барабан с метками регистрирующих датчиков (контактных, фотоэлектрических, и др.). При повороте диска в считывающем устройстве формируются импульсы, число которых зависит от угла поворота вала и плотности меток. Широкое применение имеют также преобразователи, работающие по методу счета, осуществляющие последовательное преобразование угол > временной интервал > код.
Преобразователи напряжения в цифровой код делятся на преобразователи, работающие по принципу последовательного счета и по принципу сравнения (взвешивания).
Для преобразователей, работающих по принципу последовательного счета характерно промежуточное преобразование измеряемого напряжения в пропорциональный временной интервал, который заполняется импульсами генератора определенной частоты, число которых переводится в кодовую форму. В преобразователях, работающих по принципу сравнения, входное напряжение сравнивается с эталонным, формируемым через ЦАП от счетчика выходного кода.
Преобразователи ЦАП (код > аналог) являются устройствами, осуществляющими автоматическое декодирование входных величин, представляемых числовыми кодами, в эквивалентные им значения какой-либо физической величины, чаще всего - напряжения.
Для преобразования цифрового кода в напряжение используются сопротивления, соединенные с кодовым счетчиком по определенной схеме, включение которых на источник эталонного напряжения происходит в соответствии с декодируемым числом, при этом выходное напряжение, снимаемое с нагрузки, пропорционально декодируемому числу. Основным типом преобразователей код-напряжение являются преобразователи с суммированием напряжений на аттенюаторе сопротивлений. Чтобы преобразовать числа разных знаков, необходимо на входе схемы установить знаковый триггер, а на выходе схемы предусмотреть возможность получения напряжения разной полярности. Преобразователи обладают высоким быстродействием, достаточной точностью (точность преобразования может быть доведена до 0,05... 0,1 %), имеют сравнительно простую схему и обеспечивают пропорциональное преобразование кодов с числом разрядов n ? 10, что вполне достаточно для цифровых автоматических систем.
Цифровые средства обработки информации в системах
Многие задачи требуют формирования таких сложных законов управления объектами, которые не могут быть реализованы традиционными элементами и устройствами автоматики. Так, например, в системах управления движущимися объектами требуются сложные вычисления с преобразованием координат, решением прямоугольных и сферических треугольников, счислением пути и т. п. Очень сложные вычисления производятся в адаптивных системах управления. Эти задачи решаются с помощью средств вычислительной техники, вводимых в контур управления динамической системой.
По принципу действия электронно-вычислительные машины, используемые в системах управления, разделяются на два типа: аналоговые (АВМ) и цифровые (ЭВМ).
дискретный управление импульс вычислительный
Аналоговые электронно-вычислительные машины
Аналоговые электронно-вычислительные машины представляют собой вычислительные устройства непрерывного типа с результатами вычислений в виде непрерывного электрического сигнала, отражающего значение определяемой переменной. Выходной сигнал АВМ может быть использован как управляющее воздействие. АВМ легко сопрягается с элементами систем непрерывного управления, удобна и эффективна для решения дифференциальных уравнений как линейных, так и нелинейных. Аналоговые вычислительные системы легко наращивается из отдельных блоков и машин в целом.
Конструктивно АВМ собирается в виде совокупности решающих блоков, организованных в вычислительную систему с помощью электрических связей так, что результат математической операции передается с выхода одного блока на входы других. Результат решения задачи на АВМ можно измерять, регистрировать с помощью записывающих приборов, наблюдать на экранах осциллографов.
Обычный состав АВМ включает в себя следующие функциональные части: операционные усилители, наборное поле, устройства управления, измерительную и регистрационную аппаратуру, источники питания. Имея практически одинаковый набор устройств различных типов, АВМ отличаются количеством операционных блоков, определяющим возможности машины, которые выражаются в основном в порядке дифференциальных уравнений, решаемых на АВМ. По этому признаку АВМ подразделяются на три класса: малые (до 20 операционных блоков), средние (20--60 блоков) и большие (свыше 60 блоков).
