Выбор коммутационного оборудования для домашней сети
Исследование транспортной инфраструктуры. Физическая и логическая структуризация компьютерных сетей. Принципы работы мостов. Анализ ограничений топологии. Построение домашней сети с применением маршрутизаторов и коммутаторов. Расчет проектной стоимости.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 11.11.2016 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение |
||
1. |
Теоретическая часть |
|
1.1 |
Структуризация транспортной инфраструктуры сетей |
|
1.1.1 Физическая структура сети |
||
1.1.2 Логическая структура сети |
||
1.2 |
Принцип работы мостов |
|
1.2.1 Прозрачные мосты |
||
1.2.2 Ограничения топологии сети, построенной на мостах |
||
1.3 |
Домашняя локальная сеть |
|
1.3.1 Маршрутизатор |
||
1.3.2 Коммутатор |
||
1.3.3 Построение домашней сети |
||
2. |
Расчетная часть |
|
Заключение |
||
Список литературы |
Введение
Как известно, фрагмент вычислительной сети включает основные типы коммуникационного оборудования, применяемого сегодня для образования локальных сетей и соединения их через глобальные связи друг с другом. Для построения локальных связей между компьютерами используются различные виды кабельных систем, сетевые адаптеры, концентраторы-повторители, мосты, коммутаторы и маршрутизаторы.
Целью курсовой работы является теоретический анализ логической структуризации сети с помощью коммуникационных устройств, таких как мосты, коммутаторы, маршрутизаторы, шлюзы.
Курсовая работа содержит две главные части: теоретическую и практическую.
В теоретической части приводятся сведения о физической и логической структуризации сети, и о решении проблем перераспределения передаваемого трафика между различными физическими сегментами сети.
Расчетная часть посвящена рассмотрению домашней локальной сети.
Актуальность данной работы объясняется необходимостью применения коммуникационных устройств в домашней локальной вычислительной сети.
1. Теоретическая часть
1.1 Структуризация транспортной инфраструктуры сетей
В сетях с небольшим (10-30) количеством компьютеров чаще всего используется одна из типовых топологий -- "общая шина", "кольцо", "звезда" или полносвязная сеть. Все перечисленные топологии обладают свойством однородности, то есть все компьютеры в такой сети имеют одинаковые права в отношении доступа к другим компьютерам (за исключением центрального компьютера при соединении "звезда"). Такая однородность структуры упрощает процедуру наращивания числа компьютеров, облегчает обслуживание и эксплуатацию сети.
Однако при построении больших сетей однородная структура связей превращается из преимущества в недостаток. В таких сетях использование типовых структур порождает различные ограничения, важнейшими из которых являются:
· ограничения на длину связи между узлами;
· ограничения на количество узлов в сети;
· ограничения на интенсивность трафика, который генерируют узлы сети.
Для снятия этих ограничений используются особые методы структуризации сети и специальное структурообразующее оборудование --повторители, концентраторы, мосты, коммутаторы, маршрутизаторы. Такого рода оборудование также называют коммуникационным, имея в виду, что с его помощью отдельные сегменты сети взаимодействуют между собой.[1]
1.1.1 Физическая структура сети
Физическая структуризация сети полезна во многих отношениях, однако в ряде случаев, обычно относящихся к сетям большого и среднего размера, без логической структуризации сети обойтись невозможно. Наиболее важной проблемой, не решаемой путем физической структуризации, остается проблема перераспределения передаваемого трафика между различными физическими сегментами сети.
Простейшее из коммуникационных устройств - повторитель (repeater) - используется для физического соединения различных сегментов кабеля локальной сети с целью увеличения общей длины сети. Повторитель передает сигналы, приходящие из одного сегмента сети, в другие ее сегменты (рис. 1). Повторитель позволяет преодолеть ограничения на длину линий связи за счет улучшения качества передаваемого сигнала -- восстановления его мощности и амплитуды, улучшения фронтов и т. п.
Рис. 1. Повторитель позволяет увеличить длину сети Ethernet.
Повторитель, который имеет несколько портов и соединяет несколько физических сегментов, часто называют концентратором (concentrator) или хабом (hub). Эти названия (hub -- основа, центр деятельности) отражают тот факт, что в данном устройстве сосредоточены все связи между сегментами сети.
Использование концентраторов характерно практически для всех базовых технологий локальных сетей -- Ethernet, ArcNet, TokenRing, FDDI, FastEthernet, GigabitEthernet.
