Датчик протечки воды

Проектирование датчика протечки воды. Описание принципа работы устройства. Методика определения его работоспособности. Способы сигнализации затопления и варианты применения датчика. Алгоритм поиска и устранения неисправностей, возникающих в устройстве.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 25.05.2016
Размер файла 268,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Датчик -- средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному восприятию наблюдателем. Датчики, выполненные на основе электронной техники, называются электронными датчиками. Отдельно взятый датчик может быть предназначен для измерения (контроля) и преобразования одной физической величины или одновременно нескольких физических величин.

В состав датчика входят чувствительные и преобразовательные элементы. Основными характеристиками электронных датчиков являются чувствительности погрешность.

Датчики широко используются в научных исследованиях, испытаниях, контроле качества, телеметрии, системах автоматизированного управления и в других областях деятельности и системах, где требуется получение измерительной информации

На сегодняшний день, наверное, самой популярной проблемой в квартирных домах является протечка воды. Из-за такой трагедии портятся не только полы и стенки в ванной комнате, но и отношения с соседями с нижнего этажа. Если вы сталкивались с такой проблемой, то, наверное, уже задумывались, как бы можно было предотвратить последующих рисков затопления.

В данной статье мы поговорим именно об этом, а точнее о том, как изготовить датчик протечки воды своими руками.

Изготовление такого рода устройства не представляет никакого труда и под силу даже начинающему радиолюбителю. При помощи самодельного датчика протечки воды вы сможете заблаговременно узнать о предстоящей опасности и вовремя перекрыть воду.

Принцип работы датчика состоит в том, что он имеет 2 контакта, при помощи которых анализирует поверхность пола на наличие влажности. Контакты рекомендуется изготавливать из металлов, не поддающихся окислению. В качестве примера можно взять нержавеющую сталь или медные провода, заранее обработанные оловянным раствором.

Два контакта подключаем к плюсу питания и к встроенному компаратору на микросхеме. Благодаря этому ток, при погружении в воду, начинает течь от плюса к резистору и «сопротивлению воды», дальше он доходит к компаратору, после чего напряжение второй ножки микросхемы нарастает до предела и осуществляется автоматическое переключение.

Переключение способствует падению напряжения на третьей ножке микросхемы, это способствует появлению логического нуля, после чего первый транзистор включается и через него протекает ток в нагрузку, засвечивая при этом светодиодный индикатор. В итоге на первом транзисторе образуется логическая единица.

Такой вид датчика может работать как автономно, так и вместе с комплексом охранных систем. Если использовать датчик автономно, то для оповещения о протечке можно применить звуковой сигнализатор, так называемый «бузер» с внутренним генератором. В качестве сухого элемента для питания бузера, можно использовать три обычных щелочных батарейки или Li-ion аккумулятор с малым разрядом тока.

Целью разработки является проектирование Датчика протечки воды

Задачи:

1. Составить описание принципа работы устройства.

2. Выбрать и обосновать элементную базу.

3. Разработать методику определения работоспособности устройства.

4. Разработать алгоритм поиска и устранения неисправностей, возникающих в устройстве.

5. Описать практическое применение устройства.

6. Расчет элементной базы устройства.

7. Разработать графическую часть проекта.

Инструмент и материалы необходимые для изготовления датчика:

паяльник

припой

текстолит

бокорезы (кусачки)

провод (многожильный и одножильный)

радио компоненты (микросхема LM7555, светодиод, 6 резисторов, 2 конденсатора 1 транзистор, бузер с генератором

Достоинства данной схемы:

низкая стоимость элементной базы;

размер собранного датчика довольно миниатюрен, поэтому ограничений по месту его установки нет. В частности, такой датчик можно установить под ванной или трубой, на которую установлен хомут, чтобы убедиться в полном устранении течи;

правильно собранный датчик в настройке не нуждается.

датчик протечка вода сигнализация

Устройство и принцип работы схемы электрической принципиальной

Электрическая схема: проводной сигнализатор

Принцип действия датчика затопления

Принцип, по которому работает этот звуковой автономный сигнализатор защиты довольно простой: как только вода замыкается контакт (датчик), срабатывает пищалка (бузер), и включается светодиод. Стоимость элементной базы будет существенно дешевле, чем цена готового датчика с подобным функционалом.

