Способ передачи данных по радиоканалу сверхширокополосным импульсным сигналом в космических системах связи
Определение структуры сверхширокополосного импульсного сигнала. Эквивалентная схема идеального полосового фильтра. Передача данных с помощью балансной модуляции. Структура и результаты моделирования передачи информационных посылок с максимально скоростью.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | статья |
Язык | русский |
Дата добавления | 02.06.2016 |
Размер файла | 2,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru//
Размещено на http://www.allbest.ru//
Способ передачи данных по радиоканалу сверхширокополосным импульсным сигналом в космических системах связи
А.С. Рудько, преподаватель, кандидат технических наук
В.И. Филатов, старший научный сотрудник, кандидат технических наук
Определена структура сверхширокополосного импульсного сигнала. Такой сигнал позволит передавать информационные посылки с максимально скоростью в условиях частотных и мощностных ограничений, накладываемых Государственной комиссией по радиочастотам РФ, без учета межсимвольной интерференции. Показана возможность по практической реализации предложенной структуры.
Ключевые слова: Сверхширокополосная система; межсимвольная интерференция; импульсный сигнал; электромагнитная совместимость.
импульсный сигнал полосовый фильтр
А.S. Rudko
V.I. Filatov
А.S. Nemchaninov
M.A. Zaytsev
A method of transmitting data on a radio channel ultra-wideband pulse signal
The structure of ultra-wideband pulse signal. Such a signal allows you to transmit an information packet with a maximum speed in terms of frequency and power limitations imposed by the State Commission on radio frequencies of the RF, without taking into account intersymbol interference. The possibility for practical realization of the proposed structure.
Keywords: ultra-wideband system; inter-symbol interference; pulse signal; electromagnetic compatibility.
Значительное увеличение применения беспроводных высокоскоростных технологий передачи данных привело к усугублению и без того серьезной проблемы - нехватки радиочастотного ресурса в освоенных диапазонах [3]. Освоение новых свободных частотных диапазонов требует развития и применения дорогостоящей элементной базы, что в ряде случаев экономически нецелесообразно. Внедрение технологий беспроводной связи в занятых диапазонах частот - актуальное направление развития современных радиосистем, а решение государственной комиссии по радиочастотам Российской Федерации (ГКРЧ РФ) № 09-05-02 от 19 марта 2009 года дало возможность безлицензионного применения в занятых диапазонах радиочастот маломощных беспроводных устройств, использующих сверхширокополосные сигналы (СШПС). Этим решением определен диапазон радиочастот - от 2,85 до 10,6 ГГц и ограничения на эквивалентную изотропно-излучаемую мощность. Мощностные ограничения указаны дифференцированно и при соблюдении наиболее жестких из них передатчик СШПС может работать в терминалах аэропортов, а так же в самолетах при взлете и посадке. Для работы в подобных условиях также важно не излучать в полосе ниже 2,85 ГГц и выше 10,6 ГГц, и, при этом, максимально эффективно использовать выделенный частотно-временной ресурс.
Известны работы Московского авиационного института, института Котельникова РАН, института Иоффе РАН, а так же ряда других учреждений, которые позволили существенно продвинуться в теоретическом обосновании принципов работы и практическом применении сверхширокополосных технологий. В настоящее время применяются несколько классов СШПС: сигналы без несущей - последовательности сверхширокополосных видеоимпульсов, сигналы с ортогональным частотным мультиплексированием и сигналы с хаотической несущей. С точки зрения скорости передачи информационных посылок наибольшим потенциалом обладают сигналы, относящиеся к первому классу, поскольку частотный диапазон может быть задействован полностью без разрывов, при этом форма спектра определяется элементарным коротким импульсом и имеется возможность применения когерентных систем [2].
Интересной видится задача, заключающаяся в определении структуры сверхширокополосного импульсного сигнала, которая позволит передавать информационные посылки с максимальной скоростью без межсимвольной интерференции в условиях ограничений, налагаемых ГКРЧ РФ.
Рассмотрим идеальный случай и сформируем СШПС, имеющий равномерный спектр в полосе частот 2,85 - 10,6 ГГц и не имеющий частотных составляющих за пределами это полосы. Такой сигнал может быть получен путем передачи дельта-импульса через идеальный полосовой фильтр (ИПФ) с соответствующими частотами среза. Поскольку ИПФ является линейной системой, то для него применим принцип суперпозиции сигналов, и эквивалентной схемой такого фильтра будет являться схема, состоящая из двух идеальных фильтров нижних частот (ИФНЧ) и вычитающего устройства (рис. 1). Выходной сигнал во временной области в этом случае описываться выражением (1):
, (1)
где - частота среза ИФНЧ1, Гц и - ИФНЧ2 соответственно, Гц.