Нужно подчеркнуть, что в работе любых концентраторов много общего -- они повторяют сигналы, пришедшие с одного из их портов, на других своих портах. Разница состоит в том, на каких именно портах повторяются входные сигналы. Так, концентратор Ethernet повторяет входные сигналы на всех своих портах, кроме того, с которого сигналы поступают (рис. 2).
Рис. 2. Концентратор Ethernet.
А концентратор TokenRing (рис. 3) повторяет входные сигналы, поступающие с некоторого порта, только на одном порту -- на том, к которому подключен следующий в кольце компьютер.
Рис. 3. Концентратор TokenRing.
Добавление в сеть концентратора всегда изменяет физическую топологию сети, но при этом оставляет без изменений ее логическую топологию.
Под физической топологией понимается конфигурация связей, образованных отдельными частями кабеля, а под логической -- конфигурация информационных потоков между компьютерами сети. Во многих случаях физическая и логическая топологии сети совпадают. Например, сеть, представленная на рис. 4а, имеет физическую топологию "кольцо". Компьютеры такой сети получают доступ к кабелям кольца за счет передачи друг другу специального кадра -- маркера, причем этот маркер также передается последовательно от компьютера к компьютеру в том же порядке, в котором компьютеры образуют физическое кольцо, то есть компьютер A передает маркер компьютеру B, компьютер B -- компьютеру С и т. д.
Сеть, показанная на рис. 4б, демонстрирует пример несовпадения физической и логической топологии. Физически компьютеры соединены по топологии "общая шина". Доступ же к шине происходит не по алгоритму случайного доступа, применяемому в технологии Ethernet, а путем передачи маркера в кольцевом порядке: от компьютера A -- компьютеру B, от компьютера B -- компьютеру С и т. д. Здесь порядок передачи маркера уже не повторяет физические связи, а определяется логическим конфигурированием драйверов сетевых адаптеров. Ничто не мешает настроить сетевые адаптеры и их драйверы так, чтобы компьютеры образовали кольцо в другом порядке, например: В, А, С... При этом физическая структура сети не изменяется.
Рис. 4. а) логическая и физическая структуры сети совпадают; б) логическая структура не совпадает с физической.
Физическая структуризация сети с помощью концентраторов полезна не только для увеличения расстояния между узлами сети, но и для повышения ее надежности. Например, если какой-либо компьютер сети Ethernet с физической общей шиной из-за сбоя начинает непрерывно передавать данные по общему кабелю, то вся сеть выходит из строя, и остается только одно -- вручную отсоединить сетевой адаптер этого компьютера от кабеля. В сети Ethernet, построенной с использованием концентратора, эта проблема может быть решена автоматически -- концентратор отключает свой порт, если обнаруживает, что присоединенный к нему узел слишком долго монопольно занимает сеть. Концентратор может блокировать некорректно работающий узел и в других случаях, выполняя роль некоторого управляющего узла.[2]
1.1.2 Логическая структура сети
Физическая структуризация сети полезна во многих отношениях, однако в ряде случаев, обычно относящихся к сетям большого и среднего размера, без логической структуризации сети обойтись невозможно. Наиболее важной проблемой, не решаемой путем физической структуризации, остается проблема перераспределения передаваемого трафика между различными физическими сегментами сети.
Логическая структуризация сети -- это процесс разбиения сети на сегменты с локализованным трафиком. Распространение трафика, предназначенного для компьютеров некоторого сегмента сети, только в пределах этого сегмента, называется локализацией трафика.
Для логической структуризации сети используются коммуникационные устройства:
-мосты;
-коммутаторы;
-маршрутизаторы;
-шлюзы.
Мост (bridge) делит разделяемую среду передачи сети на части (часто называемые логическими сегментами), передавая информацию из одного сегмента в другой только в том случае, если такая передача действительно необходима, то есть если адрес компьютера назначения принадлежит другой подсети. Тем самым мост изолирует трафик одной подсети от трафика другой, повышая общую производительность передачи данных в сети. Локализация трафика не только экономит пропускную способность, но и уменьшает возможность несанкционированного доступа к данным, так как кадры не выходят за пределы своего сегмента, и злоумышленнику сложнее перехватить их.
Мосты используют для локализации трафика аппаратные адреса компьютеров. Это затрудняет распознавание принадлежности того или иного компьютера к определенному логическому сегменту -- сам адрес не содержит подобной информации. Поэтому мост достаточно упрощенно представляет деление сети на сегменты -- он запоминает, через какой порт на него поступил кадр данных от каждого компьютера сети, и в дальнейшем передает кадры, предназначенные для данного компьютера, на этот порт. Точной топологии связей между логическими сегментами мост не знает. Из-за этого применение мостов приводит к значительным ограничениям на конфигурацию связей сети -- сегменты должны быть соединены таким образом, чтобы в сети не образовывались замкнутые контуры.
