Цифровое телевидение
Формы и спектральный состав телевизионного сигнала. Последовательность цифрового кодирования аналогового вещания. Условия применения видеокомпрессии. Пути преобразования оптического и электронного изображений. История развития наземного телевидения.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 08.01.2017 |
Размер файла | 637,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
КОНТРОЛЬНАЯ РАБОТА
ЦИФРОВОЕ ТЕЛЕВИДЕНИЕ
ПЛАН
1. ОБЩИЕ СВЕДЕНИЯ О ТВ-СИГНАЛЕ
2. ЦИФРОВОЕ КОДИРОВАНИЕ ТВ-СИГНАЛА
3. ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ВИДЕОКОМПРЕССИИ В ТЕЛЕВИДЕНИИ
4. УСТРОЙСТВА ПРЕОБРАЗОВАНИЯ ИЗОБРАЖЕНИЙ В ЭЛЕКТРИЧЕСКИЕ СИГНАЛЫ
5. ПРЕОБРАЗОВАНИЕ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ В ОПТИЧЕСКИЕ ИЗОБРАЖЕНИЯ
6. ВЕЩАТЕЛЬНЫЕ СИСТЕМЫ ЦВЕТНОГО ТЕЛЕВИДЕНИЯ
7. СТАНДАРТЫ НАЗЕМНОГО ТЕЛЕВИЗИОННОГО ВЕЩАНИЯ
8. СЕТИ ТЕЛЕВИЗИОННОГО ВЕЩАНИЯ
1. ОБЩИЕ СВЕДЕНИЯ О ТВ-СИГНАЛЕ
Совокупность сигналов изображения, гасящих и синхронизирующих импульсов, называется полным телевизионным сигналом.
Сигнал изображения формируется во время прямого хода луча. Во время обратного хода луч должен быть погашен, иначе, двигаясь в противоположном направлении, он нарушит правильное распределение электрических зарядов на фотомишени передающей трубки, а на экране кинескопа появятся светлые наклонные линии, ухудшающие качество изображения. Электронные лучи гасятся подачей на электронные прожекторы передающей и приемной трубок специально сформированных гасящих импульсов. Кроме того, для правильного воспроизведения изображения все развертывающие устройства телевизионной системы должны работать синхронно и синфазно, т. е., если, например, на экране кинескопа воспроизводится начало первой строки передаваемого изображения, то электронный луч должен находиться в верхнем левом углу экрана, а при воспроизведении конца последней активной строки второго полукадра - в правом нижнем углу.
На рис. показана упрощенная форма полного телевизионного сигнала черно-белого телевидения в негативной полярности.
Спектральный состав телевизионного сигнала. Характерной особенностью ТВ сигнала является широкий диапазон частот, занимаемый видеосигналом, Спектр частот видеосигнала ?f определяется разностью между верхней fв и нижней fн граничными частотами:
?f = fв - fн
Нижняя граничная частота видеосигнала соответствует передаче неподвижного изображения, имеющего минимальное число изменений яркости. Наиболее простым является неподвижное изображение, состоящее из двух деталей разной яркости, имеющих горизонтальную границу раздела. Такое изображение имеет одно изменение яркости при передаче одного кадра изображения. При чересстрочной развертке за нижнюю границу спектра fн следует принять частоту, равную числу полей, передаваемых в секунду, т. е., fн = 50 Гц. Эта нижняя граница спектра сохраняется и при передаче любого сложного изображения, что объясняется условиями покадровой передачи изображения. Верхняя частота спектра образуется при передаче максимально сложного изображения. Из анализа условий передачи наиболее сложного с точки зрения детальности ТВ изображения следует, что верхняя частота спектра fв определяется выражением:
fв = 0,5kФz ? 2fк
Где:
kФ - формат кадра ТВ изображения, т. е., отношение ширины b к его высоте h, равное 1,33.
Расчет выполненный по вышеуказанному соотношению показывает, что fв ? 6,0 МГц. Верхняя частота определяет степень воспроизведения контуров мелких деталей ТВ изображения. Это объясняется тем, что в горизонтальном направлении ТВ изображение не имеет дискретной структуры. Поэтому горизонтальный размер элемента изображения определяется длительностью его передачи фэл, которая обратно пропорциональна верхней граничной частоте спектра ТВ сигнала fв, т. е.:
fв = 1 ? 2фэл
С увеличением верхней частоты спектра длительность элемента уменьшается, а горизонтальная четкость увеличивается.
Следовательно, четкость изображения по горизонтали определяется полосой пропускания ТВ системы, которая практически соответствует верхней граничной частоте спектра fв, так как fн < fв.
Кроме основного спектра ТВ сигнала, распространяющегося от 50 Гц до примерно 6 МГц, имеется еще небольшой участок в границах от 0 до 2-3 Гц. Этот участок спектра соответствует так называемой постоянной составляющей ТВ сигнала, которая пропорциональна изменениям средней яркости ТВ изображения.
Например, при длительной передаче изображения испытательной таблицы средняя яркость не меняется, поэтому частота сигнала постоянной составляющей равна нулю.
Однако, во многих случаях, особенно, при передаче кинофильмов по телевидению, средняя яркость ТВ изображения меняется практически с частотой 2-3 Гц.
Принципы формирования цветного ТВ.
Для обеспечения совместимости в системах цветного телевидения из трех первичных сигналов R, G, B формируется четвертый - сигнал яркости Y, соответствующий черно-белому изображению.
Сигнал яркости может быть получен из сигналов основных цветов сложением в определенной пропорции. Относительное содержание R, G и B в яркостном сигнале:
R - 30%;
G - 59%;
B - 11%.
