Спутниковые методы радионавигации

Ознакомление с главным принципом измерения в спутниковых навигационных системах. Определение количества и высоты расположения спутников, длины отрезка круговой орбиты, попадающего в зону видимости летательного аппарата. Оценка зоны видимости спутника.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 08.06.2016
Размер файла 299,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Управление образования города Алматы

АО "Академия гражданской авиации"

Авиационный колледж

Предметно-цикловая комиссия специальных дисциплин

Курсовая работа

Спутниковые методы радионавигации

Разработал

обучающийся гр. ЗТЭЛ-12

Дисенгалиева С.К.

Руководитель, преподаватель

спец. дисциплин Хомченко Р.Ю.

Алматы 2016

Задание на курсовую работу

по дисциплине Радионавигационные автоматические системы организации воздушного транспорта

специальность 1310000 "Техническая эксплуатация транспортного радиоэлектронного оборудования (воздушный транспорт)"

на тему: Спутниковые методы радионавигации

Разработал преподаватель __________________ С. Дисенгалиева

1. Рассчитать угловой и линейный диаметры зоны видимости ИСЗ, движущегося на высоте 20 тыс. км, если минимальное значение угла места, под которым возможно его наблюдение, 5°.

2. Рассчитать длину отрезка круговой орбиты, попадающего в зону видимости ЛА, и продолжительность полета в ней для условий предыдущей задачи, если угловое расстояние плоскости орбиты от ЛА составляет 15°.

3. Определить угловое перекрытие соседних зон видимости восьми ИСЗ, располагающихся на круговой орбите высотой 20 тыс. км.

4. Рассчитать минимальное угловое перекрытие соседних зон видимости ИСЗ, обращающихся на разных орбитах, если спутники навигационной системы расположены на трех равноудаленных полярных орбитах высотой 20 тыс. км.

5. Определить поправки к с числимым координатам ЛА по результатам измерения дальностей до двух ИСЗ, азимуты и углы места которых равны соответственно 10°, 120° и 30°, 10°, а разности с числимых и измеренных дальностей составляют 1 и 5 км.

Основные вопросы:

1. Главный принцип измерения в СНС.

2. Количество спутников в СНС.

3. Высота расположения спутников.

4. Зоны видимости ИСЗ.

Содержание

1. Спутниковые методы радионавигации

2. Главный принцип измерения в СНС

2.1 Высота расположения спутников

2.2 Зоны видимости ИСЗ

Вывод

1. Спутниковые навигационные системы

Глобальные спутниковые навигационные системы относятся к классу многопозиционных РНС (радионавигационных спутников) и предназначены для определения пространственного местоположения и направления движения потребителей в пределах или большей части поверхности Земли. Возможны также региональные СНС (спутниковые навигационные системы), обслуживающие ограниченные территории. Для авиационных целей представляют интерес СНС, обеспечивающие непрерывное определение пространственного местоположения летательного аппарата (ПМЛА).

Основу СНС составляет сеть (созвездие навигационных искусственных спутников Земли (НИСЗ), выполняющих функцию опорных радионавигационных точек (РНТ), отношение которых измеряет навигационные параметры. Конфигурация созвездия и число М ИСЗ выбираются из условий получения требуемой зоны для СНС, избыточного числа видимых спутников в точке приема (для выбора подходящих по геометрическому фактору рабочего созвездия), удобства управления системой и наименьшего влияния возможного движения спутника факторов.

Основные элементы спутниковой системы навигации:

Орбитальная группировка, состоящая из нескольких (от 2 до 30) спутников, излучающих специальные радиосигналы;

Наземная система управления и контроля, включающая блоки измерения текущего положения спутников и передачи на них полученной информации для корректировки информации об орбитах;

Приёмное клиентское оборудование ("спутниковых навигаторов"), используемое для определения координат;

Проще говоря, это есть информационная радиосистема для передачи пользователям поправок, позволяющих значительно повысить точность определения координат.

На сегодняшний день самыми значительными являются следующие спутниковые навигационные системы:

· NAVSTAR (GPS) - принадлежит министерству обороны США, что считается другими государствами её главным недостатком. Более известна под названием GPS. Единственная полностью работающая спутниковая навигационная система.