Рисунок 1. Эквивалентная схема идеального полосового фильтра
Для подавляющего большинства сигналов, применяемых сегодня в сантиметровом диапазоне длин волн справедливо соотношение , где fв и fн - максимальная и минимальная частоты в спектре сигнала. Однако, если спектр сигнала будет занимать весь разрешенный решением ГКРЧ РФ диапазон от 2,85 до 10,6 ГГц, то это отношение составит . Аналитическое моделирование показало, что для подобных сигналов добиться периодической или квазипериодической передачи импульсов без межсимвольной интерференции можно только при целочисленном отношении частот среза. Условие позволяет наиболее полно задействовать весь разрешенный диапазон радиочастот (от 3,5 до 10,5 ГГц).
Импульсная переходная функция идеального полосового фильтра с частотами среза от 3,5 и 10,5 ГГц приведена на рисунке 2.
Рисунок 2. Импульсная переходная функция ИПФ с частотами среза от 3,5 и 10,5 ГГц
Анализ положения нулей ИПФ, приведенного на рис. 2, показал, что нули расположены не периодически, однако в их расположении есть закономерность и можно найти апериодическую структуру сигнала, при которой будут отсутствовать межсимвольные искажения. Искомая структура приведена на рисунке 3. Как видно из рисунка, в определенные моменты времени переходные процессы от всех импульсов сводятся к нулю за исключением одного импульса, уровень которого максимален. Соответственно, анализируя уровень сигнала в этот момент времени, можно принять решение о наличии или отсутствии информационно посылки на этой позиции. При такой структуре сигнала скорость передачи информационных посылок составит , ?f=fв-fн. Эта скорость соответствует максимальной скорости передачи информационных посылок для случая применения идеального фильтра нижних частот, описанного Г.Наквистом и В.Котельниковым. Таким образом максимальная скорость передачи информационных посылок в условиях отсутствия межсимвольной интерференции и частотных ограничений, накладываемых ГКРЧ РФ составит . Мощностные ограничения приводят к необходимости передачи одного бита информации множеством посылок, количество которых зависит от расстояния между приемником и передатчиком и характеристик внешней среды [1].
Рисунок 3. Структура сверхширокополосного импульсного сигнала
Предложенная структура сверхширокополосного импульсного сигнала обладает важной особенностью - при применении для передачи данных балансной модуляции (рис. 4) появляется возможность сформировать синхросигнал. Суммарный сигнал, полученный путем формирования чередующейся последовательности нулей и единиц (рис. 5а), представляет собой гармонический сигнал (рис. 5б), по нулям которого можно осуществлять импульсную синхронизацию передатчика и приемника.
Рисунок 4. Передача данных с помощью балансной модуляции
Рассмотрим возможности по практической реализации приведенной структуры сигнала. Проведем имитационное моделирование и разработаем модель в среде программирования LabView. Модель состоит из генератора прямоугольных импульсов, дифференцирующей цепочки (ДЦ), полосового фильтра, блока преобразования Фурье и элементов отображения. Генератор прямоугольных импульсов формирует сигнал, который подается на вход ДЦ, на выходе которой формируются короткие импульсы, соответствующие фронтам и спадам входных прямоугольных импульсов. Короткие импульсы проходят через полосовой фильтр. Полученный сигнал анализируется во временной и спектрально области.
Рисунок 5. Формирование синхросигнала
Проведенный анализ показал, что при использовании полосового фильтра начиная с 7-го порядка форма сигнала близка к теоретической. Структура модели и результаты моделирования приведены на рисунке 4.
Результаты исследования применяются в области связи, а именно для организации по радиолиниям между различными маломощными и малогабаритными устройствами информационного обмена при решении задачи «последней мили». Отличительной особенностью результатов исследования является решенная задача обеспечения синхронизации приемника и передатчика при информационном обмене сверхширокополосными сигналами.