Такое соотношение яркостей основных цветов было установлено с учетом спектральной чувствительности зрения человека. Таким образом, получение сигнала яркости выражается следующим уравнением:
Y = 0.3R + 0.11B + 0.59G
Полученный сигнал является общим яркостным сигналом совместимых систем. Он позволяет воспроизвести на экране черно-белого телевизора нормальное изображение.
Сигнал яркости занимает полосу частот до 6 МГц. Из уравнения, определяющего состав яркостного сигнала, вытекает, что при наличии сигнала Y не обязательно передавать сигналы всех трех цветов, достаточно передать любые два из них.
В системах цветного телевидения исключается зеленый, поскольку в яркостном сигнале его содержится 59%. Сигналы красного и синего цветов, кроме информации о цветовом тоне и насыщенности, несут информацию о яркости данного участка изображения. Однако, она уже содержится в яркостном сигнале. Поэтому вместо цветовых сигналов R и B передаются так называемые цветоразностные сигналы R-Y и B-Y, не несущие информации о яркости. Особенностью цветоразностных сигналов является то, что на белых и серых участках изображения они равны нулю.
2. ЦИФРОВОЕ КОДИРОВАНИЕ ТВ-СИГНАЛА
Первой операцией процесса цифрового кодирования аналогового ТВ сигнала является его дискретизация, которая представляет собой замену непрерывного аналогового сигнала U (t) последовательностью отдельных во времени отсчетов этого сигнала. Наиболее распространенной формой дискретизации является равномерная дискретизация с постоянным периодом, в основе которой лежит теорема Найквиста-Котельникова. Частота дискретизации f, выбранная в соответствии с теоремой Найквиста-Котельникова, равна: f = 2, с учетом того, что f - верхняя граничная частота спектра ТВ сигнала. Для отечественного вещательного ТВ стандарта f = 6,25 МГц. В системах цифрового телевидения с импульсно-кодовой модуляцией (ИКМ) частоту дискретизации f выбирают несколько выше минимально допустимой, определяемой теоремой Найквиста-Котельникова.
Связано это с условием отсутствия перекрытия побочных спектров в спектре дискретизированного сигнала, обеспечивающего гарантированное исходное качество сигнала при его обратном преобразовании в аналоговую форму с помощью низкочастотной фильтрации. Поэтому при верхней граничной частоте f - 6,25 МГц f должна выбираться не менее 12,5 МГц.
Ортогональная структура отсчетов получится при выборе частоты дискретизации, кратной частоте строк. При этом следует учитывать, что в ТВ вещании еще долго будут использоваться основные стандарты разложения 625/50 и 525/60. В связи с этим параметры цифрового кодирования ТВ сигнала необходимо согласовывать с двумя стандартами разложения. Последнее обусловливает следующее требование: f должна быть кратна частоте строк систем с разложением на 525 и 625 строк.
С другой стороны, эта частота должна быть по возможности низкой, чтобы не увеличивать скорость передачи цифрового потока. Наименьшее кратное двум значениям строчной развертки:
f (625) = 15625 Гц ? f (525) = 15734,266 Гц
- соответствует значению частоты 2,25 МГц.
Поэтому для дискретизации ТВ сигналов подходят частоты 11,25, 13,5 и 15,75 МГц, кратные 2,25 МГц (множители 5, 6 и 7). Из них выбрана частота 13,5 МГц, поскольку это значение является единственным, которое обеспечивает перечисленные выше требования. Оно дает возможность получить 864 отсчета в строке с разложением на 625 строк и 858 отсчетов при разложении на 525 строк.
За процессом дискретизации при преобразовании аналогового сигнала в цифровую форму следует процесс квантования.
Квантование заключается в округлении полученных после дискретизации мгновенных значений отсчетов до ближайших из набора отдельных фиксированных уровней. Квантование представляет собой дискретизацию ТВ сигнала не во времени, а по уровню сигнала U (t).
Фиксированные уровни, к которым “привязываются” отсчеты, называют уровнями квантования. Разбивая динамический диапазон изменения сигнала U (t) уровнями квантования на отдельные области значений, называемые шагами квантования, образуют шкалу квантования. Следствием этого становится появление в сигнале специфических шумов, называемых шумами квантования.
Ошибки квантования или шумы квантования на изображении могут проявляться по-разному, в зависимости от свойств кодируемого сигнала. Если собственные шумы аналогового сигнала невелики по сравнению с шагом квантования, то шумы квантования проявляются на изображении в виде ложных контуров.
В этом случае плавные яркостные переходы превращаются в ступенчатые, и качество изображения ухудшается. Наиболее заметны ложные контуры на изображениях с крупными планами. Этот эффект усугубляется на подвижных изображениях.
Когда собственные шумы аналогового сигнала превышают шаг квантования, искажения квантования проявляются уже не как ложные контуры, а как шумы, равномерно распределенные по спектру. Флуктуационные помехи исходного сигнала как бы подчеркиваются, изображение в целом начинает казаться более зашумленным.
Результаты вышеназванных исследований вошли в Рекомендацию Международного консультативного комитета по радио (МККР) 11/601, разработанную в 1982 г. для цифрового телевидения, в которой приводятся значения основных параметров цифрового кодирования ТВ сигнала для АСК телецентров, работающих со стандартом разложения как на 625 строк, так и на 525. После вхождения МККР в состав Международного союза электросвязи (МСЭ) данная Рекомендация получила обозначение МСЭ-Р601. В соответствии с этой Рекомендацией предложено осуществлять раздельное кодирование яркостного Е и цветоразностных сигналов Е и E. Причем для сигнала Е частота дискретизации выбрана 13,5 МГц.
