Методика определения коэффициентов пропорционально-интегрально-дифференцирующего контроллера при моделировании автоматизированных систем управления ректификационной колонной с применением пакета ChemCAD
Изучение возможности программы ChemCAD моделировать различные автоматизированные системы управления. Определение настроек пропорционально-интегрально-дифференцирующего контроллера для обеспечения наилучшего регулирования технологического параметра.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | статья |
Язык | русский |
Дата добавления | 28.05.2017 |
Размер файла | 764,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Методика определения коэффициентов ПИД-контроллера при моделировании автоматизированных систем управления ректификационной колонной с применением пакета ChemCAD
К.В. Абрамов
Возможность применения программного комплекса ChemCAD (США) для учебно-тренировочного комплекса (УТК), играет важную роль в процессах обучения студентов по дисциплине «Автоматизация технологических процессов и производств». Этому способствует несколько важных особенностей ChemCAD:
- возможность исследования модели реального объекта на компьютере, избегая энергетических потерь, потерь сырья, поломки оборудования и аварийных ситуаций из-за проведения эксперимента на реальной установке;
- возможность моделирования и расчёта системы при различных возмущениях (включая критические);
- возможность моделирования различных систем автоматизированного управления, определения показателей качества переходных процессов;
- быстрота и удобство расчёта установки.
Особый интерес представляет возможность ChemCAD моделировать различные автоматизированные системы управления, включая каскадные.
Автоматика в ChemCAD представлена двумя элементами:
- регулирующий клапан;
- ПИД-контроллер.
ПИД-контроллер это составная единица, объединяющая в себе функции, как датчика, так и контроллера. На основе этих двух компонентов строится любая сложная система АСР ректификационной колонной.
В процессе моделирования остро ставится вопрос определения настроек ПИД-контроллера для обеспечения наилучшего регулирования требуемого технологического параметра. Руководство по моделированию динамики протекания технологических процессов в ректификационных колоннах для ChemCAD не даёт ответа на этот вопрос, предлагая обратиться к руководствам для специалистов по системам управления [1].
В теории автоматического регулирования существуют различные методы расчета настроек регуляторов, одни из которых являются более точными, но трудоемкими, другие - простыми, но более приближенными. Рассмотрим возможность применения метода незатухающих колебаний (Циглера-Никольса) для определения параметров настройки ПИД-контроллера.
Для апробирования данной методики будет использована модель ректификационной колонны для разделения смеси «метанол-вода», поступающая в колонну количеством 10000 кг/ч с содержанием легколетучего компонента 50%. Колонна содержит 11 тарелок, тарелка питания - 4. Сырьё подаётся в колонну при температуре 25 °С и давлении 1 бар. Падение давления по колонне 0,3 бар.
«Рис.1. Технологическая схема процесса».
Подробнее метод незатухающих колебаний рассмотрим на примере локального контура регулирования уровня кубовой жидкости.
Для правильной настройки ПИД-контроллера в окне настройки ChemCAD необходимо указать границу чувствительности датчика, характеристику преобразователя датчика, тип подсчёта ошибки регулирования, задание контроллеру, коэффициент усиления процесса (), постоянную интегрирования () и постоянную дифференцирования (). Последние три величины, являются настройками ПИД-контроллера.
Метод незатухающих колебаний
Метод незатухающих колебаний предполагает расчёт рабочих настроек любого регулятора в два этапа.
На первом этапе подбирается такая настройка пропорционального регулятора (т.е. выключается интегральная и дифференциальная составляющие), при которой в замкнутой системе устанавливаются незатухающие колебания (рис. 2), т.е. система находится на границе устойчивости. Это значение настройки называется критическим.
На втором этапе рассчитываются рабочие настройки выбранного регулятора по приближенным формулам в зависимости от величины и периода незатухающих колебаний Т*. При этом рабочие настройки обеспечивают степень затухания больше 0,75.
Далее приводятся формулы для расчета настроек различных регуляторов по методу Циглера-Никольса.