· ГЛОНАСС - находится на этапе развёртывания спутниковой группировки. Принадлежит министерству обороны России. Обладает, по заявлениям разработчиков, некоторыми техническими преимуществами по сравнению с NAVSTAR, однако в настоящее время эти утверждения проверить невозможно ввиду недостаточности спутниковой группировки и отсутствия доступного клиентского оборудования.

· Бэйдоу - развёртываемая в настоящее время Китаем подсистема GNSS, предназначенная для использования только в этой стране. Особенность - небольшое количество спутников, находящихся на геостационарной орбите.

· Galileo - европейская система, находящаяся на этапе создания спутниковой группировки

Принцип работы

Принцип работы спутниковых систем навигации основан на измерении расстоянии от антенны на объекте (координаты которого необходимо получить) до спутников, положение которых известно с большой точностью. Таблица положений всех спутников называется альманахом, которым должен располагать любой спутниковый приемник до начала измерений. Обычно приемник сохраняет альманах в памяти со времени последнего выключения, и если он не устарел - мгновенно использует его. Каждый спутник передает в своем сигнале весь альманах. Таким образом, зная расстояния до нескольких спутников системы, с помощью обычных геометрических построений, на основе альманаха, можно вычислить положение объекта в пространстве.

Применение методов определения местоположения по сигналам глобальных навигационных спутниковых систем GPS/ГЛОНАСС для радионавигационных целей началось в Казахстане в 90-х годах прошлого века. Выявились их существенные преимущества по сравнению с традиционными радионавигационными методами. К ним относятся широкий диапазон точностей (от десятков метров до миллиметров на расстояниях в тысячи километров), независимость от погоды, времени суток и года, от взаимной видимости между пунктами, высокая автоматизация и, как следствие, оперативность, возможность работы непрерывно и в движении. Главным преимуществом явилась возможность позиционирования в трехмерном пространстве.

Вместе с тем применение спутниковых методов на практике выявило ряд недостатков: зависимость от препятствий, уязвимость от радиопомех, дорогое оборудование, но особенно необходимость в кардинальной корректировке теории и практики проведения геодезических работ с учётом нового подхода к координатным преобразованиям результатов спутниковых наблюдений.

В связи с этим для повышения эффективности применения спутниковых радио навигационных систем (СРНС) требовалось решение следующих задач:

- подготовка кадров высокой квалификации, способных обеспечить высокое качество выполнения работ по спутниковому позиционированию объектов местности, пунктов радионавигационных сетей различного назначения;

- разработка и выпуск аппаратуры и программного обеспечения;

- усовершенствование (модернизация) космических аппаратов, системы слежения и обработки траекторных измерений (наземный сегмент СРНС).

Выполнение этих задач было невозможно без решения проблем методологического и технологического обеспечения спутникового метода. Для Казахстана это было особенно важно, поскольку подавляющая часть аппаратуры и программного обеспечения до последнего времени поступала к нам из-за рубежа. Техническая документация к ним обычно ограничивалась описанием возможных опций без приведения какой-либо теории.

Метод измерения расстояния от спутника до антенны приёмника основан на определённости скорости распространения радиоволн. Для осуществления возможности измерения времени распространения радиосигнала каждый спутник навигационной системы излучает сигналы точного времени в составе своего сигнала используя точно синхронизированные с системным временем атомные часы. При работе спутникового приёмника его часы синхронизируются с системным временем и при дальнейшем приёме сигналов вычисляется задержка между временем излучения, содержащимся в самом сигнале, и временем приёма сигнала. Располагая этой информацией, навигационный приёмник вычисляет координаты антенны. Для получения информации о скорости большинство навигационных приёмников используют эффект Доплера. Дополнительно накапливая и обрабатывая эти данные за определённый промежуток времени, становится возможным вычислить такие параметры движения, как скорость (текущую, максимальную, среднюю), пройденный путь и т. д. Спутниковые системы работают только в УКВ-диапазоне.

Основные преимущества спутниковых навигационных систем (СНС)

Одним из основных направлений использования искусственных спутников Земли в авиации является их применение для навигации, воздушных судов и направления воздушного движения.

Основная функция системы - определение трехмерных координат пользователя, вектора скорости и времени.

Кроме того, она может использоваться для навигации на всех этапах полета:

· рулении;

· взлете;

· полете по маршруту;

· заходе на посадку по категориям ИКАО;

а так же при:

· управлении воздушным движением;

· обеспечении безопасности полетов;

· проведении спасательных операций;

· проведении географических привязок.