С учетом необходимости образования общего цифрового потока и фиксированной структуры отсчетов, выбранная частота дискретизации цветоразностных сигналов равна половине частоты дискретизации сигнала яркости, т. е., 6,75 МГц. Поэтому стандарт цифрового кодирования условно обозначается соотношением 4:2:2, что отражает соотношение частот дискретизации сигнала яркости и двух цветоразностных сигналов, а также одновременность их передачи. При этом яркостный и цветоразностные сигналы подвергаются 8-разрядному квантованию, т. е., S = 8.
3. ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ВИДЕОКОМПРЕССИИ В ТЕЛЕВИДЕНИИ
MPEG-2 - видеостандарт, разработанный группой MPEG, для применения на высокихскоростях передачи данных. Транспортный поток MPEG-2 лежит в основе всех существующих стандартов цифрового телевидения - DVB, ATSC, ISDB.
Эффективное сжатие видео информации зиждется на двух основных идеях: подавление несущественных для визуального восприятия мелких деталей пространственного распределения отдельных кадров и устранение временной избыточности в последовательности этих кадров. Соответственно говорят о пространственной и временной компрессии.
В первой из них используется экспериментально установленная малая чувствительность человеческого восприятия к искажениям мелких деталей изображения. Глаз быстрее замечает неоднородность равномерного фона, чем искривление тонкой границы или изменение яркости и цвета малого участка. Из математики известно два эквивалентных представления изображения: привычное нам пространственное распределение яркости и цвета и так называемое частотное распределение, связанное с пространственным Дискретным Косинусным Преобразованием (ДКП). В теории они равнозначны и обратимы, но сохраняют информацию о структуре изображения совершенно по-разному: передачу плавных изменений фона обеспечивают низкочастотные (центральные) значения частотного распределения, а за мелкие детали пространственного распределения отвечают высокочастотные коэффициенты. Это позволяет использовать следующий алгоритм сжатия. Кадр разбивается на блоки размером 16х16 (размеру 720х576 соответствует 45х36 блоков), каждый из которых ДКП переводится в частотную область. Затем соответствующие частотные коэффициенты подвергаются квантованию (округлению значений с задаваемым интервалом). Если само по себе ДКП не приводит к потере данных, но квантование коэффициентов, очевидно, вызывает огрубление изображения. Операция квантования выполняется с переменным интервалом - наиболее точно передается низкочастотная информация, в то время как многие высокочастотные коэффициенты принимают нулевые значения. Это обеспечивает значительное сжатие потока данных, но приводит к снижению эффективного разрешения и возможному появлению незначительных ложных деталей (в частности, на границе блоков). Очевидно, что чем более грубое квантование используется, тем больше степень сжатия, но и тем ниже качество результирующего сигнала. Временная MPEG-компрессия использует высокую избыточность информации в изображениях, разделенных малым интервалом. Действительно, между смежными изображениями обычно меняется только малая часть сцены - например, происходит плавное смещение небольшого объекта на фоне фиксированного заднего плана. В этом случае полную информацию о сцене нужно сохранять только выборочно - для опорных изображений. Для остальных достаточно передавать только разностную информацию: о положении объекта, направлении и величине его смещения, о новых элементах фона (открывающихся за объектом по мере его движения). Причем эти разности можно формировать не только по сравнению с предыдущими изображениями, но и с последующими (поскольку именно в них по мере движения объекта открывается часть фона, ранее скрытая за объектом). Отметим, что математически наиболее сложным элементом является поиск смещающихся, но мало изменяющихся по структуре блоков (16х16) и определение соответствующих векторов их смещения. Однако это элемент наиболее существенен, так как позволяет существенно уменьшить объем требуемой информации. Именно эффективностью выполнения этого "интеллектуального" элемента в реальном времени и отличаются различные MPEG-кодеры. Таким образом, в MPEG кодировке принципиально формируются три типа кадров: I (Intra), выполняющие роль опорных и сохраняющие полный объем информации о структуре изображения, P (Predictive), несущие информацию об изменениях в структуре изображения по сравнению с предыдущим кадром (типов I или P), B (Bi-directional), сохраняющие только самую существенную часть информацию об отличиях от предыдущего и последующего изображений (только I или P). Принципиальная схема последующей компрессии I-кадров, также как и разностных P- и B-кадров, аналогична MJPEG, но, как и у DV, с адаптивной подстройкой таблиц квантования. В частности, это позволяет охарактеризовать DV-сигнал как частный случай MPEG последовательности из I-кадров с заданным фиксированным потоком (коэффициентом компрессии). Последовательности I-, P-, B-кадров объединяются в фиксированные по длине и структуре группы кадров - GOP (Group of Pictures). Каждая GOP обязательно начинается с I и с определенной периодичностью содержит P кадры. Ее структуру описывают как M/N, с M - общее число кадров в группе, а N - интервал между P-кадрами.
Так, типичная для Video-CD и DVD IPB группа 15/3 имеет следующий вид: IBBP. Здесь каждый B кадр восстанавливается по окружающим его P кадрам (в начале и конце группы - по I и Р), а в свою очередь каждый Р кадр - по предыдущему Р (или I) кадру. В то же время I кадры самодостаточны и могут быть восстановлены независимо от других, но являются опорными для всех P и тем более B кадров группы. Соответственно у I и P наименьшая степень компрессии, у В - наибольшая. Установлено, что по размеру типичный Р кадр составляет 1/3 от I, а B около 1/8 части.
Формат сжатия MPEG 4.