«Рис. 2.Иллюстрация к методу Циглера-Никольса»
Изложенный метод расчета настроек на первом этапе предполагает проведение эксперимента в замкнутой системе регулирования, в котором система выводится на границу устойчивости. Подобные эксперименты, как правило, нежелательны, а иногда и недопустимы [2].
Величины , и в ChemCAD и , и из формул (1-3) связаны между собой внутренними алгоритмами программы.
Так формулы их связи в ChemCAD будут иметь вид:
автоматизированный дифференцирующий интегральный контроллер
пропорциональная ;
интегральная ;
дифференциальная .
Таким образом, для начала необходимо методом подбора определить и по формуле (4) вычислить соответствующее [2]. Далее, используя формулы (1-6), вычислять значения коэффициентов ПИД-контроллера для используемых типовых регуляторов, характерных для регулирования требуемой величины.
Пример применения метода незатухающих колебаний изображён на рис.3-4.
«Рис. 3. График переходного процесса изменения уровня жидкости в кубе, PB = 2,5».
Данный рисунок показывает график переходного процесса исследуемого технологического параметра при критическом значении . На рисунке 3 также показан период незатухающих колебаний Т*, который необходим для определения интегральной и дифференциальной составляющей ПИД-контроллера.
В данном примере достаточно только П-составляющей для получения графика переходного процесса необходимого вида. В большинстве случаев становится мало использования только пропорционального закона регулирования, поэтому остальные параметры настройки ПИД-контроллера вычисляются по формулам (1-6) и подставляются в соответствующие места панели настройки ChemCAD.
Таким образом, удалось доказать возможность применения метода незатухающих колебаний для определения настроек ПИД-контроллера в ChemCAD и проверить его работоспособность на примере контура управления уровнем жидкости в кубе ректификационной колонны, что даёт право использования данного метода для настройки более сложных систем автоматизированного управления в программе ChemCAD.
Литература
1. Руководство пользователя: ПМП ХЕМКАД CC-DYNAMICS. Моделирование динамики протекания технологических процессов /по ред. Гартман Т.Н., М., 2009.
2. Софиева Ю.Н., Софиев А.Э. Теория управления: Текст лекций. М.: МГУИЭ, 2002. 184 с.
Размещено на Allbest.ru
...Подобные документы
Расчет областей устойчивости пропорционально-интегрально-дифференциального регулятора. Выбор оптимальных параметров регулирования. Построение передаточной функции, области устойчивости. Подбор коэффициентов для определения наибольшей устойчивости системы.
контрольная работа [1,0 M], добавлен 11.06.2014Синтез пропорционально-интегрально-дифференциального регулятора, обеспечивающего для замкнутой системы показатели точности и качества управления. Амплитудно-частотная характеристика, динамический анализ и переходный процесс скорректированной системы.
курсовая работа [658,0 K], добавлен 06.08.2013Изучение общих принципов построения пропорционально-интегрально-дифференциальных технологических регуляторов. Проектирование алгоритма регуляторов температуры на базе дешевых микроконтроллеров MSP430 (Texas Instruments). Дискретная форма регулятора.
дипломная работа [2,2 M], добавлен 12.10.2015Расчет дифференцирующего устройства для формирования управляющих сигналов системы автоматического регулирования. Амплитудночастотные и фазочастотные характеристики идеального дифференцирующего устройства. Сигнал простейшей дифференцирующей rc-цепочки.
курсовая работа [1001,9 K], добавлен 19.12.2010Разработка контроллера управления цифровой частью системы, перечень выполняемых команд. Описание алгоритма работы устройства, его структурная организация. Синтез принципиальной электрической схемы, особенности аппаратных затрат и потребляемой мощности.
курсовая работа [318,8 K], добавлен 14.06.2011Классификация электромагнитных подвесов. Построение математической модели стенда. Программная реализация пропорционально-интегрально-дифференциального регулятора. Описание микроконтроллера ATmega 328 и платы Arduino. Сборка и ввод стенда в эксплуатацию.
