Операционные усилители и их применение

История создания, виды операционных усилителей постоянного тока с дифференциальным входом. Основные типы операционных усилителей (полевых, биполярных транзисторах, электронных лампах), анализ их применения в электротехнике для цифровой обработки сигнала.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 25.04.2016
Размер файла 21,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. История создания

2. Типы операционных усилителей

3. Классификация ОУ

Заключение

Введение

Операционный усилитель (ОУ, OpAmp) - усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент передачи полученной схемы.

В настоящее время ОУ получили широкое применение, как в виде отдельных чипов, так и в виде функциональных блоков в составе более сложных интегральных схем. Такая популярность обусловлена тем, что ОУ является универсальным блоком с характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов.

1. История создания

Операционный усилитель изначально был спроектирован для выполнения математических операций (отсюда его название), путём использования напряжения как аналоговой величины. Такой подход лежит в основе аналоговых компьютеров, в которых ОУ использовались для моделирования базовых математических операций (сложение, вычитание, интегрирование, дифференцирование и т. д.). Однако идеальный ОУ является многофункциональным схемотехническим решением, он имеет множество применений помимо математических операций. Реальные ОУ, основанные на транзисторах, электронных лампах или других активных компонентах, выполненные в виде дискретных или интегральных схем, являются приближением к идеальным.

Первые промышленные ламповые ОУ (1940-е гг.) выполнялись на паре двойных триодов, в том числе в виде отдельных конструктивных сборок в корпусах с октальным цоколем. В 1963 Роберт Видлар, инженер Fairchild Semiconductor, спроектировал первый интегральный ОУ - мA702. При цене в 300 долларов, прибор, содержавший 9 транзисторов, использовался только в военных применениях. Первый доступный интегральный ОУ, мA709, также спроектированный Видларом, был выпущен в 1965; вскоре после выпуска его цена упала ниже 10 долларов, что было всё ещё слишком дорого для бытового применения, но вполне доступно для массовой промышленной автоматики и т. п. гражданских задач.

В 1967 National Semiconductor, куда перешёл работать Видлар, выпустила LM101, а в1968 Fairchild выпустило практически идентичный мA741 -- первый ОУ со встроенной частотной коррекцией. ОУ LM101/мA741 был более стабилен и прост в использовании, чем предшественники. Многие производители до сих пор выпускают версии этого классического чипа (их можно узнать по числу «741» в наименовании). Позднее были разработаны ОУ и на другой элементной базе: на полевых транзисторах с p-n переходом (конец 1970х) и с изолированным затвором (начало 1980х), что позволило существенно улучшить ряд характеристик. Многие из более современных ОУ могут быть установлены в схемы, спроектированные для 741 без каких-либо доработок, при этом характеристики схемы только улучшатся.

Применение ОУ в электронике чрезвычайно широко -- операционный усилитель, вероятно, наиболее часто встречающийся элемент в аналоговой схемотехнике. Добавление лишь нескольких внешних компонентов делает из ОУ конкретную схему аналоговой обработки сигналов. Многие стандартные ОУ стомят всего несколько центов в крупных партиях (1000шт), но усилители с нестандартными характеристиками (в интегральном или дискретном исполнении) могут стоить $100 и выше.

2. Типы операционных усилителей

В настоящее время в мире изготавливаются сотни наименований интегральных ОУ. Все это многообразие можно разделить на группы, объединенные общей технологией и схемотехникой, точностными, динамическими или эксплуатационными характеристиками, причем эти группы могут пересекаться, т.е. включать общие элементы.

С точки зрения внутренней схемотехники операционные усилители можно разделить на биполярные, биполярно-полевые и КМОП (на комплементарных полевых транзисторах с изолированным затвором). В биполярно-полевых ОУ полевые транзисторы с управляющим p-n переходом или МОП-транзисторы обычно используются в качестве входных в дифференциальном входном каскаде. За счет этого достигается высокое входное сопротивление и малые входные токи.

Большая часть номенклатуры ОУ относится к усилителям общего назначения. Это дешевые усилители среднего быстродействия, невысокой точности и малой выходной мощности. Обычные параметры: KU = 20 000 - 200 000; Uсм = 0,1 - 20 мВ; fт = 0,1 - 10 МГц. Типичные примеры: 140УД6, 140УД8, 153УД6, LF411.