MPEG4 использует технологию так называемого фрактального сжатия изображений. Фрактальное (контурно-основанное) сжатие подразумевает выделение из изображения контуров и текстур объектов. Контуры представляются в виде т. н.: сплайнов (полиномиальных функций) и кодируются опорными точками. Текстуры могут быть представлены в качестве коэффициентов пространственного частотного преобразования (например, дискретного косинусного или вейвлет-преобразования).
Диапазон скоростей передачи данных, который поддерживает формат сжатия видео изображений MPEG 4, гораздо шире, чем в MPEG 1 и MPEG 2. Дальнейшие разработки специалистов направлены на полную замену методов обработки, используемых форматом MPEG 2. Формат сжатия видео изображений MPEG 4 поддерживает широкий набор стандартов и значений скорости передачи данных. MPEG 4 включает в себя методы прогрессивного и чересстрочного сканирования и поддерживает произвольные значения пространственного разрешения и скорости передачи данных в диапазоне от 5 кбит/с до 10 Мбит/с. В MPEG 4 усовершенствован алгоритм сжатия, качество и эффективность которого повышены при всех поддерживаемых значениях скорости передачи данных. Разработка компании JVC Professional - веб-камера VN-V25U, входящая в линию сетевых устройств Networks, использует для обработки видео изображений формат сжатия MPEG 4.
4. УСТРОЙСТВА ПРЕОБРАЗОВАНИЯ ИЗОБРАЖЕНИЙ В ЭЛЕКТРИЧЕСКИЕ СИГНАЛЫ
На передающей стороне ТВ системы необходимо преобразовать оптическое изображение передаваемого объекта в ТВ сигнал. Подобное преобразование можно осуществлять как с помощью электронно-лучевых (вакуумных), так и твердотельных преобразователей.
Вакуумные преобразователи (передающие трубки) по виду используемого в них фотоэффекта классифицируются на две группы: с внешним и внутренним фотоэффектом. В настоящее время в большинстве ТВ камер применяются передающие трубки с внутренним фотоэффектом видиконной конструкции (видикон, плюмбикон, сатикон, кремникон и др.), отличающиеся только составом фотопроводящей мишени, а также твердотельные матрицы на основе приборов с зарядовой связью (ПЗС).Для примера на рисунке показано устройство типовой передающей трубки с фотопроводящей мишенью, магнитной фокусировкой и магнитным отклонением. Объектив 1 проецирует оптически сфокусированное изображение передаваемого объекта на фотопроводящий слой 6, нанесенный на сигнальную пластину 5, которая напылена на планшайбу 7. Сигнальная пластина электрически соединена с кольцевым выводом 8. Электронно-оптическая система передающей трубки состоит из катода 12, модулятора 11, первого анода 10, второго анода 9 и выравнивающей сетки 13.
Электронный луч фокусируется катушкой 2, а отклоняется горизонтальными и вертикальными катушками отклонения 4. Назначение корректирующей катушки 3 сводится в основном к компенсации погрешностей, вносимых магнитной и электронно-оптической системами. Модулятор 11 предназначен для регулировки тока электронного луча, а первый и второй анод - для его формирования. Магнитное поле катушки 2 фокусирует электронный луч в плоскости мишени. Перед мишенью установлена выравнивающая сетка. Между мишенью и сеткой создается однородное тормозящее поле по всей сканируемой площади фоточувствительного слоя, что позволяет сохранить фокусировку луча и равномерность сигнала по полю изображения.
Твердотельные преобразователи на основе ПЗС.
Матричные твердотельные преобразователи свет-сигнал обеспечивают электронную развертку по обеим осям. Они представляют собой двумерную матрицу светочувствительных элементов, в которых накапливаются и переносятся заряды.
ПЗС матрицы можно классифицировать на приборы с кадровым переносом зарядов, приборы со строчным переносом зарядов и приборы со строчно-кадровым переносом зарядов.
Приборы с кадровым переносом зарядов состоят из секций накопления и хранения и выходного регистра. При подаче напряжений в определенных фазах под электродами в светочувствительной секции накапливаются заряды, пропорциональные падающему световому потоку. В течение длительности КГИ при подаче импульсов переноса все накопленные заряды быстро сдвигаются из секции накопления в экранированную от света секцию памяти, откуда построчно выводятся в выходной регистр во время действия СГИ, а затем последовательно считываются во время активной части строки. В ПЗС с кадровым переносом зарядов может применяться двух-, трех- или четырехфазная системы электродов.
5. ПРЕОБРАЗОВАНИЕ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ В ОПТИЧЕСКИЕ ИЗОБРАЖЕНИЯ
Конструкция цветного масочного кинескопа. Конечным звеном ТВ системы является преобразователь видеосигнала в оптическое изображение. В большинстве случаев ТВ изображения воспроизводят при помощи электроннолучевых трубок с люминесцирующими экранами. Такие трубки принято называть приемными или кинескопами. В кинескопах цветного ТВ используется трехрастровая система, при которой на экране формируется три одноцветных растра - R, G, B, совмещенные с достаточной степенью точности друг с другом. Трехрастровая система предполагает наличие в кинескопе трех электронных прожекторов, формирующих три электронных луча и трех люминофорных групп, спектральное излучение которых соответствует основным цветам. Разделение одноцветных изображений, т. е., обеспечение правильного попадания каждого из электронных лучей на люминофорные элементы экрана своего цвета, обеспечивается с помощью теневой маски. Такие кинескопы называются масочными.