Помимо уникальной, недостижимой для других устройств точности, система обладает большой гибкостью применений и легко сопрягается с другими традиционными бортовыми системами - инерциальными, радиотехническими и т. д.

Помимо использования СНС в целях повышения точности и надежности навигации воздушных судов. Значительно снижаются прямые расходы государств по обеспечению воздушного движения. Так, например, стоимость бортового оборудования GPS составляет 18-25% от стоимости бортового оборудования VOR/DME, а стоимость наземного оборудования GPS, предназначенного для обеспечения посадки ВС, составляет 10% от стоимости системы посадки ІLЅ.

При этом следует учесть, что для аэродрома с двумя ВПП необходимо иметь четыре комплекта ІLЅ и только один комплект соответствующего наземного оборудования GРЅ.

Ввиду неоспоримых технических и экономических преимуществ спутниковой системы, ИКАО было принято решение о создании всемирной спутниковой системы связи, навигации, наблюдения и организации воздушного движения - СNЅ/АТМ (Communication Navigation and Surveillance/Air Traffic Management) с использованием глобальной навигационной спутниковой системы GNSS ( Global Navigation Satellite System).

Решение навигационных задач на всех этапах полета перекладывается на спутниковые системы и соответствующее бортовое оборудование. Предполагается, что СНС постепенно заменит все существующие навигационные системы, используемые в настоящее время, и станет единственным средством, обеспечивающим навигацию на всех этапах полета.

Включая обеспечение точного захода на посадку по третьей категории ИКАО.

В настоящее время разработаны требуемые навигационные характеристики, которые определяют требования, предъявляемые к точности выдерживания навигационных параметров на различных этапах полета и в различных районах воздушного пространства.

Спутниковые методы радионавигации

Определение координат по наблюдениям спутников навигационных систем выполняется: абсолютными, дифференциальными и относительными методами. В абсолютном методе координаты получаются одним приемником в системе координат, носителями которой являются станции подсистемы контроля и управления и, следовательно, сами спутники навигационной системы. При этом реализуется метод засечки положения приемника от известных положений космических аппаратов (КА). Часто этот метод называют также точечным позиционированием.

В дифференциальном и относительном методах наблюдения производят не менее двух приемников, один из которых располагается на опорном пункте с известными координатами, а второй совмещен с определяемым объектом. В дифференциальном методе по результатам наблюдений на опорном пункте отыскиваются поправки к соответствующим параметрам наблюдений для неизвестного пункта или к его координатам, то есть наблюдения обрабатываются раздельно. Этот метод обеспечивает мгновенные решения, обычно называемые решениями в реальном времени. В них достигается более высокая точность, чем в абсолютном методе, но только по отношению к опорной станции. В относительном методе наблюдения, сделанные одновременно на опорном и определяемом пункте, обрабатываются совместно. Это основное различие между относительным и дифференциальным методом, которое приводит к повышению точности решений в относительном методе, но исключает мгновенные решения. В относительном методе определяется вектор, соединяющий опорный и определяемый пункты, называемый вектором базовой линии. Наблюдения в реальном времени (абсолютные, дифференциальные или относительные) предполагают, что полученное положение будет доступно непосредственно на месте позиционирования, пока наблюдатель находится на станции. При пост-обработке результаты получают после ухода с пункта наблюдений. В каждом из трех указанных методов определений координат возможны измерения как по кодовым псевдодальностям (по фазе кода), так и по фазе несущей. Точность кодовых дальностей имеет метровый уровень, в то время как точность фазовых измерений лежит в миллиметровом диапазоне. Точность кодовых дальностей, однако, можно улучшить, если использовать метод узкого коррелятора или сглаживание по фазе несущей, достигая при этом дециметровый и даже более высокий уровень точности. В отличие от фаз несущих колебаний, кодовые дальности фактически не содержат неоднозначностей. Это делает их невосприимчивыми к потерям счета циклов (то есть изменениям неоднозначностей фазы) и, в некоторой степени, к препятствиям на пункте. Для фазовых же измерений критическим моментом является разрешение их неоднозначностей.

В каждом из методов возможны наблюдения в режимах статики и кинематики. При статических наблюдениях оба приемника находятся в стационарном положении относительно Земли, а при кинематическом позиционировании один из приемников является стационарным, а другой - движущимся. Оба приемника одновременно наблюдают одни и те же спутники.