Недостатком АВМ является ограниченная точность решения задач и отсутствие устройств памяти для хранения больших объемов информации. Широкое внедрение цифровых электронно-вычислительных машин существенно снизило область применения и масштабы использования АВМ. Тем не менее, в сфере управления техническими системами и технологическими процессами роль АВМ достаточно велика. Эти машины проще, чем ЭВМ, работают в реальном масштабе времени и без проблем сопрягаются с элементами непрерывных автоматических систем.
Цифровые электронно-вычислительные машины
Современная теория и практика управления немыслимы без использования ЭВМ. Если имеется численный метод решения, то с помощью ЭВМ можно решить любую задачу в любой области науки, техники, экономики, общественной жизни.
В практике управления используются ЭВМ различных типов, которые подразделяются на три вида: большие ЭВМ, малые или мини-ЭВМ, и микроЭВМ. Все они имеют общие принципы работы. Структура ЭВМ обусловлена содержанием процесса обработки информации, включающем следующие основные операции: подготовка данных для ввода в вычислительную машину, ввод исходных данных, собственно вычисления и решение задач, вывод результатов решения. Соответственно, ЭВМ включает следующие основные элементы: процессор, оперативное запоминающее устройство (ОЗУ), внешние запоминающие устройства (ВЗУ), устройства ввода и вывода.
Процессор -- центральное устройство ЭВМ для преобразования информации, управления вычислительными процессами и взаимодействием устройств вычислительной машины. Основными частями процессора являются арифметико-логическое устройство (АЛУ) и устройство управления (УУ). Арифметико-логическое устройство осуществляет арифметическое и логическое преобразование информации по командам программы. Устройство управления определяет последовательность выборки команд из памяти, вырабатывает управляющие сигналы, координирует работу ЭВМ, обрабатывает сигналы прерывания программ, осуществляет защиту памяти, контролирует и диагностирует работу процессора.
ОЗУ составляет оперативную память ЭВМ, в которой хранится информация. Информация из ОЗУ в виде команд программы и исходных операндов передается в АЛУ. Из процессора в ОЗУ передаются конечные и промежуточные результаты преобразования информации.
ВЗУ - внешняя память ЭВМ, в качестве которой используются накопители на различных физических носителях долговременного хранения информации с возможностью оперативной записи и считывания.
Информация в ЭВМ хранится в двоично-кодированном виде, в двоичной системе счисления. Двоичная система счисления позволяет сравнительно просто обеспечить технически выполнение вычислительных операций. Выполнение программы в ЭВМ -- это последовательное осуществление в заданном порядке арифметических и логических операций над словами (кодами), действий по организации вычислительного процесса и оценки получающихся результатов.
Микро-ЭВМ и микроконтроллеры
С развитием микроэлектроники цена одноплатной ЭВМ с возможностями мини-компьютера резко упала, и вычислительные мощности стало возможно наращивать модулями. Микро-ЭВМ дали толчок совершенствованию управляющего оборудования, они заменяют аналоговые регуляторы даже в одноконтурных системах управления. Сконструированы иерархические системы управления с большим количеством микропроцессоров и спроектированы регуляторы специального назначения на базе микро-ЭВМ. В настоящее время во всём мире выпускается огромная номенклатура микро-ЭВМ, предназначенных для задач управления и являющихся, по существу, техническими средствами автоматизации. Однако необходимо всё же разделить множество таких управляющих микро-ЭВМ на две группы:
- микро-ЭВМ, наследующие архитектуру персональных компьютеров и совместимых с ними не только через интерфейсы, но и на уровне архитектуры и программного обеспечения;
- микроконтроллеры, которые берут своё начало от узкоспециализированных микропроцессорных платформ (PIC- контроллеров, процессоров цифровой обработки сигналов и др.).