Как именно будет реализован датчик -- неважно, желательно, чтобы материал, используемый для его изготовления, был устойчив к коррозии (например, нержавейка). За счет низкого энергопотребления такая схема может работать на батарейках АА в режиме ожидания до 3-4 месяцев, при срабатывании до двух суток (зависит от элементов питания).

Датчик имеет 2 контакта для анализа влажности поверхности, которые касаются непосредственно пола. Контакты лучше выполнить из нержавейки, либо сделать из меди, а после залудить оловом. То есть, контакты не должны быть сильно подвержены окислению.

Эти контакты подключены к + питания и ко входу встроенного в микросхему компаратора. Как только контакты погружаются в воду, от плюсового контакта через резистор и “сопротивление воды” начинает течь ток ко входу компаратора, напряжение на 2-й ножке микросхемы начинает расти до порога переключения. В результате чего на 3-й ножке микросхемы напряжение падает (появляется логический ноль) при этом открывается транзистор Т1 и через него начинает течь ток в нагрузку, в частности засвечивается светодиод, на коллекторе Т1 появляется логическая единица.

Способы сигнализации затопления и варианты применения датчика

Рассматриваемый в этой статье датчик протечки может применяться автономно, либо как составной элемент охранной системы. Если датчик применяется автономно, в качестве вида оповещения о сработке можно рассматривать установку в каждый датчик звуковой пищалки - “бузера” со встроенным генератором. Прогнозируемое время работы от 3 качественных щелочных батареек типоразмера АА (расчетная емкость 2500 мАч) составляет 2500/0, 4мА=6250 часов 6250/24=260 дней. Можно так же применить 3-4 Ni-Mh аккумулятора с малым током саморазряда.

Если рассматривать датчик как элемент полнофункциональной охранной системы, логично будет соединить все датчики в параллельную цепь при помощи сигнализационного кабеля и сделать звуковое оповещение только на центральном блоке сигнализации. При этом оставить световую индикацию сработки на каждом датчике для возможности контроля их работоспособности. Каждый раз делая влажную уборку в помещении вы сможете убедиться в том, что датчик находится в работоспособном состоянии и сторожит ваш покой:)

Проводной самодельный датчик

При небольшом изменении выше опубликованной схемы датчик можно сделать проводным, в частности, его можно подключить системам Аквастоп и Аквасторож, управляющими аварийными клапанами. Во время монтажа следует учесть, что длинный сигнальный кабель может привести к затуханию сигнала. Собственно, различие с предыдущей схемой заключается в том, что убран бузер, и вместо него прибор подключается к блоку управления, от которого он и получает питание. В некоторых системах предусмотрено подключение датчиков к автономному питанию, но это уже детали.

Выбор и обоснование элементной базы.

555 -- аналоговая интегральная схема, универсальный таймер -- устройство для формирования (генерации) одиночных и повторяющихся импульсов со стабильными временными характеристиками Сдвоенная версия 555 выпускается под обозначением 556, счетверенная -- под обозначением 558.

Представляет собой асинхронный RS-триггер со специфическими порогами входов, точно заданными аналоговыми компараторами и встроенным делителем напряжения

Применяется для построения различных генераторов, модуляторов, реле времени, пороговых устройств и прочих узлов электронной аппаратуры. В качестве примеров применения микросхемы-таймера можно указать функции восстановления цифрового сигнала, искаженного в линиях связи, фильтры дребезга, двухпозиционные регуляторы в системах автоматического регулирования, импульсные преобразователи напряжения, устройства широтно-импульсного регулирования, таймеры и др.

Описание и основные параметры схемы

Микросхема состоит из делителя напряжения с двумя опорными напряжениями для сравнения, двух прецизионных компараторов (низкого и высокого уровней), RS-триггера с дополнительным входом сброса, транзисторного ключа с открытым коллектором и выходного усилителя мощности для увеличения нагрузочной способности.

Номинальное напряжение питания базовой версии микросхемы может находиться в пределах 4, 5…16, 5 В. Некоторые модификации работоспособны до 18 В. КМОП-версии отличаются возможностью работы при пониженном напряжении питания (от 2 В).

Потребляемый микросхемой ток может достигать величины 6…15 мА в зависимости от напряжения питания (6 мА при VCC = 5 В и 15 мА при VCC = 15 В). Типовое потребление бывает меньше и обычно составляет 3…10 мА в состоянии низкого уровня и 2…9 мА -- в состоянии высокого. Ток потребления КМОП-версий таймера не превышает сотен микроампер.