Основные физические принципы работы и конструктивные особенности кинескопов любого типа заключаются в следующем. Электронные прожекторы и люминесцирующий экран помещаются в стеклянную колбу, из которой откачан воздух до получения высокого вакуума. Причем люминесцирующий экран наносится на внутреннюю поверхность переднего стекла колбы кинескопа. Отклонение электронных лучей осуществляется отклоняющими катушками, надеваемыми на горловину трубки. Каждый электронный прожектор кинескопа состоит из подогревного катода с нитью накала, управляющего электрода или модулятора и первого анода. Электростатическая фокусировка электронных лучей осуществляется электрическими полями дополнительных электродов, помещаемых в горловине трубки.
Электронные лучи под действием сильного ускоряющего электрического поля бомбардируют люминесцирующий экран, который начинает светиться под действием бомбардировки. Магнитное поле отклоняющих катушек заставляет электронные лучи перемещаться по экрану трубки в горизонтальном и вертикальном направлениях, в результате чего на экране образуются растры одноцветных изображений в виде совокупности отдельных сфокусированных строк. Если на управляющие электроды кинескопа подать видеосигналы основных цветов ЕR, ЕG, ЕB, которые будут изменять количество электронов в соответствующих электронных лучах, то на экране кинескопа появится цветное изображение, полностью соответствующее объекту наблюдения.
Жидкокристаллические экраны.
Основные электрооптические эффекты в жидких кристаллах. Жидкокристаллическое (мезоморфное) состояние наблюдается как особая термодинамическая фаза у многих органических соединений, обладающих одновременно свойствами жидкости и твердого тела. Температурный интервал существования жидкокристаллической фазы может составлять десятки градусов. В пределах такого интервала температур наблюдается одна или несколько различных мезофаз, отличающихся по виду и степени упорядоченности. Эти фазы принято подразделять на нематическую, холестерическую и ряд смектических фаз. Практически во всех жидкокристаллических фазах наблюдаются электрооптические эффекты, многие из которых находят техническое применение. В устройствах воспроизведения изображений наибольшее применение получили жидкие кристаллы (ЖК) нематического типа, у которых нитеобразно вытянутые органические молекулы стремятся ориентироваться таким образом, чтобы их главные оси были параллельны друг другу. Основными электрооптическими эффектами в подобных ЖК являются: динамическое рассеивание света и управляемое вращение плоскости поляризации в закрученной структуре или “твист-эффект”. В ТВ ЖКЭ требуемое изображение формируется из огромного числа (около 400000) элементов отображения (пикселей), равномерно распределенных по площади экрана и адресуемых индивидуально. Каждый пиксель представляет собой элементарную жидкокристаллическую ячейку.
Поскольку для подачи управляющего напряжения формирование отдельного контакта к каждому пикселю исключено, используется матричный принцип организации ЖКЭ, позволяющий осуществлять адресацию матрицы ХП пикселей с помощью тn контактных шин. Практически это реализуется следующим образом. На внутренние поверхности двух высокоплоскостных стеклянных пластин, между которыми находится слой ЖК толщиной менее 10 мкм, наносят полосковые взаимоперпендикулярные прозрачные электроды, в местах их пересечения образуются элементарные жидкокристаллические ячейки, оптические свойства которых определяются напряжением, приложенным к электродам соответствующих строк и столбцов.
Если пиксель характеризуется пороговой реакцией на управляющее напряжение, то при определенных амплитуде и полярности импульсных напряжений, подаваемых на соответствующие электроды строк и столбцов, возможно независимое управление (“включение-выключение”) каждым пикселем матрицы без существенного изменения состояния остальных элементов. Такой режим с использованием импульсных управляющих напряжений с временным разделением называется мультиплексированием. Основным его недостатком является трудность сохранения высокого контраста изображения при большом числе сканируемых строк.
6. ВЕЩАТЕЛЬНЫЕ СИСТЕМЫ ЦВЕТНОГО ТЕЛЕВИДЕНИЯ
NTSC.
Система цветного телевидения NTSC была разработана в 1953 году в США Национальным комитетом по телевизионным стандартам (National Television Standards Committee). NTSC принята в качестве стандартной системы ЦТВ также в Канаде, Японии и ряде стран американского континента. В качестве сигналов для передачи цветовой информации в системе NTSC приняты цветоразностные сигналы.
Передача этих сигналов осуществляется в спектре сигнала яркости на одной цветовой поднесущей.
Кроме эксплуатационных недостатков, связанных со сложным принципом передачи и разделения сигналов цветности - квадратурной модуляцией и синхронным детектированием, необходимо указать на большую подверженность системы NTSC искажениям типа «дифференциальная фаза» и «дифференциальное усиление». Первое приводит к искажениям цветового тона, который изменяется в зависимости от мгновенного значения сигнала яркости. Второе из-за нелинейности амплитудных характеристик приводит к искажениям насыщенности.
Варианты NTSC.
Помимо так называемого «базового» NTSC M (525 строк/30 кадр./сек./частота поднесущей цвета 3,58 МГц), существуют еще три варианта этой системы. Первый называется NTSC 4,43 и используется в мультистандартных VHS-видеомагнитофонах. Временные параметры видеосигнала такие же, как в базовом NTSC M. Разница в том, что цветовое кодирование и декодирование производится в «PAL-формате», т. е., частота цветовой поднесущей такая же, как в PAL (4,43 МГц). О втором, NTSC-J, в России практически никто не слышал. Этот вариант используется в Японии (Japan). Отличается от базового NTSC M отсутствием подпорки гасящих интервалов в активной части строки. Соответственно амплитуда его составляет 0,714 В вместо принятого в NTSC 1 В (впрочем как в PAL и SECAM). Третий, названный «noninterlaced NTSC».
PAL.
Эта система (Phase Alternation Line - строка с переменной фазой), разработанная в ФРГ, в своей основе содержит все идеи американской NTSC. Особенность PAL заключается в оригинальном способе устранения фазовых искажений, присущих системе NTSC.