Рисунок 6. Структура модели и результаты моделирования
Т.о. сущность способа заключает в себе следующие особенности:
Применяются короткие сверхширокополосные импульсы, полученные при прохождении опорного сигнала через дифференциальные цепочки и полосовой фильтр высокого порядка;
Задается особая последовательность передачи импульсов (цикл) - передача двух импульсов, затем пауза на время передачи двух импульсов, затем цикл повторяется;
Используется балансная модуляция сверхширокополосного сигнала, при этом информация заложена в положительной или отрицательной полярности передаваемого импульса;
Периодически передается чередующая последовательность нулей и единиц, служащая маркером, синхросигналом. Эта возможность вытекает из-за особого способа построения сигнала.
Рассмотренная модель сигнала позволила определить структуру сверхширокополосного импульсного сигнала, позволяющая передавать информационные посылки с высокой скоростью и без межсимвольной интерференции. При этом передатчик формирует импульсы по квазипериодическому циклу - передаются два импульса, потом следует пауза на время передачи двух импульсов, а затем цикл повторяется [5,6].
Сигнал на выходе передатчика формируется путем прохождения коротких импульсов, имеющих равномерный спектр в диапазоне частот от 3,5 и 10,5 ГГц и следующих по квазипериодическому циклу, через полосовой фильтр. Значение времени между соседними импульсами составляет , где fн = 3,5 ГГц - нижняя частота среза формирующего полосового фильтра передатчика.
При практической реализации передатчика в качестве генератора коротких импульсов может выступать формирователь на основе дрейфовых диодов с резким восстановлением, а в качестве формирующего полосового фильтра - фильтр, порядка не ниже 7-го [4].
Список литературы
Андрашитов Д.С., Хиль С.Ш., Савилкин С.Б. Оценка параметров формы информационного сообщения на основе совмещенного с физическими принципами синтеза // Научные труды (вестник МАТИ), 2013, вып. 20(92). С. 192 - 200.
Мацыкин С.В., Рудько А.С., Осипов В.В. Особенности работы сверхширокополосных импульсных передатчиков телекоммуникационных систем в условиях частотных ограничений, принятых на территории Российской Федерации // Научные труды (вестник МАТИ), 2013, вып. 20(92). С. 210 - 217.
Рудько А.С. Особенности разделения потоков данных на ведомом космическом аппарате из состава группировки МГКА // Актуальные проблемы Российской космонавтики: Труды XXXV академических чтений по космонавтике. М.: Комиссия РАН, 2011.
Дмитриев В.В. Технологии передачи информации с использованием сверхширокополосных сигналов (UWB) // Компоненты и технологии, 2004, № 1.
Иммореев И., Судаков А. Сверхширокополосные и узкополосные системы связи. Электроника: Наука, Технология, Бизнес, 2003.
Кардо-Сысоев А.Ф. Методы формирования сигналов для устройств сверхширокополосной связи (импульсное радио). Сборник докладов научной конференции Сверхширокополосные сигналы в радиолокации, связи и акустике. Муром, 2003.
Размещено на Allbest.ru
...Подобные документы
- Разработка радиомодема для передачи данных Ethernet по радиоканалу на основе оборудования СКК 2/8/34
Анализ станции связи "СКК 2/8/34". Каналообразующее оборудование и структура аппаратуры низкоскоростного мультиплексирования. Выбор частотного диапазона, вида модуляции, функциональной схемы радиомодема. Расчеты фильтра низких частот для приемника.
дипломная работа [1,3 M], добавлен 15.06.2015 Классификация линий передачи по назначению. Отличия цифровых каналов от прямопроводных соединений. Основные методы передачи данных в ЦПС. Ethernet для связи УВК с рабочими станциями ДСП и ШНЦ. Передача данных в системах МПЦ через общедоступные сети.
реферат [65,1 K], добавлен 30.12.2010Структурная схема устройства передачи данных и команд. Принцип действия датчика температуры. Преобразование сигналов, поступающих с четырех каналов. Модель устройства передачи данных. Построение кода с удвоением. Формирование кодовых комбинаций.
курсовая работа [322,1 K], добавлен 28.01.2015Структурная схема системы передачи данных. Принципиальная схема кодера и декодера Хэмминга 7,4 и Манчестер-2, осциллограммы работы данных устройств. Преобразование последовательного кода в параллельный. Функциональная схема системы передачи данных.
курсовая работа [710,0 K], добавлен 19.03.2012Разработка структурной схемы системы связи, предназначенной для передачи данных для заданного вида модуляции. Расчет вероятности ошибки на выходе приемника. Пропускная способность двоичного канала связи. Помехоустойчивое и статистическое кодирование.