Быстродействующие усилители при средних точностных параметрах имеют высокие динамические характеристики (fт = 20 - 1000 МГц, r = 10 - 1000 В/мкс). Быстродействие ОУ ограничивает два обстоятельства. Во-первых, в cостав входного дифференциального усилителя входят p-n-p-транзисторы, относительно низкочастотные из-за меньшей подвижности дырок по сравнению со свободными электронами. Во-вторых, скорость нарастания ограничена скоростью заряда корректирующего конденсатора Ск. Влияние первого фактора устраняют, используя во входном каскаде более быстродействующие р-канальные полевые транзисторы. Увеличить скорость заряда Ск можно либо увеличив ток дифференциального каскада, либо уменьшив емкость Ск. В первом случае увеличивается ток потребления ОУ, а во втором ухудшается устойчивость. Повысить устойчивость можно, вводя дополнительные фазоопережающие звенья в схему усилителя или вне его. Как следствие, быстродействующие ОУ склонны к неустойчивости. Типичные примеры: 140УД10, 574УД3, 154УД4, ОРА634.

Прецизионные усилители имеют высокий дифференциальный коэффициент усиления по напряжению, малое напряжение смещения нуля и малый входной ток обычно при низком или среднем быстродействии. Увеличение KU возможно путем усовершенствования каскадов усиления по напряжению или применением трехкаскадной схемы (например, 551УД1), что усложняет частотную коррекцию. Радикально уменьшить смещение нуля позволяет применение модуляции-демодуляции (МДМ), либо периодическая компенсация дрейфа (прерывание). Типичные примеры: 140УД26, МАХ400М, ОРА227 (без прерывания), ICL7652, 140УД24, МАХ430 (с прерыванием).

Микромощные усилители используются в приборах, получающих питание от гальванических или аккумуляторных батарей. Эти усилители потребляют очень малый ток от источников питания (например, ОУ МАХ406 потребляет ток не более 1,2 мкА). Все другие параметры (особенно быстродействие) у них обычно невысокие. Для того, чтобы дать возможность проектировщику найти компромисс между малым потреблением и низким быстродействием некоторые модели микромощных ОУ выполняют программируемыми. Программируемый ОУ имеет специальный вывод, который через внешний резистор соединяется с общей точкой или источником питания определенной полярности. Сопротивление резистора задает ток системы токовых зеркал усилителя, которые выполняют функции генераторов стабильного тока и динамической нагрузки каскадов усилителя. Уменьшение этого резистора приводит к увеличению быстродействия ОУ и увеличению потребляемого тока. Увеличение - к обратному результату. Типичные примеры: 140УД12, 1407УД2, ОР22. Обычная величина тока потребления для микромощных и программируемых ОУ - десятки микроампер. Микромощные ОУ, как правило, допускают питание от весьма низких напряжений. Например, ОУ типа МАХ480 допускает работу от источников с напряжением от +/-0,8 до +/-18 В при токе потребления 15 мкА. Если источник сигнала - однополярный (например, фотодиод), целесообразно использовать операционный усилитель с однополярным питанием. Это позволит питать усилитель от одной батареи или даже элемента, например, от литиевого элемента напряжением 3 вольта. Основное требование, предъявляемое к ОУ с однополярным питанием, - диапазон входного синфазного сигнала должен простираться ниже отрицательного напряжения питания (обычно привязанного к потенциалу земли), а размах выходного напряжения должен быть ограничен снизу практически напряжением питания (потенциалом земли). Существуют усилители, диапазоны входных и выходных напряжений которых почти достигают и верхней и нижней границы питания (так называемые, rail-to-rail вход и выход), причем входные напряжения могут даже заходить за эти границы. Типичные примеры: МАХ495, потребляющий от однополярного источника ток 150 мкА, LMV321, потребляющий ток 145 мкА, от источника 1,8 В.

Многие фирмы выпускают многоканальные усилители. Это микросхемы, имеющие на одном кристалле два, три или четыре однотипных ОУ. Например, ИМС типа 140УД20 имеет в своем составе два ОУ 140УД7. Микросхемы МАХ406/407/409 и ОРА227/2227/4227 включают, соответственно, один, два и четыре однотипных усилителя.