В системе PAL фаза поднесущей одного цветоразностного сигнала от строки к строке меняется на 180 градусов. Кроме того, в приемнике используется линия задержки на время одной строки (64 мк/сек). Т. е., имеются два сигнала цветности с относительной задержкой на одну строку. Изменение фазы от строки к строке на 180° приводит к тому, что фазовые ошибки, одинаковые по величине, имеют разные знаки. Сложение напряжения на входе линии задержки с перевернутым напряжением на ее выходе устраняет ошибку (сбой) фазы. При очевидных достоинствах главным недостатком системы PAL является существенное усложнение ТВ-приемника за счет введения в его схему дополнительных узлов для задержки сигнала цветности на время одной строки и периодического изменения фазы цветоразностного сигнала. Следует также отметить, что искажения типа «дифференциальное усиление» в PAL не компенсируются.
SECAM.
В 1958 г. французский инженер Анри де Франс изобрел новую систему, названную SECAM (SEquential Couleur Avec Memoire), в которой отсутствовал основной недостаток NTSC - искажения цветового тона, вызываемые нелинейностью частотных, фазовых и амплитудных характеристик узлов телевизионного тракта. В SECAM информация о цветовом тоне не определяется фазовыми соотношениями сигналов цветности. В первых вариантах (система «Анри де Франс») информация о цветовом тоне передавалась амплитудной модуляцией поднесущей. В более усовершенствованной системе SECAM цветовая информация передается с помощью частотной модуляции поднесущей цвета.
Цветоразностные сигналы в SECAM передаются поочередно: в течение одной строки - сигнал R-Y, в течение следующей - В-Y и т. д.
Цветовая информация как для R-Y, так и для В-Y «снимается» через строку. При этом предполагается, что в пропущенных строках цветовая информация идентична соседним. Иными словами, для сигналов цветности полный кадр содержит вдвое меньшее количество строк, что приводит к соответствующему увеличению размеров окрашенных мелких деталей по вертикали. Визуальная четкость по вертикали при этом не снизится, т. к., более мелкие детали передаются сигналом яркости Y с полным числом строк развертки. Таким образом, при поочередной (через строку) передаче сигналов цветности в приемнике в результате использования элемента памяти (линии задержки) образуются три исходных сигнала цветности.
Поэтому рассматриваемую систему часто называют последовательно-одновременной (или по-французски Sequential a memoire - последовательная с памятью).
«Политический» SECAM.
Известно, что одной из причин принятия на «вооружение» SECAM во Франции была защита внутреннего рынка от «вторжения» чуждой NTSC. Хотя новизна решений и явные преимущества при создании системы также были учтены. И в СССР эта система была принята не в последнюю очередь по политическим соображениям - лишь бы не американская NTSC и немецкий PAL. Естественно, и страны Варшавского договора «добровольно» приняли SECAM (пожалуй, только ГДР удалось отстоять «свой» стандарт звука - 5,5 МГц вместо советских 6,5).
В 1966 году политическая «особенность» SECAM всплыла наружу, когда советское правительство использовало соглашение с Францией (о распространении на территории СССР только системы SECAM) как предлог, чтобы запретить американской вещательной корпорации NBC запись на видеоленту показательных выступлений в Москве. В последнюю минуту правительство СССР потребовало прекратить NTSC-запись, объяснив, что иначе нарушит соглашение.
7. СТАНДАРТЫ НАЗЕМНОГО ТЕЛЕВИЗИОННОГО ВЕЩАНИЯ
ATSC.
В 1998 году в США началось цифровое наземное телевизионное вещание по стандарту ATSC (Advanced Television Systems Committee). Предполагается, что к концу 1999 года более половины телезрителей в США получат доступ к цифровому телевидению. Хотя с использованием этого формата могут передаваться в цифровой форме телевизионные изображения стандартного формата и разнообразные данные, главное его назначение - телевидение высокой четкости. Процесс, приведший к появлению стандарта ATSC DTV, зародился в 1987 году, когда Федеральная комиссия по связи (FCC) США образовала Консультативный комитет по перспективным телевизионным системам с целью разработки стандарта наземного вещания для нового, более совершенного телевидения. Первые 23 рассмотренные системы были аналоговыми, но в 1990 году была предложена первая цифровая система телевидения высокой четкости, за которой последовали и другие. В 1993 году было решено объединить лучшие стороны рассмотренных систем и создать "лучшую из лучших" цифровую систему телевидения высокой четкости. В ответ на это был образован HDTV Grand Alliance (Большой Союз ТВЧ), объединивший в работе над телевидением высокой четкости ведущие фирмы и организации - представителей промышленности и науки. В декабре 1996 года FCC утвердила разработанную систему телевидения высокой четкости под названием ATSC DTV в качестве стандарта США.
ISDB.
Япония также завершила работу над стандартом цифрового телевидения, предложив систему цифрового вещания с предоставлением комплексных услуг (Integrated Services Digital Broadcasting).Основное внимание группы экспертов по цифровому вещанию DiBEG уделялось обеспечению гибкости передачи разнообразной информации, включающей разные телевизионные программы (в том числе высокой четкости), радиопрограммы и данные разнообразной природы. Однако японский стандарт появился позже своих конкурентов и пока рассматривается лишь странами, которые в силу ряда причин хотели бы получить цифровое телевидение в японском варианте.
DVB-T.