Роль микро-ЭВМ в задачах автоматизации процессов повышается в связи с тем, что управление процессами требует не столько вычислений, сколько логической увязки разнообразной информации. В микро-ЭВМ значительно легче, чем в универсальных ЭВМ, осуществляется связь с измерительными и исполнительными органами управляемого процесса.
Функциональная схема электропривода с цифровым управлением
Рассмотрим наиболее характерную и универсальную функциональную схему неавтономного электропривода с цифровым управлением (рис. 10.1). Здесь управляющая вычислительная машина (УВМ) по внешнему управляющему сигналу u0, соответствующему заданному значению выходного угла, линейного перемещения или скорости вращения, формирует командный сигнал m управления преобразователем напряжения (ПН), к выходу которого подключен двигатель. Информация о регулируемой координате uос поступает с датчика обратной связи (ДОС) и не зависимо от формы первичного сигнала должна быть преобразована в цифровую форму. Таким образом, мы имеем одноконтурную схему, где УВМ выполняет функцию регулятора и должна реализовать в цифровой форме те или иные алгоритмы управления. Причем на ее выходе сигнал может быть представлен не в цифровой форме, а, например, в форме ШИМ-импульсов. управляющих ключами преобразователя напряжения. Принципы построения и программирования таких устройств подробно рассматривается в курсе микропроцессорной техники, здесь мы рассмотрим только общие алгоритмы управления и методы построения таких систем.
Управляющая вычислительная машина обладает рядом свойств, которые определяют новые положительные качества цифровых приводов.
1. Развитые арифметические и логические возможности, которые позволяют реализовать сложные линейные и нелинейные законы управления, функциональную экстраполяцию, трансцендентные зависимости и пересчет координат из одной системы в другую в многосвязном электроприводе, алгоритмы адаптивного управления.
2. Наличие памяти обеспечивает возможность формирования текущего управления с учетом накопленной информации о координатах системы за предыдущее время и реализации принципов самоконтроля привода, за счет наличия в памяти программ тестового контроля и диагностики.
3. Программируемость, которая позволяет создавать на основе микропроцессорных систем многорежимные и многофункциональные приводы.
Рис. 10.1. Функциональная схема электропривода с цифровым управлением
Управляющая вычислительная машина по своей структуре, составу и выполняемым функциям подобна обычной ЭВМ, где микропроцессор совместно с устройством управления выполняют функции центрального процессора. В состав УВМ также входит система памяти, устройство ввода-вывода информации, интерфейс и канал обмена информацией. Специализация вычислителя обуславливается разрядностью, системой команд, использованием в качестве устройств ввода-вывода цифро-аналогового и аналого-цифрового преобразователей информации, ограниченным объемом памяти.
Под МП понимают функционально законченное устройство программной обработки данных, реализованное в виде одной или нескольких БИС и содержащее арифметическо-логическое устройство, элементы внутренней памяти, управления и интерфейса.
Цифровое управление может быть реализовано и в многоконтурных системах. И хотя здесь может быть задействован один процессор, он формирует сигналы регулирования для каждого из контуров, т.е. для контура тока, скорости и угла.
На практике находят применение приводы двух видов.
1. Цифро-аналоговые приводы, в которых один или несколько контуров, например, контур регулирования тока, построены на аналоговых регуляторах, а главный контур, например, контур регулирования скорости, на цифровых. Такие схемы применяются чаще всего потому, что быстродействия цифрового регулятора оказывается недостаточно для управления токовым контуром.
2. Электроприводы с прямым цифровым управлением всеми контурами, полностью исключающими аналоговые регуляторы и устройства. При прямом цифровом управлении усложняются алгоритмы управления (особенно токовым контуром и силовым преобразователем) и предъявляются повышенные требования к быстродействию управляющей ЭВМ.