Максимальный выходной ток для отечественной КР1006ВИ1 и КМОП-версий таймера составляет 100 мА. Большинство ныне выпускаемых зарубежных аналогов, выполненных по биполярной технологии, допускает выходной ток до 200 мА и более.

Особенности и недостатки

Применённая схема неотключаемого внутреннего делителя напряжения на входе троичного компаратора делает невозможным независимую установку напряжений сравнения верхнего и нижнего компараторов, что уменьшает область возможного применения микросхемы.

К недостаткам биполярного таймера также можно отнести значительный импульсный ток потребления (до 300--400 мА) в моменты переключения таймера. Этот ток вызван сквозными токами выходного каскада микросхемы. С данной особенностью связана рекомендация подключать между выводом 5 («контроль делителя») и минусом питания блокирующий конденсатор на 0, 01…0, 1 мкФ. Он защищает внутренний делитель микросхемы от помех, наводимых по цепи питания в моменты переключения таймера, что устраняет нестабильность его запуска и повышает общую надёжность схемы. Для аналогичных целей микросхему рекомендуется шунтировать по цепи питания керамическим конденсатором ёмкостью 1 мкФ, который располагается в непосредственной близости к микросхеме. Следует заметить, что указанный недостаток практически устранён в КМОП-версиях таймера, поэтому применение с ними дополнительных конденсаторов обычно не требуется.

Схема подключения таймера в режиме одновибратора

Одновибратор

Схема подключения таймера в режиме одновибратора

Входной импульс низкого уровня на входе INPUT вызывает переключение таймера в режим отсчёта времени (на выходе OUTPUT высокий уровень), который длится заданный промежуток времени t = 1, 1\cdot R\cdot C, а затем таймер переключается обратно в стабильное состояние (низкий уровень на выходе OUTPUT).

Стоит отметить два факта:Появление низкого уровня на входе RESET переключает таймер в стабильное состояние и переводит выход OUTPUT на низкий уровень.Пока на входе INPUT остаётся низкий уровень, выход OUTPUT всегда имеет высокий уровень.

Назначение восьми ног микросхемы.

1. Земля.

Вывод, который подключается к минусу питания и к общему проводу схемы.

2. Запуск.

Вход компаратора №2. При подаче на этот вход импульса низкого уровня (не более 1/3 Vпит) таймер запускается и на выходе устанавливается напряжение высокого уровня на время, которое определяется внешним сопротивлением R (Ra+Rb, ) и конденсатором С - это так называемый режим моностабильного мультивибратора. Входной импульс может быть как прямоугольным, так и синусоидальным. Главное, чтобы по длительности он был короче, чем время заряда конденсатора С. Если же входной импульс по длительности все-таки превысит это время, то выход микросхемы будет оставаться в состоянии высокого уровня до тех пор, пока на входе не установится опять высокий уровень. Ток, потребляемый входом, не превышает 500нА.

3. Выход.

Выходное напряжение меняется вместе с напряжением питания и равно Vпит-1, 7В (высокий уровень на выходе). При низком уровне выходное напряжение равно примерно 0, 25в (при напряжении питания +5в). Переключение между состояниями низкий - высокий уровень происходит приблизительно за 100 нс.

4. Сброс.

При подаче на этот вывод напряжения низкого уровня (не более 0, 7в) происходит сброс выхода в состояние низкого уровня не зависимо от того, в каком режиме находится таймер на данный момент и чем он занимается. Reset, знаете ли, он и есть reset. Входное напряжение не зависит от величины напряжения питания - это TTL-совместимый вход. Для предотвращения случайных сбросов этот вывод рекомендуется подключить к плюсу питания, пока в нем нет необходимости.

5. Контроль.

Этот вывод позволяет получить доступ к опорному напряжению компаратора №1, которое равно 2/3Vпит. Обычно, этот вывод не используется. Однако его использование может весьма существенно расширить возможности управления таймером. Все дело в том, что подачей напряжения на этот вывод можно управлять длительностью выходных импульсов таймера и таким образом, забить на RC времязадающую цепочку. Подаваемое напряжение на этот вход в режиме моностабильного мультивибратора может составлять от 45% до 90% напряжения питания. А в режиме мультивибратора от 1, 7в до напряжения питания. При этом мы получаем ЧМ (FM) модулированный сигнал на выходе. Если же этот вывод таки не используется, то его рекомендуется подключить к общему проводу через конденсатор 0, 01мкФ (10нФ) для уменьшения уровня помех и всяких других неприятностей.