Потеря захвата сигнала спутника для статического позиционирования не является настолько важной, как при кинематическом позиционировании.

Статическое позиционирование позволяет накапливать данные, добиваясь повышения точности. Относительное позиционирование по фазовым измерениям является наиболее точным методом определения положений и наиболее часто используется геодезистами. Преимуществом кинематического позиционирования является его возможность получать траекторию движения транспортного средства, на котором установлена спутниковая аппаратура.

Методы позиционирования делятся на две группы:

· определение абсолютных координат местоположения из псевдодальностей, полученных по дальномерным кодам (C/A, P, СТ, ВТ) - автономный и дифференциальный методы;

· определение приращения координат (или вектора) между пунктами, на которых установлены приемники, из псевдодальностей, полученных по измерениям фаз несущей частоты сигнала спутников - относительный метод.

Автономное позиционирование - автономное в том смысле, что координаты местоположения приемника определяются независимо от измерений, выполняемых другими приемниками. Данный метод чувствителен ко всем источникам погрешностей: погрешности в координатах спутников, влияние среды распространения и внешних воздействий, геометрический фактор. Как уже отмечалось, в GPS точность абсолютного позиционирования для гражданских пользователей составляет примерно 25-100 м по C/A-коду и примерно 30 см - для военных пользователей по P-коду. При точных измерениях автономное позиционирование используется для нахождения приближенных координат.

Принцип дифференциального позиционирования заключается в следующем. Измерения псевдодальностей выполняются по дальномерным кодам одновременно на двух (или более) пунктах: т. н. базовой станции, расположенной на пункте с известными координатами, и мобильной станции, расположенной на определяемом пункте. На базовой станции измеренные псевдодальности сравниваются с вычисленными по координатам и определяются их разности. Эти разности называются дифференциальными поправками. навигационный спутник орбита летательный

Данный метод основан на предположении, что многие погрешности одинаково влияют на измерения, выполняемые на каждой станции. В самом деле, погрешности измерений по C/A-коду и возникающие из-за режима SA, на обеих станциях практически одни и те же. Влияние атмосферы на разных линиях может несколько различаться по причинам разной длины трасс и локальных неоднородностей на них. Однако экспериментальными данными установлено, что при расстоянии между пунктами менее 10 км, влияние атмосферы одинаково для обоих пунктов. Погрешности в координатах спутников также исключаются, причем в значительной мере. При погрешности координат спутников 10 м и расстоянии между пунктами 10 км разница в искажениях псевдодальностей до базовой и мобильной станций составляет 5 мм. Чем ближе расположены станции, тем точнее выполняется коррекция.

Поправки передаются на мобильную станцию, корректируя тем самым измерения, в реальном времени или учитываются в ходе вычисления координат после измерений. Передача и прием поправок в специальном формате RTCM в реальном времени выполняется при помощи специального оборудования - радиомодема. Передаваемые поправки быстро "стареют" и поэтому одновременно с поправками передают их "возраст" и данные о скорости их изменения. Точность дифференциального позиционирования около 1-5 м.

Относительный метод определения координат местоположения (относительное позиционирование) заключается в одновременном выполнении спутниковых измерений двумя (и более) приемниками.

В относительном методе через абсолютные координаты пунктов, полученные из непосредственных измерений, определяется приращение координат (пространственный вектор, baseline) между ними, которое будет свободно от ошибок абсолютного позиционирования. Таким образом, когда один приемник установлен на пункте с известными координатами, а другой - на определяемом, то пространственные координаты второго пункта определяются через вычисляемое приращение координат. В случае, когда оба приемника устанавливаются на пунктах с неизвестными координатами, определяется просто приращение координат, через которое можно вычислить расстояние и превышение между пунктами, азимут линии.

Применение относительного метода позволяет определить пространственный вектор (baseline) между пунктами с точностью 5мм + 1мм?10-6 D, где D - расстояние между пунктами в мм.