На рис. 5 показана сеть, которая была получена из сети с центральным концентратором путем его замены на мост. Сети 1-го и 2-го отделов состоят из отдельных логических сегментов, а сеть отдела 3 -- из двух логических сегментов. Каждый логический сегмент построен на базе концентратора и имеет простейшую физическую структуру, образованную отрезками кабеля, связывающими компьютеры с портами концентратора. Если пользователь компьютера А пошлет данные пользователю компьютера В, находящемуся в одном с ним сегменте, то эти данные будут повторены только на тех сетевых интерфейсах, которые отмечены на рисунке заштрихованными кружками.
Рис. 5. Логическая структуризация сети с помощью моста.
Коммутатор (switch) по принципу обработки кадров от моста практически ничем не отличается. Единственное его отличие состоит в том, что он является своего рода коммуникационным мультипроцессором, так как каждый его порт оснащен специализированной микросхемой, которая обрабатывает кадры по алгоритму моста независимо от микросхем других портов. За счет этого общая производительность коммутатора обычно намного выше производительности традиционного моста, имеющего один процессорный блок. Можно сказать, что коммутаторы -- это мосты нового поколения, которые обрабатывают кадры в параллельном режиме.
Ограничения, связанные с применением мостов и коммутаторов -- по топологии связей, а также ряд других, -- привели к тому, что в ряду коммуникационных устройств появился еще один тип оборудования -- маршрутизатор (router). Маршрутизаторы более надежно и более эффективно, чем мосты, изолируют трафик отдельных частей сети друг от друга. Маршрутизаторы образуют логические сегменты посредством явной адресации, поскольку используют не плоские аппаратные, а составные числовые адреса. В этих адресах имеется поле номера сети, так что все компьютеры, у которых значение этого поля одинаковое, принадлежат одному сегменту, называемому в данном случае подсетью (subnet).
Важной функцией маршрутизаторов является их способность связывать в единую сеть подсети, построенные с использованием разных сетевых технологий, например Ethernet и X.25.
Рис. 6. Логическая структуризация сети с помощью маршрутизаторов.
Кроме перечисленных устройств, отдельные части сети может соединять шлюз (gateway). Обычно основной причиной использования шлюза в сети является необходимость объединить сети с разными типами системного и прикладного программного обеспечения, а не желание локализовать трафик. Тем не менее, шлюз обеспечивает и локализацию трафика в качестве некоторого побочного эффекта.
Большие сети практически никогда не строятся без логической структуризации. Для отдельных сегментов и подсетей характерны типовые однородные топологии базовых технологий, и для их объединения всегда используется оборудование, обеспечивающее локализацию трафика: мосты, коммутаторы, маршрутизаторы и шлюзы.[3]
Шлюз размещается между взаимодействующими сетями и служит посредником, переводящим сообщения, поступающие из одной сети, в формат другой сети. Шлюз может быть реализован как чисто программными средствами, установленными на обычном компьютере, так и на базе специализированного компьютера. Трансляция одного стека протоколов в другой представляет собой сложную интеллектуальную задачу, требующую максимально полной информации о сети, поэтому шлюз использует заголовки всех транслируемых протоколов(рис. 7).