6. Останов.

Этот вывод является одним из входов компаратора №1. Он используется как эдакий антипод вывода 2. То есть используется для остановки таймера и приведения выхода в состояние низкого уровня. При подаче импульса высокого уровня (не менее 2/3 напряжения питания), таймер останавливается, и выход сбрасывается в состояние низкого уровня. Так же как и на вывод 2, на этот вывод можно подавать как прямоугольные импульсы, так и синусоидальные.

7. Разряд.

Этот вывод подсоединен к коллектору транзистора Т6, эмиттер которого соединен с землей. Таким образом, при открытом транзисторе конденсатор С разряжается через переход коллектор-эмиттер и остается в разряженном состоянии пока не закроется транзистор. Транзистор открыт, когда на выходе микросхемы низкий уровень и закрыт, когда выход активен, то есть на нем высокий уровень. Этот вывод может также применяться как вспомогательный выход. Нагрузочная способность его примерно такая же, как и у обычного выхода таймера.

8. Плюс питания.

Напряжение питания таймера может находиться в пределах 4, 5-16 вольт.

Зуммер

Для генерации звукового сигнала используется зуззер (дословный перевод зуммер, устройство звуковой сигнализации, «пищалка») со встроенным генератором. Но везде его называют на английский манер именно зуммер, поэтому придется придерживаться традиции.

Такой зуммер начинает излучать звук с частотой около 2КГц, как только на него подано напряжение питания. зуммеры выпускаются на напряжение 1, 5 - 12В. В данной конструкции подойдет с напряжением 9 - 12В. «Плюсовой» вывод зуммера подключается к коллектору транзистора VT1.

Зонд датчика выполнен в виде пластинки из фольгированного стеклотекстолита размерами 20*60 мм. Для получения двух электродов достаточно на пластинке прорезать фольгу резаком из ножовочного полотна. Полученные полоски желательно облудить, остатки флюса смыть спиртом. Можно также просто проложить на полу рядом два электрода, желательно из нержавеющей проволоки. Вполне подойдут для этих целей обычные вязальные спицы.

Конструкция датчика настолько проста, что не потребуется изобретать печатную плату, все можно собрать навесным монтажом. Не понадобится даже выключатель питания: в дежурном режиме транзистор закрыт и от батарейки почти ничего не потребляется.

В качестве батареи питания используется «Крона», точнее ее современный импортный аналог. Хотя такие батареи достаточно долговечны, могут храниться по нескольку лет, все-таки периодически состояние батареи надо проверять. Сделать это проще всего перемкнув электроды зонда хотя бы влажной тряпкой или даже пальцем. Замыкать накоротко зонд не следует, поскольку транзистор может выйти из строя.

Работает датчик так. При попадании жидкости на электроды зонда его сопротивление уменьшается до нескольких килоом, что вызывает открывание транзистора. Через открытый транзистор напряжение питания подается на зуммер и раздается звуковой сигнал.

Для обнаружения протечек датчики, можно несколько штук, раскладываются на полу в предполагаемых местах протечки воды. Крепление датчиков осуществляется при помощи клеящей ленты скотч или изолентой. При этом каждый датчик питается, само собой, от своей отдельной батарейки.

Печатная плата датчика протечки воды

Из-за того, что датчик имеет маленькие размеры (примерно 21х12 миллиметров), его можно разместить в любом корпусе обычного магнитного датчика для открывания дверей или в любом другом пластиковом корпусе подходящим под его размеры. Ниже представлен пример корпуса для датчика протечки

Сенсором обнаружения присутствия воды является провод с 1 мм диаметром, имеющим залуженную поверхность. При помощи обычного паяльника и двух полосок текстолита, заранее закрепленных на корпусе обычным клеем, паяем проволоки непосредственно к текстолитам.

Собрав корпус вместе с датчиком, следует проверить его работоспособность и герметизировать герметиком все отверстия в корпусе, после чего датчик будет готов к установке

Датчик можно установить в любом месте, где повышен риск протечки воды. Например, под отопительными батареями, стиральной и посудомоечной машинкой, под хомутами или кранами перекрытия воды и в любых других местах связанных с водоснабжением

Алгоритм устранения неисправностей, возникающих в устройстве

В процессе работы датчик протечки воды могут возникать неисправности в его механизмах, узлах и деталях. Главные причины неисправностей -- износ деталей, нарушение регулировок и взаимодействия между собой отдельных механизмов и узлов, несоответствие применяемых деталей технической документации (по размерам и качеству материала, из которого они изготовлены).