2. Главный принцип измерения в СНС

В основе СНС заложен принцип измерения расстояний до спутников. Это значит, что для определениям местоположения ВС на земной поверхности нужно измерить расстояние до каждого из группы спутников. Таким образом, спутники являются для нас точно известными опорными точками в пространстве. Это достигнуто тем, что орбиты спутников ГЛОНАСС и GPS рассчитаны с очень высокой степенью точности и поэтому в любой момент времени известны координаты каждого спутника. Измерение дальности до спутников происходит по аналогии с маяками для моряков, дальномерами DМЕ - для летчиков, триангуляцианными пунктами - для геодезистов. Если мы имеем точно известные координаты наземных радиодальномеров А и В, то отложив на карте две дальности Д1 и Д2 от этих известных точек, можно достаточно точно запеленговать место воздушного судна.

Принцип основан на том, что радиопередатчик спутников ГЛОНАСС и GPS непрерывно излучает сигналы в направлении Земли. Эти сигналы принимаются GPS/ГЛОНАСС - приемником, находящимся в некоторой точке земной поверхности, координаты которой нужно определить.

Для определения пространственных координат и точного времени требуется принять и обработать навигационные сигналы не менее чем от 3-4-х спутников. При приеме навигационных радиосигналов ГЛОНАСС и GРS, приемник, используя известные радиотехнические методы, измеряет время распространения сигнала от ИСЗ и вычисляет дальность "спутник-приемник". Для: вычисления этого расстояния пользуются известное свойство радиоволн, что радиосигнал распространяется со скоростью света. Так для определения местоположения точки нужно знать координаты (имеются в виду плоские координаты X, Y, и высоту Н), то в приемнике вычисляются расстояния до трех различных ИСЗ.

2.1 Высота расположения спутников

Высота расположения спутников - орбитальная высота спутников от поверхности Земли.

Система GPS имеет 24 рабочих спутника с орбитальным периодом в 12 часов на высоте примерно 20200 км от поверхности Земли. Указанная высота необходима для обеспечения стабильности орбитального движения спутников и уменьшения фактора влияния сопротивления атмосферы.

Система ГЛОНАСС также имеет 24 спутника высота орбиты которых составляет 19100 км. Использование таких орбит позволяет устранить недостатки, присущие системам первого поколения на низких орбитах ("Цикада", "Транзит") и создать глобальное навигационное поле, позволяющее любому подвижному потребителю уточнить в любой момент времени полный вектор положения (три составляющие координат и скорости, время). Принятый в системе пассивный (беззапросный) режим работы потребителя позволяет принимать радионавигационные сигналы спутников системы неограниченному количеству потребителей, оснащенных приемной аппаратурой.

Также существует такое понятие как Геостационарная орбита - круговая орбита, расположенная над экватором Земли (0° широты), находясь на которой искусственный спутник обращается вокруг планеты с угловой скоростью, равной угловой скорости вращения Земли вокруг оси, и постоянно находится над одной и той же точкой на земной поверхности. Геостационарная орбита является разновидностью геосинхронной орбиты и используется для размещения искусственных спутников (коммуникационных, телетрансляционных и т.п.)

Спутник должен обращаться в направлении вращения Земли, на высоте 35 786 км над уровнем моря (вычисление высоты ГСО см. ниже). Именно такая высота обеспечивает спутнику период обращения, равный периоду вращения Земли относительно звёзд (сидерические сутки: 23 часа 56 минут 4,091 секунды). Именно на этой орбитальной высоте расположены большинство ИСЗ.

Если рассматривать грубо, от самых близких до самых далеких, то получим следующие типы:

От 100 до 2000 километров - Асинхронные орбиты Наблюдательные спутники обычно располагаются на высотах от 480 до 970 километров, и используются для таких задач как фотографирование. Наблюдательные спутники типа Landsat 7 выполняют следующие задачи:

· Картографирование

· Наблюдение за движением льда и песка

· Определение местоположения климатических ситуаций (как например, исчезновение тропических лесов)

· Определение местоположения полезных ископаемых

· Поиск проблем с урожаем на полях

Поисково-спасательные спутники работают как передающие станции для ретрансляции сигналов бедствия с упавших самолетов или терпящих бедствия кораблей. Космические аппараты (например, шаттлы) являются управляемыми спутниками, как правило, с ограниченным временем полета и рядом орбит. Космические запуски с участием людей как правило применяются при ремонте уже существующих спутников или при строительстве космической станции.

От 4800 до 9700 километров - Асинхронные орбиты Научные спутники иногда располагаются на высотах от 4 800 до 9 700 километров. Они отправляют полученные ими научные данные на Землю с помощью радио-телеметрических сигналов.