Рис. 7. Соответствие функций коммуникационного оборудования модели OSI
1.2 Принципы работы мостов
1.2.1 Прозрачные мосты
Прозрачные мосты незаметны для сетевых адаптеров конечных узлов, так как они строят специальную адресную таблицу, на основании которой можно, передавать пришедший кадр в какой-либо другой сегмент или нет. Сетевые адаптеры при использовании прозрачных мостов работают точно так же, как и в случае их отсутствия, то есть не предпринимают никаких дополнительных действий, чтобы кадр прошел через мост. Алгоритм прозрачного моста не зависит от технологии локальной сети, в которой устанавливается мост, поэтому прозрачные мосты Ethernet работают точно так же, как прозрачные мосты FDDI. Прозрачный мост строит свою адресную таблицу на основании пассивного наблюдения за трафиком, циркулирующим в подключенных к его портам сегментах. При этом мост учитывает адреса источников кадров данных, поступающих на порты моста. По адресу источника кадра мост делает вывод о принадлежности этого хоста тому или иному сегменту сети. На рис.8 проиллюстрирован процесс работы прозрачного моста.[4]
Рис. 8 Принцип работы прозрачного моста
Входы адресной таблицы могут быть динамическими, создаваемыми в процессе самообучения моста, и статическими, создаваемыми вручную администратором сети. Динамические входы имеют срок жизни -- при создании или обновлении записи в адресной таблице с ней связывается отметка времени. По истечении определенного тайм-аута запись помечается как недействительная, если за это время мост не принял ни одного кадра с данным адресом в поле адреса источника. Это дает возможность автоматически реагировать на перемещения компьютера из сегмента в сегмент -- при его отключении от старого сегмента запись о его принадлежности к нему со временем вычеркивается из адресной таблицы. После включения этого компьютера в работу в другом сегменте его кадры начнут попадать в буфер моста через другой порт, и в адресной таблице появится новая запись, соответствующая текущему состоянию сети. Статические записи не имеют времени жизни и необходимы для регулирования администратором работы моста. Кадры с широковещательными MAC-адресами передаются мостом на все его порты, как и кадры с неизвестным адресом назначения. Такой режим распространения кадров называется затоплением сети (flood). Наличие мостов в сети не препятствует распространению широковещательных кадров по всем сегментам сети, сохраняя ее прозрачность. Однако это является достоинством только в том случае, когда широковещательный адрес выработан корректно работающим узлом. Однако часто случается так, что в результате каких-либо программных или аппаратных сбоев протокол верхнего уровня или сам сетевой адаптер начинают работать некорректно и постоянно с высокой интенсивностью генерировать кадры с широковещательным адресом в течение длительного промежутка времени. Мост в этом случае передает эти кадры во все сегменты, затапливая сеть ошибочным трафиком. Такая ситуация называется широковещательным штормом (broadcaststorm). домашний сеть маршрутизатор коммутатор
1.2.2 Ограничения топологии сети, построенной на мостах
Слабая защита от широковещательного шторма -- одно из главных ограничений моста, но не единственное. Другим серьезным ограничением их функциональных возможностей является невозможность поддержки петлеобразных конфигураций сети. Рассмотрим это ограничение на примере сети, изображенной на рис. 9
Рис.9 Влияние замкнутых маршрутов на работу мостов
Два сегмента параллельно соединены двумя мостами, так что образовалась активная петля. Пусть новая станция с адресом 10 впервые начинает работу в данной сети. Обычно начало работы любой операционной системы сопровождается рассылкой широковещательных кадров, в которых станция заявляет о своем существовании и одновременно ищет серверы сети. На этапе 1 станция посылает первый кадр с широковещательным адресом назначения и адресом источника 10 в свой сегмент. Кадр попадает как в мост 1, так и в мост 2.
Так как адрес назначения широковещательный, то каждый мост должен передать кадр на сегмент 2. Эта передача происходит поочередно, в соответствии методом случайного доступа технологии Ethernet. Пусть первым доступ к сегменту 2 получил мост 1 (этап 2 на рис. 6). При появлении пакета на сегменте мост 2 принимает его в свой буфер и обрабатывает. Он видит, что адрес 10 уже есть в его адресной таблице, но пришедший кадр является более свежим, и он утверждает, что адрес 10 принадлежит сегменту 2, а не 1. Поэтому мост 2 корректирует содержимое базы и делает запись о том, что адрес 10 принадлежит сегменту 2.
Аналогично поступает мост 1, когда мост 2 передает свою копию кадра в сегмент 2. Результаты наличия петли. Размножение кадра, то есть появление нескольких его копий (в данном случае -- двух, но если бы сегменты были соединены тремя мостами -- то трех и т. Д.). Бесконечная циркуляция обеих копий кадра по петле в противоположных направлениях, а значит, засорение сети ненужным трафиком. Постоянная перестройка мостами своих адресных таблиц, так как кадр с адресом источника 10 будет появляться то на одном порту, то на другом.[5]
Чтобы исключить все эти нежелательные эффекты, мосты нужно применять так, чтобы между логическими сегментами не было петель, то есть строить с помощью мостов только древовидные структуры, гарантирующие наличие только одного пути между любыми двумя сегментами. Тогда кадры от каждой станции будут поступать в мост всегда с одного и того же порта, и мост сможет правильно решать задачу выбора рационального маршрута в сети.
Ограничение топологии структурированной сети древовидной структурой вытекает из самого принципа построения адресной таблицы мостом, а поэтому точно так же это ограничение действует и на коммутаторы. В простых сетях сравнительно легко гарантировать существование одного и только одного пути между двумя сегментами. Но когда количество соединений возрастает и сеть становится сложной, то вероятность непреднамеренного образования петли оказывается высокой. Кроме того, желательно для повышения надежности иметь между мостами резервные связи, которые не участвуют при нормальной работе основных связей в передаче информационных пакетов станций, но при отказе какой-либо основной связи образуют новую связную рабочую конфигурацию без петель. Поэтому в сложных сетях между логическими сегментами прокладывают избыточные связи, которые образуют петли, но для исключения активных петель блокируют некоторые порты мостов. Наиболее просто эта задача решается вручную, но существуют и алгоритмы, которые позволяют решать ее автоматически. Наиболее известным является стандартный алгоритм покрывающего дерева (SpanningTreeAlgorithm), STA.