Наиболее часто неисправности датчик протечки воды проявляются в виде отсутствия показаний измерений при включении питания устройства.

Для поиска неисправности, в первую очередь, необходимо проверить напряжение гальванического источника тока. Если оно под нагрузкой составляет менее 5В, то батарею необходимо заменить.

При исправной батарее измеряется напряжение на выходе интегрального стабилизатора, которое должно находиться в пределах 3+0, 1В.

Если напряжение питания в норме, а на датчик отсутствуют показания, проверяются зуммер берем крону 9В подсоединить + зуммера к кроне и - к кроне если он издает писк значит зуммер в полном порядке и придется искать неисправность в другой детали.

Образцовую частоту 17, 24 кГц измеряют частотомером на выводе 2 ИМС DD4. При ее отсутствии проверить кварцевый генератор (на выводе 10 DD1.2 - частота 1МГц) и делитель частоты на 58 (DD3 и DD4).

Далее проверяется формирователь импульсов запуска УЗ датчика (на выводе 13 DD5 - длительность импульсов около 10мкс).

Сигнал с выхода “Echo” датчика HC-SR04 представляют собой положительные импульсы с длительностью, пропорциональной расстоянию до отражающей поверхности.

Далее осциллографом просмотреть заполнение измерительных импульсов образцовой частотой (на выходе 4 DD1.4).

В заключение проверить сигналы:

- сброс счетчиков (положительные импульсы на выводах 1 DD6…DD8);

- запись в регистры (положительные импульсы на выводах 1 DD9…DD11);

- прямоугольные импульсы скважностью равной 2 на выводах 6 ИМС DD9…DD11 и общем электроде ЖК-индикатора.

Практическое применение устройства

Большая группа методов измерения основана на отражении и рассеянии волн ультразвука на границах между средами. Эти методы позволяют точно определять местонахождение инородных для среды тел и используются в таких сферах как:

§ гидролокация

§ неразрушающий контроль и дефектоскопия

§ медицинская диагностика

§ определения уровней жидкостей и сыпучих тел в закрытых ёмкостях

§ определения размеров изделий

§ визуализация звуковых полей -- звуковидение и акустическая голография

Сигнализаторы уровней Принцип действия основан на локации уровня жидких или сыпучих материалов ультразвуковыми импульсами, проходящими через газовую среду, и на явлении отражения этих импульсов от границы раздела «газ - контролируемая среда». Мерой уровня при этом является время распространения звуковых колебаний от излучателя до контролируемой границы раздела сред и обратно до приемника. Результат измерения выводится на персональный компьютер, где все измерения запоминаются, с последующей возможностью их просмотра и анализа, а также подключения к системе автоматизированного сбора и обработки данных. Уровнемер в составе системы может включать конечные автоматы, насосы и др. устройства при уровне выше максимального и ниже минимального значения, что позволяет автоматизировать технологический процесс. Дополнительно формируется токовый выход (0, 5 мА, 0-20 мА) для самопишущих приборов. Сигнализатор уровня позволяет контролировать температуру среды в резервуарах. Основным форматом выводимых данных является расстояние от вершины резервуара до поверхности, содержащегося в нем вещества. По желанию заказчика, при предоставлении необходимой информации возможна доработка устройства для вывода высоты, массы либо объема вещества в резервуаре.

УЗ анализаторы состава газов основаны на использовании зависимости скорости УЗ в смеси газов от скоростей в каждом из составляющих эту смесь газов.

Охранные УЗ устройства основаны на измерении различных параметров УЗ полей (амплитуды колебаний при перекрытии пространства между излучателем и приемником, изменении частоты при отражении от движущегося объекта и т.п.).

Измерители температуры газов и пожарные сигнализаторы, основанные на изменении скорости распространения при изменении температуры среды или появления дыма.

Ограничения

· Повышением частоты (снижением длины) излучаемой волны можно увеличивать чувствительность прибора к более мелким объектам.

· Частичные отражения, или как их называют паразитный эхо-сигнал, могут исказить результаты измерений (причиной могут стать криволинейные или наклонные по отношению к направлению излучения сигнала поверхности).