Научные спутники применяются для:

· Изучения растений и животных

· Исследование Земли, как например, наблюдение за вулканами

· Отслеживание дикой природы

· Астрономических исследований, включая инфракрасные астрономические спутники

· Исследований в области физики, как например, исследования NASA в области микрогравитации или исследования солнечной физики

От 9700 до 19300 километров - Асинхронные орбиты

Для навигации, американское оборонное ведомство и российское правительство создали навигационные системы, GPS и ГЛОНАСС соответственно. Навигационные спутники используют высоты от 9 700 до 19 300 километров, и применяются для определения точного местоположения приемника.

Приемник может располагаться:

· В корабле на море

· В другом космическом аппарате

· В самолете

· В автомобиле

· У вас в кармане

Так как цены на потребительские навигационные приемники имеют тендецию к снижению, обычные бумажные карты столкнулись с очень опасным противником. Теперь вам будет сложнее потеряться в городе и не найти нужную точку.

Интересные факты о GPS:

· Американские войска во время операции "Буря в пустыне" использовали более 9 000 GPS приемников.

· Национальное управление океанических и атмосферных исследований (NOAA) США использовало GPS для измерения точной высоты монумента Вашингтона.

35764 километров - Геостационарные орбиты Погодные прогнозы обычно демонстрируют нам изображения со спутников, которые как правило находятся на геостационарной орбите на высоте 35 764 километра над экватором. Вы можете получить напрямую некоторые такие изображения с помощью специальных приемников и компьютерного программного обеспечения. Многие страны используют погодные спутники для предсказания погоды и наблюдения за штормами. Данные, телевизионные сигнал, изображения и некоторые телефонные звонки аккуратно принимаются и ретранслируются коммуникационными спутниками. Обычные телефонные звонки могут иметь от 550 до 650 миллисекунд задержки на прохождение сигнала туда и обратно, что приводит к неудовольствию пользователя. Задержка возникает из-за того, что сигнал должен дойти вверх до спутника и затем вернуться на Землю. Поэтому из-за такой задержки, многие пользователи предпочитают пользоваться спутниковой связью только в том случае, если нет других вариантов. Однако, VOIP (голос через интернет) технологии встречаются сейчас с похожими проблемами, только в их случае они возникают из-за цифровой компрессии и ограничений пропускной способности, нежели из-за расстояния. Коммуникационные спутники являются очень важными ретрансляционными станциями в космосе. Спутниковые тарелки становятся меньше, потому что спутниковые передатчики становятся более мощными и направленными.

С помощью таких спутников передаются:

· Новостные ленты агентств

· Биржевая, бизнес и другая финансовая информация

· Международные радиостанции переходят с коротковолнового (или дополняют его) спутниковым вещанием с использованием микроволнового восходящего сигнала

· Глобальное телевидение, такое как CNN и BBC

· Цифровое радио

2.2 Зоны видимости ИСЗ

Понятие зоны видимости ИСЗ, под которым следует понимать часть поверхности Земли, с которой ИСЗ веден под углом места больше некоторой минимально допустимой величины (например 5°) в течении в заданной длительности сеанса связи; под мгновенной зоной видимости понимается зона видимости в определенный момент, т.е. при нулевой длительности сеанса связи. При движении ИСЗ мгновенная зона перемещается, и поэтому зона видимости в течении некоторого времени всегда меньше мгновенной, так как представляет собой внутреннюю огибающую мгновенных зон.

Зона покрытия спутника - часть поверхности земного шара (или часть зоны видимости), в пределах которой обеспечивается уровень сигналов от спутника, необходимый для их приема с заданным качеством, а также гарантируется способность приема на входе ИСЗ сигналов от земной станции, обладающей определенными параметрами.

Зона покрытия зависит от таких параметров как позиция спутника на орбите (необязательно геостационарной), диаграммы направленности транспондеров, и мощности передатчика.

Виды зон покрытия спутника:

· глобальные (вся видимая с ИСЗ часть поверхности Земли при малой неравномерности усиления бортовой антенны. Ширина луча антенны ИСЗ при этом составляет 17,4° для угла прихода 0°);

· полуглобальные;

· зональные.