ВЫВОД
дискретный управление импульс вычислительный
Практически любое инженерное устройство имеет целью своего функционирования то или иное преобразование энергии или преобразование информации. Задачей любой системы управления в самом общем смысле является обработка информации о текущем режиме работы управляемого объекта и выработка на основе этого управляющих сигналов с целью приближения текущего режима работы объекта к заданному. Под обработкой информации в данном случае подразумевается решение тем или иным способом уравнений состояния системы.
Развитие микропроцессорной техники привело к широкому применению в системах управления электроприводом цифровых регуляторов. С одной стороны это позволило существенно расширить набор реализуемых линейных и нелинейных законов и алгоритмов управления приводом. А с другой стороны, внесло такие особенности, присущие цифровым системам, как импульсный характер процессов получения информации, т.е. наличие квантования по времени и по уровню, а также наличие запаздывания в канале управления, необходимого для обработки информации и формирования управляющих сигналов. Это потребовало применения новых алгоритмов управления и новых методов синтеза систем управления приводом. Особенности построения и некоторые методы синтеза регуляторов для электроприводов с цифровым управлением.
ЛИТЕРАТУРА
1. Автоматизация настройки систем управления / В.Я. Ротач, В.Ф. Кузищин, А.С. Клюев и др. - М.: Энергоатомиздат, 1984. - 272 с.
2. Андык В.С. Теория автоматического управления: Учебное пособие к практическим занятиям. - Томск: Изд-во ТПУ, 2004. - 108 с.
3. Бесекерский В.А., Попов Е.П. Теория систем автоматического регулирования. - М.: Наука, 1972. - 768 с.
4. Дорф Р., Бишоп Р. Современные системы управления / Пер. с англ. Б.И. Копылова. - М.: Лаборатория базовых знаний, 2002. - 832 с.
5. Емельянов С.В. Системы автоматического управления с переменной структурой. - М.: Наука, 1967. - 336 с.
6. Емельянов С.В., Коровин С.К. Новые типы обратной связи. - М.: Наука, 1997. - 352 с.
Размещено на Allbest.ru
...Подобные документы
Непрерывные и дискретные переменные. Примеры импульсных и цифровых систем. Определение уравнений дискретных систем по передаточной функции приведенной непрерывной части. Условия конечной длительности переходных процессов дискретных систем, их астатизм.
контрольная работа [1,2 M], добавлен 24.08.2015Дискретные системы автоматического управления как системы, содержащие элементы, которые преобразуют непрерывный сигнал в дискретный. Импульсный элемент (ИЭ), его математическое описание. Цифровая система автоматического управления, методы ее расчета.
реферат [62,3 K], добавлен 18.08.2009Характеристика импульсных и цифровых систем, влияние квантования по уровню на процессы в САР. Формирование систем регулирования на основе аналитических методов. Способы расчета и анализа нелинейных систем автоматического регулирования.
реферат [594,7 K], добавлен 30.03.2011Краткая история видеокамеры. Цифровые и аналоговые системы видеонаблюдения. Основные устройства обработки видеосигналов. Обслуживание системы видеонаблюдения. Трансляция видеоизображения как одна из основных возможностей современных цифровых систем.
реферат [28,2 K], добавлен 03.12.2009Преобразование непрерывной функции в дискретную. Квантование сигнала по уровню. Методы преобразования непрерывной величины в код. Виды, статистические и динамические параметры аналого-цифровых преобразователей. Функциональные схемы интегральных АЦП.
курсовая работа [605,9 K], добавлен 11.05.2016Работа часов по структурной схеме. Выбор кварцевого генератора импульсов на микросхемах. Построение графика выходного сигнала и управления установкой времени. Синтез преобразователей кодов, шифратора клавиатуры и схем формирования переносов часов.
курсовая работа [1,2 M], добавлен 10.12.2012Исследование информационных возможностей импульсных систем. Критерии оценки качества формирования и воспроизведения сигналов с импульсной модуляцией. Амплитудно-частотный и фазово-частотный спектры периодической последовательности прямоугольных импульсов.