· Измерения объектов из звукопоглощающих, изоляционных материалов или имеющих тканевую (шерстяную) поверхность могут привести к неправильным измерениям вследствие поглощения (ослабления) сигнала. Домашний кошара может стать этаким «стелсом» для ультразвукового дальномера.

· Чем меньше объект, тем меньшую отражающую поверхность он имеет. Это приводит к более слабому отраженному сигналу.

· При высокой влажности (дождь, снег) сигнал также может частично отражаться от капель (снежинок), что приводит к паразитному эхо-сигналу.

· Сильный ветер может повлиять на распространение волн (буквально «сдуть»), что также приводит к ошибке измерений.

Зная ограничения, связанные с физической природой ультразвука можно решить подходит этот тип дальномера для вашей задачи или же нет.

Такой аппарат имеет значительные недостатки. Главным минусом является точность замера, так как она определяется с учетом окружающей среды, в которой будет распространяться звук. Параметры и значения (главным из которых является плотность) не могут быть постоянными и имеют способность изменяться в период работ. Немаловажным недостатком считается и ограничение длины измерений, так как пределы расстояния - от 30 см до 20 м.

В связи с этим использовать ультразвуковые приборы можно в том случае, когда не требуется точных замеров и замеров не более допустимых пределов.

Про бесконтактные способы измерений различных величин (дальномеры, в частности, относятся к бесконтактным измерителям линейных расстояний) я обязательно буду писать. Вообще, если можно, что-то излучить, затем принять отраженное что-то и замерить какие-то параметры, то это и будет основой процесса, на котором строятся все дальномеры. Эти приборы работают в различных диапазонах: инфракрасном, ультразвуковом, радиочастотном и в самом высоком дипазоне электромагнитных волн работают уже лазерные дальномеры. Радиолокационные станции (РЛС) в авиации, на водном транспорте работают в радиочастотном диапазоне, так же как и радары инспекторов ГИБДД. Чем выше частота на которой работает прибор, тем выше его потенциальная точность, поэтому наименее точными являются ультразвуковые дальномеры, к самым точным относятся приборы, использующие лазеры. Для каждой длины волны существуют условия, при которых она лучше или хуже распространяется -- этими свойствами волн и определяются основные особенности различных типов дальномеров. Ну, это в двух словах)) Я опишу в своих дальнейших публикациях различные типы дальномеров и опишу условия их оптимальной применимости и многое постараюсь рассказать как можно ближе к практике на примерах конкретных устройств и их реализации.

Размещено на Allbest.ru

...

Подобные документы

  • Конструирование датчика пожароопасных ситуаций, с помощью которого возможно уменьшение количества пожаров в местах повышенной огнеопасности. Схема применения пироэлектрического датчика в устройстве охранной сигнализации. Расчет параметров печатной платы.

    курсовая работа [1,2 M], добавлен 24.10.2011

  • Метод переменного перепада давления измерения расхода газа. Описание датчика разности давлений Метран-100-ДД. Описание схемы электронного преобразователя, схема соединительных линий измерительного датчика. Возможные неисправности и способы их устранения.

    курсовая работа [398,6 K], добавлен 02.02.2014

  • Описание принципа действия аналогового датчика и выбор его модели. Выбор и расчет операционного усилителя. Принципа действия и выбор микросхемы аналого-цифрового преобразователя. Разработка алгоритма программы. Описание и реализация выходного интерфейса.

    курсовая работа [947,1 K], добавлен 04.02.2014

  • Последовательность и методика разработки датчиков расстояния и касания. Принцип работы поверяемых датчиков и образцовых приборов (микрометра или индикатора часового типа ИЧ-25). Соотношение показаний поверяемого датчика. Обработка результатов измерений.

    дипломная работа [947,7 K], добавлен 10.07.2012

  • Разработка датчика для измерения давления, развиваемого мощными энергетическими установками и агрегатами выдачи сигнала, пропорционального давлению на вход системы автоматического регулирования. Анализ работоспособности датчика и преобразователя энергии.

    курсовая работа [1,1 M], добавлен 27.07.2014

  • Проектирование устройства, измеряющего температуру в помещении. Выбор датчика температуры, микроконтроллера и отладочной платы. Изучение работы встроенного датчика температуры. Разработка программного обеспечения. Функциональная организация программы.