Рассмотрим спутник на геостационарной орбите, высота которой составляет 36000 км. А проекция орбиты проходит над экватором. (Рис. 1)

параметр, способ

СРНС ГЛОНАСС

GPS NAVSTAR

TEN GALILEO

BDS COMPASS

Число НС (резерв)

24 (3)

24 (3)

27 (3)

30 (5)

Число орбитальных плоскостей

3

6

3

нет данных

Число НС в орбитальной плоскости

8

4

9

нет данных

Тип орбит

Круговая (e=0±0.01)

Круговая

Круговая

Круговая

Высота орбиты, КМ

19100

20183

23224

21500

Наклонение орбиты, градусы

64.8±0.3

~55 (63)

56

~55

Номинальный период обращения по среднему солнечному времени

11 ч 15 мин 44 ± 5 с

~11 ч 58 мин

14 ч 4 мин. и 42 с.

нет данных

Способ разделения сигналов НС

Кодово-частотный (кодовый на испытаниях)

Кодовый

Кодово-частотный

нет данных

Несущие частоты радиосигналов, МГц

L1=1602.5625…1615.5 L2=1246.4375…1256.5

L1=1575.42 L2=1227.60 L5=1176.45

E1=1575.42 E5=1191.795 E5A=1176.46 E5B=1207.14 E6=12787.75

E1=1575.42 E5=1191.795 E5A=1176.46 E5B=1207.14 E6=12787.75

Скорость передачи цифровой информации (соответственно СИ- и D- код)

50 зн/с (50Гц)

50 зн/с (50Гц)

25, 50, 125, 500, 100 Гц

нет данных

Длительность суперкадра, мин

2.5

12.5

5

нет данных

Система отсчета времени

UTC (SU)

UTC (USNO)

UTC (GST)

UTC (-)

Вывод

К настоящему времени решены многие проблемы, препятствовавшие определению положений в глобальном масштабе на уровне точности в несколько миллиметров: разработаны высокоточные инерциальные и общеземные системы отсчета, модели геодинамических и геофизических явлений, реализована теория построения высокоточных орбит.

Большой прогресс достигнут в разработке методов разрешения неоднозначности фазы, восстановления потерь счета циклов, учета влияния тропосферы, ионосферы, объединения ГЛОНАСС и GPS измерений.

Можно непрерывно получать координаты приемника, установленного неподвижно или на движущейся платформе, производя мониторинг.

В данной курсовой работе я рассмотрел абсолютный метод спутниковых определений. В частности, как определять координаты по кодовым псевдодальностям. Также рассмотрел решение системы уравнений и коэффициенты потери точности, источники ошибок. В следующей части рассмотрим конкретные определения координат пунктов абсолютным методом.

Размещено на Allbest.ru

...

Подобные документы

  • Состояние внедрения ATN в практику воздушного движения. Спутниковые информационные технологии в системах CNS/ATM. Спутниковые радионавигационные системы. Координаты, время, движение навигационных спутников. Формирование информационного сигнала в GPS.

    учебное пособие [7,4 M], добавлен 23.09.2013

  • Развитие спутниковой навигации. Структура навигационных радиосигналов системы GPS. Состав навигационных сообщений спутников системы GPS. Алгоритмы приема и измерения параметров спутниковых радионавигационных сигналов. Определение координат потребителя.

    реферат [254,9 K], добавлен 21.06.2011

  • Навигационные измерения в многоканальной НАП. Структура навигационных радиосигналов в системе ГЛОНАСС и GPS. Точность глобальной навигации наземных подвижных объектов. Алгоритмы приема и измерения параметров спутниковых радионавигационных сигналов.

    курсовая работа [359,2 K], добавлен 13.12.2010

  • Региональные спутниковые навигационные системы: Бэйдау, Галилео, индийская и квазизенитная. Принцип работы и основные элементы: орбитальная группировка, наземный сегмент и аппаратура потребителя. Создание карт для навигационных спутниковых систем.

    курсовая работа [225,5 K], добавлен 09.03.2015

  • Три различных вида спутников: низкой, средней околоземной орбиты и геостационарные. Классификация спутников по зоне обслуживания, типу услуг и характеру использования. Достоинства геостационарной орбиты. Спутники низкой и средней околоземной орбиты.

    реферат [41,3 K], добавлен 11.08.2011

  • Принципы функционирования спутниковых навигационных систем. Требования, предъявляемые к СНС: глобальность, доступность, целостность, непрерывность обслуживания. Космический, управленческий, потребительский сегменты. Орбитальная структура NAVSTAR, ГЛОНАСС.