1.3 Домашняя локальная сеть
Рассмотрим схему одного из возможных вариантов домашней локальной сети. В нем будут участвовать электронные устройства, предназначенные для различных целей и задач, а так же использующих разный тип подключения.(рис.8)
Рис. 8. Домашняя локальная сеть.
1.3.1 Маршрутизатор
Основным и самым главным компонентом домашней локальной сети является роутер или маршрутизатор - специальное устройство, которое позволяет объединять несколько электронных устройств в единую сеть и подключать их к Интернету через один единственный канал, предоставляемый вам провайдером (рис.9).
Роутер - это многофункциональное устройство или даже миникомпьютер со своей встроенной операционной системой, имеющий не менее двух сетевых интерфейсов. Первый из них - LAN (LocalAreaNetwork) или ЛВС (Локальная Вычислительная Сеть) служит для создания внутренней (домашней) сети, которая состоит из ваших компьютерных устройств. Второй - WAN (WideAreaNetwork) или ГВС (Глобальная Вычислительная Сеть) служит для подключения локальной сети (LAN) к другим сетям и всемирной глобальной паутине - Интернету.
Рис. 9. Маршрутизатор.
Основным назначением устройств подобного типа является определение путей следования (составление маршрутов) пакетов с данными, которые пользователь посылает в другие, более крупные сети или запрашивает из них. Именно с помощью маршрутизаторов, огромные сети разбиваются на множество логических сегментов (подсети), одним из которых является домашняя локальная сеть. Таким образом, в домашних условиях основной функцией роутера можно назвать организацию перехода информации из локальной сети в глобальную, и обратно.[6]
Еще одна важная задача маршрутизатора - ограничить доступ к вашей домашней сети из всемирной паутины. Наверняка вы вряд ли будете довольны, если любой желающий сможет подключаться к вашим компьютерам и брать или удалять из них все что ему заблагорассудится. Что бы этого не происходило, поток данных, предназначенный для устройств, относящихся к определенной подсети, не должен выходить за ее пределы. Поэтому, маршрутизатор из общего внутреннего трафика, создаваемого участниками локальной сети, выделяет и направляет в глобальную сеть только ту информацию, которая предназначена для других внешних подсетей. Таким образом, обеспечивается безопасность внутренних данных и сберегается общая пропускная способность сети.
Главный механизм, который позволяет роутеру ограничить или предотвратить обращение из общей сети (снаружи) к устройствам в вашей локальной сети получил название NAT (NetworkAddressTranslation). Он же обеспечивает всем пользователям домашней сети доступ к Интернету, благодаря преобразованию несколько внутренних адресов устройств в один публичный внешний адрес, который предоставляет вам поставщик услуг интернета. Все это дает возможность компьютерам домашней сети спокойно обмениваться информацией между собой и получать ее из других сетей. В то же время, данные хранящиеся в них остаются недоступными для внешних пользователей, хотя в любой момент доступ к ним может быть предоставлен по вашему желанию.[7]
В общем, маршрутизаторы можно разделить на две большие группы - проводные и беспроводные. Уже по названиям видно, что к первым все устройства подключаются только с помощью кабелей, а ко вторым, как с помощью проводов, так и без них с использованием технологии Wi-Fi. Поэтому, в домашних условиях, чаще всего используются именно беспроводные маршрутизаторы, позволяющие обеспечивать интернетом и объединять в сеть компьютерное оборудование, использующее различные технологии связи.
Для подключения компьютерных устройств с помощью кабелей, роутер имеет специальные гнезда, называемые портами. В большинстве случаев на маршрутизаторе имеется четыре порта LAN для подсоединения ваших устройств и один WAN-порт для подключения кабеля провайдера.
1.3.2 Коммутатор
Коммутатор или свитч (switch) служит для соединения между собой различных узлов компьютерной сети и обмена данными между ними по кабелям. В роли этих узлов могут выступать как отдельные устройства, например настольный ПК, так уже и объединенные в самостоятельный сегмент сети целые группы устройств. В отличие от роутера, коммутатор имеет только один сетевой интерфейс - LAN и используется в домашних условиях в качестве вспомогательного устройства преимущественно для масштабирования локальных сетей.(рис. 10)
Рис. 10. Коммутатор.