курсовая работа [142,2 K], добавлен 26.11.2009Сведения о характеристиках и параметрах сигналов и каналов связи, методы их расчета. Структура цифрового канала связи. Анализ технологии пакетной передачи данных по радиоканалу GPRS в качестве примера цифровой системы связи. Определение разрядности кода.
курсовая работа [2,2 M], добавлен 07.02.2013Принцип электросвязи. Типы передаваемого сигнала. Искусственные и естественные среды для его передачи. Разновидности витой пары. Состав кабеля, предназначенного для передачи данных. Схемы обжимов его разъема. Возможности волоконно-оптической связи.
лекция [407,8 K], добавлен 15.04.2014Дискретный источник информации. Статистика его состояний, кодированный сигнал на логическом уровне, равномерный и неравномерный код. Физическая реализация элементарного сигнала, спектральное представление элементарного сигнала. Полоса частот канала.
лабораторная работа [119,3 K], добавлен 06.07.2009Зависимость помехоустойчивости от вида модуляции. Схема цифрового канала передачи непрерывных сообщений. Сигналы и их спектры при амплитудной модуляции. Предельные возможности систем передачи информации. Структурная схема связи и её энергетический баланс.
контрольная работа [1,2 M], добавлен 12.02.2013Цифровые волоконно-оптические системы связи, понятие, структура. Основные принципы цифровой системы передачи данных. Процессы, происходящие в оптическом волокне, и их влияние на скорость и дальность передачи информации. Контроль PMD.
курсовая работа [417,9 K], добавлен 28.08.2007Методы кодирования сообщения с целью сокращения объема алфавита символов и достижения повышения скорости передачи информации. Структурная схема системы связи для передачи дискретных сообщений. Расчет согласованного фильтра для приема элементарной посылки.
курсовая работа [1,1 M], добавлен 03.05.2015Основные компоненты технической системы передачи информации, аппаратура для коммутации и передачи данных. Интерфейсы доступа к линиям связи. Передача дискретной информации в телекоммуникационных системах, адаптеры для сопряжения компьютера с сетью.
презентация [1,6 M], добавлен 20.07.2015Вычисление информационных параметров сообщения. Характеристика статистического и помехоустойчивого кодирования данных. Анализ модуляции и демодуляция сигналов. Расчет функции корреляции между принимаемым входным сигналом и ансамблем опорных сигналов.
курсовая работа [544,1 K], добавлен 21.11.2021Типы линий связи и способы физического кодирования. Модель системы передачи информации. Помехи и искажения в каналах связи. Связь между скоростью передачи данных и шириной полосы. Расчет пропускной способности канала с помощью формул Шеннона и Найквиста.
курсовая работа [1,3 M], добавлен 15.11.2013Структурная схема системы связи и приемника. Выигрыш в отношении сигнал/шум при применении оптимального приемника. Применение импульсно-кодовой модуляции для передачи аналоговых сигналов. Расчет пропускной способности разработанной системы связи.
курсовая работа [1,1 M], добавлен 09.12.2014Проектирование устройства, принимающего и передающего данные по радиоканалу, при этом выполняющего кодирование и декодирование информации, используя цифровой сигнальный процессор. Выбор цифрового сигнального процессора, кодека и драйвера интерфейса.
дипломная работа [949,9 K], добавлен 20.10.2010Виды модуляции в цифровых системах передачи. Построение цифрового передатчика на примере формирования сигнала формата 64КАМ. Структурная схема синтезатора частот, цифрового приемника и приёмопередающего тракта. Расчет элементов функциональной схемы СВЧ-Т.
курсовая работа [3,2 M], добавлен 06.02.2012Расчет характеристик линии связи и цепей дистанционного питания. Построение временных диаграмм цифровых сигналов. Определение числа каналов на магистрали. Расчет ожидаемой защищенности цифрового сигнала от собственной помехи. Выбор системы передачи.
курсовая работа [5,0 M], добавлен 10.06.2010Виды модуляции в цифровых системах передачи. Сравнение схем модуляции. Обоснование основных требований к системе связи. Влияние неидеальности параметров системы на характеристики ЦСП. Разработка функциональной схемы цифрового синтезатора частот.
курсовая работа [3,3 M], добавлен 11.03.2012Расчёт собственного затухания фильтра. Определение передаточной функции. Расчёт собственного фазового сдвига комбинированного фильтра. Фазочастотные корректоры, элементы. Вид модуля функции передачи. График зависимости характеристического сопротивления.
курсовая работа [155,3 K], добавлен 23.10.2014