1998 год стал первым годом цифрового наземного телевизионного вещания в Европе по стандарту DVB. Начало работы над этим стандартом было положено в 1992 году. Тогда состоялось первое заседание группы европейских специалистов, которые собрались для обсуждения проекта цифрового телевизионного вещания, а в 1993 году родился европейский проект DVB (Digital Video Broadcasting - цифровое видео (телевизионное) вещание). При цифровом эфирном ТВ-вещании основным разрушающим фактором для цифрового канала являются помехи от многолучевого приема. Этот вид помех весьма характерен для эфирного приема в городах с разноэтажной застройкой из-за многократных отражений радиосигнала от зданий и других сооружений. Радикальным решением этой проблемы является применение в эфирных каналах ТВ-вещания модуляции COFDM (Coded Orthogonal Division Multiplexing), которая специально разработана для борьбы с помехами при многолучевом приеме.
В стандарте эфирного вещания DVB-T предусмотрены два режима модуляции OFDM, названные режимами 8К (6817 несущих) и 2К (1705 несущих), для которых используются два значения рабочих интервалов информационных символов: Тu1 = 896 мкс - для режима 8К и в 4 раза меньшее значение Тu2 = 224 мкс - для режима 2К.
8. СЕТИ ТЕЛЕВИЗИОННОГО ВЕЩАНИЯ
Сигналы телевизионных программ передаются абонентам (телезрителям) в основном с помощью наземной телевизионной передающей сети, систем кабельного телевидения (СКТВ) и системы непосредственного телевизионного вещания, использующей связные искусственные спутники Земли, находящиеся на геостационарной орбите (ГСО), а также систем сотового телевидения и сети Интернет.
Наземная телевизионная передающая сеть состоит из телецентров, работающих совместно с радиотелевизионными передающими станциями (РТПС), телевизионных ретрансляторов и технических средств передачи ТВ сигналов на большие расстояния. Телецентры представляют собой комплексы радиотехнической аппаратуры, помещений и служб, необходимых для создания телевизионных программ. С телецентров сформированные телевизионные сигналы непосредственно передаются на РТПС. Для того, чтобы принять с удовлетворительным качеством программу телевидения (например, в полосе часто 6-12) или стереофонического звукового вещания с помощью достаточно сложных (многоэлементных) наружных антенн, поднятых над уровнем земли на 10 метров, нужно чтобы напряженность электромагнитного поля передатчика была не менее 500 мкВ/м. В то же время мешающее влияние такого передатчика будет вполне ощутимо при создаваемой им напряженности поля 1 мкВ/м, т. е., в 500 раз меньше той, при которой возможен нормальный прием его передачи. Соответственно, зона мешающего влияния радиовещательной станции значительно превышает зону обслуживания. Так, например, передатчик мощностью 5 кВт с передающей антенной, обладающей коэффициентом усиления 6 раз и поднятой над землей на 150 метров, имеет зону обслуживания радиусом 54 км. При этом расстояние, на котором он может создавать помехи приему других радиостанций, работающих на той же частоте (в совмещенном канале), равно около 400 км.
Помимо помех по совмещенному каналу, возможны такие помехи от так называемых смежных (непосредственно граничащих по частоте) гетеродинных и зеркальных каналов.
Чтобы не создавать все эти перечисленные ситуации, применяют специальные методы оптимального планирования. Планирование передающей телевизионной сети заключается в определении места расположения РТПС и выборе их параметров (мощность передатчиков, высота подвеса антенн, частота излучения), чтобы обеспечивались удовлетворительные условия приема в заданной полосе без взаимных помех между телевизионными станциями.
При этом следует иметь в виду, что телевизионные передающие станции и радиоретрансляторы большой мощности имеют радиус действия обычно 50…70 км, а ретрансляторы малой мощности излучают телевизионные сигналы в радиусе 10…20 км.
Наиболее экономичное планирование передающей телевизионной сети достигается в том случае, если телевизионные передающие станции размещаются по углам равностороннего треугольника
Передача цифровых телевизионных сигналов по цифровым радиорелейным линиям, которые фактически являются мультисервисными, не отличаются от способов передачи других цифровых сигналов, например, данных. Однако в настоящее время для передачи на большие расстояния телевизионных сигналов достаточно широко еще используются аналоговые РРЛ. В этом случае телевизионный сигнал из аппаратной телецентра по кабелю и вспомогательной РЛ подается на модулятор передатчика оконечной радиорелейной станции (ОРС). Модулированный радиосигнал через цепочку ПРС ретранслируется к приемной ОРС, где телевизионный сигнал выделяется детектором, усиливается видеоусилителем и подается на РТПС.
цифровой видеокомпрессия телевидение
Основное усиление ретранслируемого сигнала на станциях РРЛ осуществляется на промежуточной частоте 70 или 140 МГц.
Наиболее распространен способ совместной передачи телевизионных и звуковых сигналов, базирующихся на их частотном уплотнении. Как правило, совместно с телевизионным сигналом предусматривается передача двух сигналов звукового сопровождения, например на двух языках, и двух независимых сигналов звукового вещания. Звуковые сигналы передаются с помощью ЧМ поднесущих с девиацией частоты ± 150 кГц в диапазоне частот от 7 до 8 МГц. Для телеуправления резервированием аппаратуры и контроля ПРС в групповой сигнал телевизионного канала вводится пилот-сигнал на поднесущей частоте 8,5 МГц.
Размещено на Allbest.ru
...Подобные документы
Факторы, сдерживающие развитие цифрового телевидения в разных странах. Перспективы дальнейшего развития цифрового радиовещания. Организация наземного, спутникового и кабельного телевизионного вещания. Компенсация помех многолучевого распространения.