    курсовая работа [2,0 M], добавлен 26.12.2013

  • Теоретический обзор существующих методов измерения влажности. Сравнительный обзор существующих подсистем контроля влажности, выбор датчика влажности. Описание датчика влажности QFM3160 и контроллера SYNCO 700. Разработка схемы и элементной базы датчика.

    дипломная работа [2,2 M], добавлен 13.10.2017

  • Описание схемы автоматического включателя освещения на базе датчика движения, его внутренняя структура и элементы, принцип работы, специфика и сферы практического применения. Описание симистора и фотодиода, их функциональные особенности и назначение.

    курсовая работа [180,4 K], добавлен 04.09.2014

  • Этапы проектирования датчика шума в виде субблока, разработка его принципиальной электрической схемы и принципы функционирования данного устройства. Выбор и обоснование элементной базы датчика. Расчет конструкции при действии вибрации, ее аттестация.

    курсовая работа [150,3 K], добавлен 08.03.2010

  • Алгоритм работы микропроцессорной системы управления барокамерой. Подпрограмма контроля температуры. Разработка схемы сопряжения для подключения датчика уровня воды. Подключение светодиодов "Нагрев" и "Низкий уровень воды". Разработка блока питания МПС.

    курсовая работа [1,7 M], добавлен 28.05.2012

  • Выбор и обоснование принципа работы узла аналого-цифрового преобразования. Создание измерительного преобразователя для датчика термопары. Определение максимальной погрешности нелинейности характеристики в заданном диапазоне температуры; линеаризация.

    курсовая работа [585,9 K], добавлен 05.11.2011

  • Разработка и сборка устройства передачи данных по каналу GSM. Принцип измерения расстояния при помощи датчика. Изготовление печатной платы устройства. Основные технические характеристики ультразвукового датчика HC-SR04 и микроконтроллера PIC16F628A.

    дипломная работа [2,4 M], добавлен 10.11.2017

  • Общая характеристика и основные элементы потенциометрического датчика, его достоинства и недостатки. Определение основных конструктивных параметров каркаса и обмотки. Расчет температурного режима датчика. Определение характеристик надёжности работы схемы.

    контрольная работа [543,3 K], добавлен 07.02.2013

  • Датчик как термин систем управления, первичный преобразователь, элемент измерительного, регулирующего или управляющего устройства системы. Анализ этапов расчета элементов функциональной схемы. Знакомство с эквивалентной схемой индукционного датчика.

    дипломная работа [788,2 K], добавлен 13.04.2014

  • Анализ существующих методов измерения вязкости нефтепродуктов. Принцип построения структурной схемы вибрационного вискозиметра. Температурный датчик с цифровым выходом. Разработка структурной схемы датчика для измерения вязкости, алгоритм работы.

    курсовая работа [2,0 M], добавлен 27.12.2011

  • Разработка и выбор функциональной схемы датчика электромагнитного расходомера. Формирование и исследование аналоговой, цифровой схемы. Расчет блока питания устройства. Порядок разработки алгоритма работы и программного обеспечения микроконтроллера.

    курсовая работа [1,9 M], добавлен 19.08.2012

  • Этапы разработки конструкции и технологии изготовления ячейки датчика ускорения емкостного типа. Назначение акселерометра, выбор печатной платы, способы пайки, особенности сборки и монтажа. Функционально-стоимостной анализ ячейки датчика ускорения.

    дипломная работа [4,1 M], добавлен 07.12.2011

  • Основные функции периферийных элементов (датчики, кнопки) в микропроцессорном устройстве. Простая схема подключения датчика на основе геркона. Характерные особенности микроконтроллеров семейства "Тесей". Разработка принципиальной схемы устройства.

    курсовая работа [3,2 M], добавлен 15.11.2015

  • Тензорезистивный датчик давления. Схема тарировки датчика. Проверка влияния электромагнитной помехи на показания устройства. Принципиальная схема зажигания разряда. Уравнение зависимости давления от напряжения на датчике. влияние разряда на показания.

    курсовая работа [2,7 M], добавлен 29.12.2012

  • Обзор существующих систем охранно-пожарной сигнализации. Характеристика практического применения пожарных извещателей, описание их конструкции, самостоятельного решения датчиков. Пуско-наладочные работы системы ОПС, проработка неисправностей монтажа.

    дипломная работа [707,2 K], добавлен 16.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.