    доклад [36,6 K], добавлен 18.04.2013

  • Виды спутниковых навигационных систем. Спутниковый мониторинг транспорта. Вычисление показателей вариации для очищенного ряда с помощью программы Excel и пакетного анализа. Составление интервального ряда и построение графика по дискретному ряду.

    курсовая работа [1,3 M], добавлен 14.01.2014

  • Орбиты спутниковых ретрансляторов. Модуляция-демодуляция и помехоустойчивое кодирование. Коды Боуза-Чоудхури-Хоквингема. Наиболее широко известные сверточные коды. Протоколы множественного доступа. Проблема статистического мультиплексирования потоков.

    контрольная работа [1,8 M], добавлен 20.12.2012

  • Понятие и основные достоинства радиорелейных линий. Сравнительная характеристика и выбор типа антенны, изучение ее конструкции. Расчет высоты установки антенны над поверхностью Земли. Определение диаграммы направленности и расчет параметров рупора.

    курсовая работа [439,3 K], добавлен 21.04.2011

  • График зависимости предельной дальности прямой видимости от высоты цели, при фиксированной высоте установки антенны. Расчет параметров средств создания пассивных помех. Оценка требований к аппаратно-программным ресурсам средств конфликтующих сторон.

    курсовая работа [1,2 M], добавлен 20.03.2011

  • История развития спутниковой связи. Абонентские VSAT терминалы. Орбиты спутниковых ретрансляторов. Расчет затрат по запуску спутника и установке необходимого оборудования. Центральная управляющая станция. Глобальная спутниковая система связи Globalstar.

    курсовая работа [189,0 K], добавлен 23.03.2015

  • Стандартные, альтернативные, перспективные методы измерения длины световода для волоконно-оптических систем связи и передачи информации. Анализ метрологических характеристик методов и средств измерения длины световода. Рефлектометрия во временной области.

    дипломная работа [1,6 M], добавлен 25.12.2015

  • Проектирование цифровой радиорелейной системы передачи. Выбор трассы и мест расположения радиорелейной станции. Построение продольного профиля. Определение азимутов антенн, частот приемника и передатчика. Расчёт мощности сигнала на входе приёмника.

    курсовая работа [480,6 K], добавлен 16.02.2012

  • Рассмотрение методов измерения параметров радиосигналов при времени измерения менее и некратном периоду сигнала. Разработка алгоритмов оценки параметров сигнала и исследование их погрешностей в аппаратуре потребителя спутниковых навигационных систем.

    дипломная работа [3,6 M], добавлен 23.10.2011

  • Перечень и тактико-технические данные радиорелейных станций. Выбор трассы, мест расположения коммуникационных точек. Построение продольного профиля интервала. Расчет мощности сигнала на входе приемника, устойчивости связи. Пути повышения надежности связи.

    методичка [529,6 K], добавлен 23.01.2014

  • Общие характеристики систем радиорелейной связи. Особенности построения радиорелейных линий связи прямой видимости. Классификация радиорелейных линий. Виды модуляции, применяемые в радиорелейных системах передачи. Тропосферные радиорелейные линии.

    дипломная работа [1,1 M], добавлен 23.05.2016

  • Выбор трассы и построение продольного профиля интервала. Организация служебной связи и телеобслуживания. Определение высот установленных антенн и расчет ожидаемого процента времени, в течение которого шумы на линии превысят допустимую величину.

    курсовая работа [775,4 K], добавлен 23.12.2011

  • Обоснование структурной схемы системы радиосвязи. Предварительные расчеты основных параметров передающей и приемной частей радиоканала. Расчет наземного затухания напряженности поля радиоволны. Оценка дальности прямой видимости при заданных параметрах.

    курсовая работа [632,6 K], добавлен 21.02.2014

  • Изучение назначения спутниковой системы навигации. Расчет координат навигационных спутников в геоцентрической фиксированной системе координат. Определение координат Глонасс-приемника. Измеренное расстояние между навигационным спутником и потребителем.

    контрольная работа [323,6 K], добавлен 17.03.2015

  • История наблюдений искусственного спутника Земли. Астрофизические инструменты и методы наблюдения. Принцип действия радиолокации. Оптическая система Ричи-Кретьена. Геостационарные и низкоорбитальные спутники связи. Экваториальная монтировка Paramount.

    курсовая работа [977,2 K], добавлен 18.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.