Мощные и высоковольтные операционные усилители. Большинство типов ОУ рассчитаны на напряжение питания +/-15 В. Некоторые допускают питание от источников вплоть до +/-22 В. Этого недостаточно для управления, например, пьезоэлектрическими преобразователями, для некоторых физических и биологических исследований. Поэтому промышленность производит высоковольтные ОУ, допускающие более высокие питающее и выходное напряжения. К высоковольтным относят операционные усилители, имеющие разность положительного и отрицательного питающих напряжений свыше 50 вольт. Проблема повышения напряжений в интегральных полупроводниковых (монолитных) ОУ связана с трудностью создания интегральных высоковольтных транзисторов и прочной изоляции между элементами в кристалле. Поэтому большинство ОУ с напряжением питания свыше 100 В изготавливаются в виде гибридных ИМС. В то же время, фирма Apex Microtechnology (США) производит полупроводниковые интегральные ОУ РА90, PA92 и РА94, с номинальным напряжением питания +/-200 В, выходным напряжением +/-170 В и выходным током до 14 А.

Операционные усилители общего применения обычно допускают выходной ток до 5 мА. Для управления мощной нагрузкой применяются мощные ОУ. К мощным обычно относят усилители, допускающие выходной ток свыше 500 мА. Примером полупроводникового интегрального мощного ОУ может служить LM12 с выходным током до 10 А и рассеиваемой мощностью до 90 Вт. Фирма Apex Microtechnology выпускает сверхмощный гибридный ОУ РА30, допускающий выходной ток до 100 А и способный отдать в нагрузку мощность до 2000 Вт при жидкостном охлаждении. Дальнейшее увеличение выходной мощности усилителей возможно путем использования режима класса D. Рекордными являются характеристики гибридного усилителя фирмы Apex SA08 с широтно-импульсной модуляцией на частоте 22 кГц: 10 кВт при напряжении до 500 В и токе до 20 А. При этом КПД усилителя достигает 98%.

3. Классификация ОУ

По типу элементной базы.

* На полевых тразисторах;

* На биполярных транзисторах;

* На электронных лампах (устарели);

По области применения

Выпускаемые промышленностью операционные усилители постоянно совершенствуются, параметры ОУ приближаются к идеальным. Однако улучшить все параметры одновременно технически невозможно или нецелесообразно из-за дороговизны полученного чипа. Для того, чтобы расширить область применения ОУ, выпускаются различные их типы, в каждом из которых один или несколько параметров являются выдающимися, а остальные на обычном уровне (или даже чуть хуже). Это оправдано, так как в зависимости от сферы применения от ОУ требуется высокое значение того или иного параметра, но не всех сразу. Отсюда вытекает классификация ОУ по областям применения.

· Индустриальный стандарт. Так называют широко применяемые, очень дешевые ОУ общего применения со средними характеристиками. Пример «классических» ОУ: с биполярным входом - LM324, с полевым входом - TL084.

· Прецизионные ОУ имеют очень малые напряжения смещения, применяются в точных измерительных схемах. Обычно ОУ на биполярных транзисторах по этому показателю несколько лучше, чем на полевых. Также от прецизионных ОУ требуется долговременная стабильность параметров. Исключительно малыми смещениями обладают стабилизированные прерыванием ОУ. Примеры: AD707, AD708, с напряжением смещения 30 мкВ, а также новейшие AD8551 с типичным напряжением смещения 1 мкВ.

· С малым входным током (электрометрические) ОУ. Все ОУ, имеющие полевые транзисторы на входе, обладают малым входным током. Но среди них существуют специальные ОУ с исключительно малым входным током. Чтобы полностью реализовать их преимущества, при проектировании устройств с их использованием необходимо даже учитывать утечку тока по печатной плате. Пример: AD549 с входным током 6*10?14 А.

· Микромощные и программируемые ОУ потребляют малый ток на собственное питание. Такие ОУ не могут быть быстродействующими, так как малый потребляемый ток и высокое быстродействие -- взаимоисключающие требования. Программируемыми называются ОУ, для которых все внутренние токи покоя можно задать с помощью внешнего тока, подаваемого на специальный вывод ОУ.

· Мощные (сильноточные) ОУ могут отдавать большой ток в нагрузку, то есть допустимое сопротивление нагрузки меньше стандартных 2 кОм, и может составлять до 50 Ом.