Для подключения компьютеров с помощью проводов, как и маршрутизаторы, коммутаторы так же имеют специальные гнезда-порты. В моделях, ориентированных на домашнее использование, обычно их количество равняется пяти или восьми. Если в какой-то момент для подключения всех устройств количества портов коммутатора перестанет хватать, к нему можно подсоединить еще один свитч. Таким образом, можно расширять домашнюю сеть сколько угодно.[7]
Коммутаторы разделяют на две группы: управляемые и неуправляемые. Первые, что следует из названия, могут управляться из сети с помощью специального программного обеспечения. Имея продвинутые функциональные возможности, они дороги и не используются в домашних условиях. Неуправляемые свитчи распределяют трафик и регулируют скорость обмена данными между всеми клиентами сети в автоматическом режиме. Именно эти устройства являются идеальными решениями для построения малых и средних локальных сетей, где количество участников обмена информацией невелико.
В зависимости от модели, коммутаторы могут обеспечить максимальную скорость передачи данных равную либо 100 Мбит/с (FastEthernet ), либо 1000 Мбит/c (GigabitEthernet). Гигабитные свитчи лучше использовать для построения домашних сетей, в которых планируется часто передавать файлы большого размера между локальными устройствами.
1.3.3 Построение домашней сети
Как видно из рисунка 8, в единую сеть могут объединяться сразу несколько настольных компьютеров, ноутбуков, смартфонов, телевизионных приставок (IPTV), планшетов и медиаплееров и прочих устройств. Теперь разберемся, какое же оборудование понадобится, для построения собственной сети.
Электронные устройства, которые будут участвовать в сети: настольный компьютер, ноутбук, смартфон, телевизионная приставка (IPTV), планшет.[9].
Нам потребуется сетевая карта. Как правило, все современные настольные компьютеры уже оснащены встроенными в материнскую плату сетевыми картами Ethernet, а все мобильные устройства (смартфоны, планшеты) - сетевыми адаптерами Wi-Fi. При этом ноутбуки в большинстве своем оснащаются обоими сетевыми интерфейсами сразу.
Несмотря на то, что в подавляющем большинстве случаев, компьютерные устройства имеют встроенные сетевые интерфейсы, иногдавозникает необходимость в приобретении дополнительных плат (рис.11), например, для оснащения системного блока беспроводным модулем связи Wi-Fi.
Рис. 11. Сетевые карты.
Несмотря на бурное развитие беспроводных технологий, до сих пор многие локальные сети строятся с помощью проводов. Такие системы имеют высокую надежность, отличную пропускную способность и сводят к минимуму возможность несанкционированного подключения к вашей сети извне.
Для создания проводной локальной сети в домашних и офисных условиях используется технология Ethernet, где сигнал передается по так называемой «витой паре» (TP- TwistedPair) - кабелю, состоящему из четырех медных свитых друг с другом (для уменьшения помех) пар проводов (рис.12).
Рис. 12. Кабель «Витая пара».
Для подключения к устройствам (маршрутизаторам, коммутаторам, сетевым картам и так далее) на концах витой пары используются 8-контактные модульные коннекторы (рис.13), повсеместно называемые RJ-45 (хотя их правильное название - 8P8C).
Рис. 13. Контактные модульные коннекторы.
Для построения домашней сети преимущественно используется топология «Звезда», где в качестве устройств-концентраторов используются маршрутизаторы и коммутаторы (рис.14)
Рис. 14. Топология сети.
2. Расчетная часть
При экономическом расчете использовался прайс-лист магазина «НИКС» в городе Печора.[8]
Экономический расчет проводился умножением количества оборудования на его стоимость. А итоговая стоимость - суммированием полных стоимостей каждого оборудования. Расчет приведен в таблице 2.
При расчете будем считать, что S-это цена за один товар, K-это количество товаров, N-это общая стоимость, тогда расчет будет производиться по формуле (1):
N = (1)
Расчеты отображены в таблице 1.