контрольная работа [1,0 M], добавлен 24.08.2015Разработка и описание принципиальной схемы дискретного устройства. Синтез основных узлов дискретного устройства, делителя частоты, параллельного сумматора по модулю два, параллельного регистра, преобразователя кодов. Генератор прямоугольных импульсов.
курсовая работа [1,6 M], добавлен 20.05.2014Постановка задачи синтеза цифровой системы управления с описанием особенностей объекта регулирования. Определение требуемого периода дискретизации работы системы управления. Синтез дискретного модального закона управления по методу Л.М. Бойчука.
курсовая работа [617,2 K], добавлен 08.07.2014Получение дискретной передаточной функции. Составление пооператорной структурной схемы разомкнутой импульсной САУ. Передаточная функция билинейно преобразованной системы. Определение граничного коэффициента. Проверка устойчивости системы, расчет ошибки.
курсовая работа [1,3 M], добавлен 09.06.2015Расчет отдельных узлов и основных элементов схемы. Выбор счетчика и эталонного генератора импульсов, синхронизирующего устройства и его элементов. Разработка схемы индикации напряжения управления на основе семисигментных светодиодных индикаторов.
курсовая работа [1,4 M], добавлен 18.07.2013Преобразование дискретной последовательности отсчетов сигнала. Определение дискретной свертки. Схемы рекурсивного и нерекурсивного фильтров. Определение отсчетов дискретного сигнала. Отсчеты импульсной характеристики. Введение преобразования Лапласа.
контрольная работа [396,8 K], добавлен 23.04.2014История изобретения радиосвязи великим русским ученым А.С. Поповым. Основные этапы развития систем радиодоступа. Аналоговые средства доступа к автоматическим телефонным станциям. Узкополосные цифровые системы радиодоступа к цифровым и аналоговым АТС.
реферат [27,2 K], добавлен 05.10.2010Функциональная и структурная схемы непрерывной системы автоматического управления печатной машины, принцип ее работы. Определение передаточной функции исходной замкнутой системы, логарифмических частотных характеристик, ее корректировка и устойчивость.
курсовая работа [1,6 M], добавлен 24.12.2010Выбор элементов схемы мощного и предмощного каскада, частей гальванической развязки. Формирование коротких импульсов и схемы ШИМ. Структура защиты от перегрузок для предотвращения выхода системы из строя в критических режимах работы электронного блока.
дипломная работа [788,6 K], добавлен 25.09.2012Временная избыточность цифровых систем управления. Построение структурной схемы. Преобразование структурной схемы и определение показателей надёжности. Расчет вероятности безотказной работы системы. Программный комплекс автоматизированного расчета.
дипломная работа [3,9 M], добавлен 16.06.2015Специфика проектирования системы автоматического управления газотурбинной электростанции. Проведение расчета ее структурной надежности. Обзор элементов, входящих в блоки САУ. Резервирование как способ повышения характеристик надежности технических систем.
дипломная работа [949,7 K], добавлен 28.10.2013Синтез систем автоматического регулирования простейшей структуры и повышенной динамической точности; получение переходных характеристик, соответствующих предельно-допустимым требованиям показателей качества системы; формирование управляющего воздействия.
курсовая работа [2,0 M], добавлен 11.04.2013Требования к микросхемам аналогового интерфейса связи. Спектр мощности речевого сигнала. Характеристика сигналов аналоговых сообщений. Последовательность импульсов при передаче точек. Восстановление цифровых сигналов. Уплотнение каналов в телефонии.
презентация [850,5 K], добавлен 22.10.2014Понятие структурной схемы и ее звеньев, основные типы соединений. Правила преобразования структурных схем линейных систем. Вычисление передаточной функции одноконтурной и многоконтурной систем. Порядок переноса и перестановки сумматоров и узлов схем.
реферат [204,6 K], добавлен 31.01.2011