· Низковольтные ОУ работоспособны при напряжении питания 3 В и даже ниже. Как правило, они имеют rail-to-rail выход.

· Высоковольтные ОУ. Все напряжения для них (питания, синфазное входное, максимальное выходное) значительно больше, чем для ОУ широкого применения.

· Быстродействующие ОУ имеют высокую скорость нарастания и частоту единичного усиления. Такие ОУ не могут быть микромощными, и как правило выполнены на биполярных транзисторах.

· Звуковые ОУ. Имеют минимально возможный коэффициент гармоник (THD). Примеры: LM4562 (THD 0,00003 %), OPA2132 (THD 0,00008 %), LME49600 (THD 0,00003 %), AD797 (THD 0,0001 %) и т. п.

· Для однополярного питания. CMOS ОУ обеспечивают выходное напряжение, практически равное напряжению питания (rail-to-rail, R2R), биполярные ОУ -- примерно на 1.2 В меньше, что существенно при небольших значениях Ucc.

· Специализированные ОУ. Обычно разработаны для конкретных задач (подключение фотодатчика, магнитной головки, и др.). Могут содержать в себе готовые цепи ООС или отдельные необходимые для этого прецизионные резисторы

· Предусилители и буферные усилители звукового и видеочастотного диапазона

· Компараторы напряжения

· Дифференциальные усилители

· Дифференциаторы и интеграторы

· Фильтры

· Выпрямители повышенной точности

· Стабилизаторы напряжения и тока

· Аналоговые вычислители

· Аналого-цифровые преобразователи

· Цифро-аналоговые преобразователи

· Генераторы сигналов

· Преобразователи ток-напряжение и напряжение- ток

Заключение

цифровой усилитель электронный транзистор

В настоящее время в электронике широкое распространение получила цифровая обработка сигналов. Цифровые методы, основывающиеся на использовании микропроцессоров, проникли во множество областей радиоэлектроники и привели к созданию совершенно новых способов обработки сигналов. Одновременно наблюдается развитие аналоговой электроники, поскольку по мере развития систем цифровой обработки повышаются требования к качеству входных и выходных аналоговых сигналов. Операционный усилитель является базовым элементом устройств аналоговой обработки сигналов. Поэтому разработчик систем сбора, передачи и обработки измерительной информации должен обладать знаниями параметров ОУ (схем их включения и умением проектировать устройства на основе ОУ).

Размещено на Allbest.ru

...

Подобные документы

  • Применение операционных усилителей для сложения двух постоянных, двух переменных, постоянного и переменного напряжений, дифференцирования и интегрирования входных сигналов. Переходной процесс в интеграторе, влияние на него амплитуды входного сигнала.

    контрольная работа [120,0 K], добавлен 02.12.2010

  • Виды транзисторных усилителей, основные задачи проектирования транзисторных усилителей, применяемые при анализе схем обозначения и соглашения. Статические характеристики, дифференциальные параметры транзисторов и усилителей, обратные связи в усилителях.

    реферат [185,2 K], добавлен 01.04.2010

  • Понятие электронного усилителя, принцип работы. Типы электронных усилителей, их характеристики. Типы обратных связей в усилителях и результаты их воздействия на работу электронных схем. Анализ электронных усилителей на основе биполярных транзисторов.

    курсовая работа [540,7 K], добавлен 03.07.2011

  • Понятие и назначение операционных усилителей, их структура и основные функции, разновидности и специфические признаки, сферы применения. Инвертирующее и неинвертирующее включение операционных усилителей. Активные RC-фильтры. Компараторы сигналов.

    контрольная работа [72,0 K], добавлен 23.12.2010

  • Частотные и временные характеристики усилителей непрерывных и импульсных сигналов. Линейные и нелинейные искажения в усилителях. Исследование основных параметров избирательных и многокаскадных усилителей. Усилительные каскады на биполярных транзисторах.

    контрольная работа [492,6 K], добавлен 13.02.2015

  • Характеристика свойств и принципов действия усилителей низкой частоты на биполярных транзисторах. Основные методики проектирования и расчета генераторов колебаний прямоугольной формы с управляемой частотой следования импульсов. Эскиз источника питания.