Таблица 1. Стоимость оборудования
Наименование товара |
Цена за ед., руб. |
Количество |
Общая стоимость, руб. |
|
Рабочая станция (ПК) |
25000 |
1 |
25000 |
|
Планшет |
2000 |
1 |
2000 |
|
Телефон |
5000 |
3 |
15000 |
|
Сетевойадаптер D-Link < DWA-525 / A2A > Wireless N 150 PCI Desktop Adapter |
1009 |
1 |
1009 |
|
Маршрутизатор (роутер) D-Link<DIR-320-N> WirelessN 150 Router |
1478 |
1 |
1478 |
|
КоммутаторD-Link < DES-1008D / L2B > Fast E-net Switch 8-port |
972 |
1 |
972 |
|
Кабель канал |
30 |
30 м |
900 |
|
Коннекторы RG-45 |
1,5 |
4 |
6 |
|
Кабель FTP 4 пары кат.5e < бухта 305м > типа PCNet |
8 |
30 м |
240 |
|
Сетевой фильтр Ippon BK-112 < 1.8м > (6 розеток, вход IEC320-C14) |
1 |
1,8 м |
390 |
|
Въезд и подписание документов |
1 |
_ |
110 |
|
Настройка абонентской линии и конечного оборудования |
1 |
_ |
165 |
|
Тестирование и демонстрация линии |
1 |
_ |
110 |
|
Организация абонентской линии |
1 |
40м |
270 |
|
Прокладка линии |
1 |
_ |
270 |
|
Настройка тестирования |
1 |
_ |
160 |
|
Итого: |
48080 |
Заключение
Главный элементом практически любой сети является маршрутизатор, который позволяет объединять в сеть множество устройств, использующих как проводные (Ethernet), так и беспроводные (Wi-Fi) технологии, при этом обеспечивая всем им подключение к интернету через один единственный канал.
В качестве вспомогательного оборудования для расширения точек подключения к локальной сети с помощью кабелей, используются коммутаторы, по сути, являющиеся разветвителями. Для организации же беспроводных соединений служат точки доступа, позволяющие с помощью технологии Wi-Fi не только подключать без проводов к сети всевозможные устройства, но и режиме «моста» соединять между собой целые сегменты локальной сети.
Такие части системы, как трансиверы и повторители служат для усиления и преобразования сигнала. А концентраторы и коммутаторы объединяют определённое количество компьютеров в локальную конфигурацию коммуникационной сети.
Концентратор играет роль устройства для структуризации вычислительной сети. А затем, коммутатор принимает сигнал и разделяет его на логические сегменты. Это делается для того, чтобы избежать системных ошибок и сбоев.
Для процесса взаимодействия всех частей коммуникационной сети и в качестве межсетевого интерфейса применяются коммутаторы, мосты, маршрутизаторы и шлюзы.
Список литературы
[1] Олифер В.Г., Олифер Н.А. Основы сетей передачи данных, 2010.
[2]Новиков Ю.В., Кондратенко С.В. Основы локальных сетей, 2010.
[3]Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы: 4-е изд. СПб.: Питер, 2010
[4]Журналы: LAN, Сети и системы связи
[5]Руководство по технологиям объединенных сетей: 3-е изд.; пер. с англ. М.: Издательский дом «Вильямс», 2010
[6]Смирнова Е.В., Пролетарский А.В., Баскаков И.В., Федотов Р.А. Управление коммутируемой средой. М.: РУСАКИ, 2011. 335 с.
[7]Интернет-ресурс http://noname430.narod.ru/2-6.htm
[8]Интернет-ресурсhttp://pechora.nix.ru
[9]Интернет-ресурсhttp://www.chtivo.ru/book/246419/
Размещено на Allbest.ru
...Подобные документы
Выбор и обоснование среды передачи данных, коммутационного оборудования. Физическая и логическая структуризация сети. Выбор и обоснование серверного оборудования. Система бесперебойного электроснабжения и мероприятия по обеспечению сетевой безопасности.
курсовая работа [4,0 M], добавлен 26.01.2009Назначение и принцип действия ретранслятора инфракрасных сигналов для домашней сети. Обеспечение эксплуатационных требований, технологичности, ремонтопригодности. Обоснование выбора конструкции. Расчет надежности и коэффициента заполнения платы.
курсовая работа [55,3 K], добавлен 19.09.2014Организация, построение локальных сетей и подключения к сети интернет для разных операционных систем (Windows XP и Windows 7). Проблемные аспекты, возникающие в процессе настройки локальной сети. Необходимые устройства. Безопасность домашней группы.
курсовая работа [22,6 K], добавлен 15.12.2010Разработка схемы магистральной сети передачи данных и схемы локальных станционных сетей. Использование новых оптических каналов без изменений кабельной инфраструктуры. Установление в зданиях маршрутизаторов, коммутаторов, медиаконвертера, радиомоста.
курсовая работа [1,3 M], добавлен 23.10.2014Разработка схемы и выбор топологии включения станций в проектируемую сеть SDH города Темиртау. Выбор типа оборудования, расчет транспортной сети, схема мультиплексирования сигнала. Описание проекта. Мероприятия по снижению опасных и вредных факторов.