курсовая работа [46,6 K], добавлен 06.12.2013Обоснование необходимости проектирования цифрового эфирного телевидения. Состав радиотелевизионной передающей станции. Выбор цифрового передатчика. Обоснование проектируемой одночастотной сети цифрового наземного эфирного телевизионного вещания.
дипломная работа [3,1 M], добавлен 28.11.2014Характеристика ATSC, ISDB и DVB стандартов цифрового телевидения. Этапы преобразования аналогового сигнала в цифровую форму: дискретизация, квантование, кодирование. Изучение стандарта сжатия аудио- и видеоинформации MPEG. Развитие интернет-телевидения.
реферат [2,1 M], добавлен 02.11.2011Особенности развития современных систем телевизионного вещания. Понятие цифрового телевидения. Рассмотрение принципов организации работы цифрового телевидения. Характеристика коммутационного HDMI-оборудования. Анализ спутникового телевидения НТВ Плюс.
курсовая работа [2,0 M], добавлен 14.09.2012Техническая предпосылка появления телевидения. Механическое и электронное телевидение. Вещательные системы цветного телевидения. Спутниковое телевизионное вещание. Кабельное и цифровое телевидение. Объединение интернета и телевидения: виртуальность.
курсовая работа [121,9 K], добавлен 17.11.2011Разработка проекта системы наземного телевизионного вещания, которая обеспечивала бы устойчивый прием программ цифрового телевидения на всей территории микрорайона поселка Северный г. Белгорода. Внутренняя структура данной системы и ее эффективность.
курсовая работа [4,2 M], добавлен 08.12.2013Формирование современной инфраструктуры связи и телекоммуникаций в Российской Федерации. Направления развития цифрового, кабельного и мобильного телевидения. Наземные и спутниковые сети цифрового телерадиовещания. СЦТВ с микроволновым распределением.
контрольная работа [230,9 K], добавлен 09.05.2014Разработка алгоритма нахождения оптимальной сети наземного цифрового телевизионного вещания. Программная реализация поиска точного решения задачи полным перебором множества проектов сетей. Обзор и схема коммуникационных операций типа точка-точка.
дипломная работа [1,3 M], добавлен 22.08.2016Преобразование изображаемого объекта в электрический сигнал. Электронные системы телевидения. Разделение строчных и кадровых синхроимпульсов. Четкость телевизионного изображения, ширина спектра телевизионного сигнала. Полоса частот для передачи сигнала.
реферат [3,0 M], добавлен 18.03.2011Принципы построения цифрового телевидения. Стандарт шифрования данных Data Encryption Standard. Анализ методов и международных рекомендаций по сжатию изображений. Энтропийное кодирование видеосигнала по методу Хаффмана. Кодирование звука в стандарте Mpeg.
дипломная работа [2,4 M], добавлен 18.11.2013Понятие цифрового интерактивного телевидения. Классификация интерактивного телевидения по архитектуре построения сети, по способу организации обратного канала, по скорости передачи данных, по степени интерактивности. Мировой рынок платного телевидения.
курсовая работа [276,4 K], добавлен 06.02.2015Система аналого-цифрового преобразования быстроизменяющегося аналогового сигнала в параллельный десятиразрядный код, преобразования параллельного цифрового кода в последовательный код. Устройство управления на логических элементах, счетчик импульсов.
курсовая работа [98,8 K], добавлен 29.07.2009Волоконно-оптические линии связи с использованием аналоговой модуляции, их применение в сетях кабельного телевидения. Выбор топологии сети кабельного телевидения и оптического кабеля. Суммарное затухание на линии связи. Расчет энергетического бюджета.
курсовая работа [724,2 K], добавлен 01.02.2012Исследование рынка спутникового телевидения. Схема передачи спутникового сигнала. Оборудование для приема спутникового телевидения. Описания устройства первичного преобразования и усиления сигнала. Виды антенн. Комплекты приема спутникового телевидения.
курсовая работа [723,0 K], добавлен 01.07.2014Построение графиков амплитудного и фазового спектров периодического сигнала. Расчет рекурсивного цифрового фильтра, цифрового спектра сигнала с помощью дискретного преобразования Фурье. Оценка спектральной плотности мощности входного и выходного сигнала.
контрольная работа [434,7 K], добавлен 10.05.2013Устройство жидкокристаллических, проекционных и плазменных телевизоров. Перспективы развития цифрового телевидения в России. Высокая четкость трансляций и интерактивное телевидение. Экономическая эффективность проекта внедрения цифрового телевидения.
курсовая работа [1,1 M], добавлен 04.01.2012Разложение непериодического сигнала на типовые составляющие. Расчет изображения аналогового непериодического сигнала по Лапласу. Нахождение спектральной плотности аналогового непериодического сигнала. Расчет ширины спектра периодического сигнала.
курсовая работа [1,3 M], добавлен 13.01.2015Технология интерактивного цифрового телевидения в сетях передачи данных. Контроль транспортной сети IPTV, ее архитектура, система условного доступа. Аппаратное решение для кодирования и транскодирования видеопотоков. Протоколы IPTV; мобильное телевидение.
дипломная работа [3,5 M], добавлен 15.11.2014Передача цифровых данных по спутниковому каналу связи. Принципы построения спутниковых систем связи. Применение спутниковой ретрансляции для телевизионного вещания. Обзор системы множественного доступа. Схема цифрового тракта преобразования ТВ сигнала.
реферат [2,7 M], добавлен 23.10.2013Понятие сигнала, его взаимосвязь с информационным сообщением. Дискретизация, квантование и кодирование как основные операции, необходимые для преобразования любого аналогового сигнала в цифровую форму, сферы их применения и основные преимущества.
контрольная работа [30,8 K], добавлен 03.06.2009