дипломная работа [2,6 M], добавлен 09.06.2014Последовательный связной интерфейс, скорость передачи данных. Интерфейс и его сигналы. Программная эмуляция SCI. Оборудование, особенности микросхемы. Структурная схема контроллера управления последовательным портом. Описание программного обеспечения.
курсовая работа [670,7 K], добавлен 23.06.2012Преобразование релейно-контактной схемы управления механизмом подъема крана с использованием силового магнитного контроллера. Группировка и обозначение сигналов. Механические характеристики магнитного контроллера. Функциональные схемы узлов механизма.
курсовая работа [471,5 K], добавлен 09.04.2012Исследование особенностей операционного усилителя. Расчет пропорционально-интегрального и пропорционально-дифференциального звена. Определение минимально возможного значения сопротивления резистора. Схема неинвертируемого усилителя переменного напряжения.
контрольная работа [266,5 K], добавлен 05.01.2015Автоматизация технологического процесса разваривания на спиртзаводе. Современная платформа автоматизации TSX Momentum. Программное обеспечение логического контроллера. Спецификация приборов, используемых в технологическом процессе пищевого производства.
дипломная работа [8,7 M], добавлен 19.03.2014Требования технологического процесса к системе автоматического управления. Требования к функциям пожарного контроллера, его внутреннее устройство и принцип действия, сферы практического применения. Эксплуатация систем сигнализации и регулирования.
курсовая работа [400,9 K], добавлен 08.04.2015Программируемый логический контроллер, его структура и внутреннее устройство, принцип действия и функциональные возможности, описание электрооборудования. Разработка программы работы логического контроллера, экономическое обоснование его создания.
дипломная работа [802,4 K], добавлен 25.04.2015Основные характеристики технологического объекта управления. Выбор средств автоматизации для подсистемы вывода командной информации. Моделирование системы автоматического регулирования в динамическом режиме. Выбор параметров настройки контроллера.
курсовая работа [1,2 M], добавлен 08.03.2014Характеристика, применение и назначение микроконтроллерных систем управления. Разработка контроллера инверторного сварочного аппарата, обеспечивающего работу манипулятора. Общий алгоритм работы, составление программного обеспечения для данного блока.
курсовая работа [1,6 M], добавлен 26.12.2012Преобразование релейно-контактной схемы управления механизмом подъема крана с использованием силового кулачкового контроллера ККТ 69А. Условие работы установки: датчики, режимы работы, требования к защите и сигнализации, виды управления установкой.
курсовая работа [992,6 K], добавлен 09.04.2012Автоматизация управления газоперекачивающим агрегатом компрессорной станции Сургутского месторождения. Характеристика технологического процесса. Выбор конфигурации контроллера и программного обеспечения. Разработка алгоритмов работы объекта автоматизации.
дипломная работа [3,9 M], добавлен 29.09.2013Техническая структура и программно-алгоритмическое обеспечение микропроцессорного регулирующего контроллера МПК Ремиконты Р-130. Разработка функциональной схемы контроллера для реализации автоматической системы регулирования. Схема внешних соединений.
контрольная работа [403,6 K], добавлен 18.02.2013Разработка контроллера прибора, обеспечивающего реализацию функций оцифровки аналоговых данных с выводом результата в виде графического вида сигнала. Выбор контроллера и элементов схемы, их описание. Общий алгоритм работы и листинг программы управления.
курсовая работа [1,1 M], добавлен 26.12.2012Состав частотных и логарифмических частотных характеристик. Частотные характеристики апериодического, интегрирующего, колебательного и идеального дифференцирующего звеньев. Уравнение динамических свойств колебательного и апериодического звеньев.
контрольная работа [16,2 K], добавлен 06.10.2015Принцип работы микропроцессорных систем переработки текстовой и иллюстрационной информации. Изображение схем контроллера клавиатуры и включения аналого-цифрового преобразователя. Представление программы ввода 10-разрядного кода в регистровую пару.
реферат [61,5 K], добавлен 17.11.2010