    курсовая работа [56,0 K], добавлен 20.12.2008

  • Методы определения параметров операционных усилителей, входных токов, напряжения смещения, дифференциального входного и выходного сопротивлений, скорости нарастания выходного напряжения, коэффициентов усиления инвертирующего и неинвертирующего усилителей.

    контрольная работа [151,0 K], добавлен 02.12.2010

  • Изучение работы усилителей постоянного тока на транзисторах и интегральных микросхемах. Определение коэффициента усиления по напряжению. Амплитудная характеристика усилителя. Зависимость выходного напряжения от напряжения питания сети для усилителя тока.

    лабораторная работа [3,3 M], добавлен 31.08.2013

  • Изучение методов измерения основных параметров операционных усилителей. Исследование особенностей работы операционного усилителя в режимах неинвертирующего и инвертирующего усилителей. Измерение коэффициента усиления инвертирующего усилителя.

    лабораторная работа [751,7 K], добавлен 16.12.2008

  • Операционный усилитель как один из широко распространенных интегральных микросхем. Применение усилителя постоянного тока для повышения качества и интенсивности сигналов. Исследование возможностей его применения для их сложения, в качестве интегратора.

    лабораторная работа [243,6 K], добавлен 30.04.2014

  • Принципы построения мультидифференциальных операционных усилителей: структура и свойства. Собственная компенсация влияния частотных свойств, звенья активных фильтров. Мультидифференциальные операционные усилители в аналоговых интерфейсах и портах ввода.

    магистерская работа [1,6 M], добавлен 08.03.2011

  • Расчет интегрирующего усилителя на основе операционного усилителя с выходным каскадом на транзисторах. Основные схемы включения операционных усилителей. Зависимость коэффициента усиления от частоты, а также график входного тока усилительного каскада.

    курсовая работа [340,2 K], добавлен 12.06.2014

  • Общие принципы проектирования усилителей на биполярных транзисторах. Расчет разделительных конденсаторов и емкости шунтирующего конденсатора в цепи эмиттера. связи между отдельными усилительными каскадами. Оценка предельных параметров и выбор транзистора.

    курсовая работа [307,3 K], добавлен 16.05.2016

  • Изучение схемотехники активных фильтров. Исследование влияния динамических параметров операционных усилителей на их частотные характеристики. Анализ электрических схем построения активных фильтров первого и второго порядка на операционных усилителях.

    лабораторная работа [372,0 K], добавлен 12.11.2014

  • Динамический режим работы усилителя. Расчет аналоговых электронных устройств. Импульсные и широкополосные усилители. Схемы на биполярных и полевых транзисторах. Правила построения моделей электронных схем. Настройка аналоговых радиотехнических устройств.

    презентация [1,6 M], добавлен 12.11.2014

  • Операционные усилители: понятие и параметры. Влияние обратной связи на параметры и характеристики усилителей. Расчет усилительного каскада на биполярном транзисторе. Моделирование схем с помощью программы Elektronik Workbench. Выбор транзистора.

    курсовая работа [1,6 M], добавлен 20.01.2014

  • Построение математической модели динамической системы. Изучение цепочки усилителей, состоящих из соединенных последовательно безынерционного усилителя и фильтра. Неустойчивость образования периодического сигнала и хаотизация сигнала в цепочке усилителей.

    контрольная работа [64,7 K], добавлен 24.11.2015

  • Классификация ЛЭ двухступенчатой логики на биполярных транзисторах. Транзисторно-транзисторные ИМС (TTL). Базовая схема элемента T-TTL, его модификации. Характеристика ЛЭ на полевых МДП-транзисторах. Сравнение ЛЭ на биполярных и МДП-транзисторах.

    реферат [1,8 M], добавлен 12.06.2009

  • Определение и классификация частотных фильтров. Область применения, преимущества и передаточная функция активных фильтров верхних частот. Методы каскадной и непосредственной реализации функции цепи, резонаторное использование операционных усилителей.

    курсовая работа [69,9 K], добавлен 27.08.2010

  • Основные схемы включения операционного усилителя и его характерные свойства. Исследование неинвертирующего и инвертирующего включения данных устройств, усилители переменного тока на их основе. Выпрямители и детекторы сигналов на операционных усилителях.

    курсовая работа [825,0 K], добавлен 19.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.