дипломная работа [4,1 M], добавлен 08.03.2012Роль компьютерных сетей, принципы построения. Протоколы передачи информации в сети ArcNet, используемые топологии и средства связи. Программное обеспечение, технология развёртки. Операционные системы компьютерных сетей. Инструкция по технике безопасности.
курсовая работа [504,6 K], добавлен 11.10.2013Характеристика и методы организации локальных сетей, структура связей и процедуры. Описание физической и логической типологии сети. Техническая реализация коммутаторов, ее значение в работе сети. Алгоритм "прозрачного" моста. Способы передачи сообщений.
реферат [217,5 K], добавлен 22.03.2010Роль и общие принципы построения компьютерных сетей. Топологии: шинная, ячеистая, комбинированная. Основные системы построения сетей "Token Ring" на персональных компьютерах. Протоколы передачи информации. Программное обеспечение, технология монтажа сети.
курсовая работа [925,9 K], добавлен 11.10.2013Разработка транспортной оптической сети: выбор трассы прокладки и топологии сети, описание конструкции оптического кабеля, расчет количества мультиплексоров и длины участка регенерации. Представление схем организации связи, синхронизации и управления.
курсовая работа [4,9 M], добавлен 23.11.2011Характеристика основных устройств объединения сетей. Основные функции повторителя. Физическая структуризация сетей ЭВМ. Правила корректного построения сегментов сетей Fast Ethernet. Особенности использования оборудования 100Base-T в локальных сетях.
реферат [367,2 K], добавлен 30.01.2012Общая архитектура сети NGN. Классификация типов оборудования. Стратегии внедрения технологий. Построение транспортного уровня мультисервисной сети, поглощающего транзитную структуру. Определение числа маршрутизаторов и производительности пакетной сети.
дипломная работа [487,5 K], добавлен 22.02.2014Функции и характеристики сетевых адаптеров. Особенности применения мостов-маршрутизаторов. Назначение и функции повторителей. Основные виды передающего оборудования глобальных сетей. Назначение и типы модемов. Принципы работы оборудования локальных сетей.
контрольная работа [143,7 K], добавлен 14.03.2015Назначение, характеристики и функции коммутаторов. Избыточные связи и алгоритм Spanning Tree. Дублирующие линии (Resilient Link, LinkSafe). Объединение портов (Port Trunking). Виртуальные локальные сети. Схемы применения коммутаторов в локальных сетях.
реферат [758,2 K], добавлен 30.11.2010Особенности работы оборудования SDH и принципы организации транспортной сети. Функции хронирования и синхронизации. Построение волоконно-оптической линии связи АНК "Башнефть" способом подвески оптического кабеля на опорах высоковольтной линии передачи.
дипломная работа [972,4 K], добавлен 22.02.2014Виды сетей передачи данных. Типы территориальной распространенности, функционального взаимодействия и сетевой топологии. Принципы использования оборудования сети. Коммутация каналов, пакетов, сообщений и ячеек. Коммутируемые и некоммутируемые сети.
курсовая работа [271,5 K], добавлен 30.07.2015Элементарная схема транспортной сети, ее архитектура. Мультиплексор как основной функциональный модуль сети SDH, многообразие его функций. Аппаратная реализация функциональных блоков оборудования сетей SDH. Электрический расчет линейного тракта.
дипломная работа [5,8 M], добавлен 20.04.2011Планирование сети корпорации, состоящей из центрального офиса, филиала и небольших удаленных офисов. Проектирование сети пассивного оборудования. Определение масштаба сети и архитектуры. Обоснование выбора сетевой технологии и физической топологии сети.
курсовая работа [1,5 M], добавлен 24.01.2014Логическая и физическая структура сети. Выбор сетевой технологии. Распределение адресного пространства. Выбор сетевого программного обеспечения. Кабельная система здания. Организация доступа к сети Интернет. Горизонтальная и вертикальная подсистемы.
курсовая работа [2,7 M], добавлен 04.06.2013Монтаж и настройка сетей проводного и беспроводного абонентского доступа. Работы с сетевыми протоколами. Работоспособность оборудования мультисервисных сетей. Принципы модернизации местных коммутируемых сетей. Транспортные сети в городах и селах.
отчет по практике [1,5 M], добавлен 13.01.2015Расчет количества и стоимости оборудования и материалов для подключения к сети передачи данных по технологии xPON. Выбор активного и пассивного оборудования, магистрального волоконно-оптического кабеля. Технические характеристики широкополосной сети.
дипломная работа [2,7 M], добавлен 14.11.2017