Метод повышения быстродействия выходных каскадов цифровых логических элементов и дифференциальных драйверов высокоскоростных линий связи с емкостной нагрузкой

Преимущества дифференциальных структур в сравнении с недифференциальными устройствами обработки сигналов. Применение дифференциального выхода в усилительных каскадах. Произведение динамической коррекции дифференциального драйвера с емкостной нагрузкой.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид статья
Язык русский
Дата добавления 30.05.2017
Размер файла 679,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Метод повышения быстродействия выходных каскадов цифровых логических элементов и дифференциальных драйверов высокоскоростных линий связи с емкостной нагрузкой

Н.Н. Прокопенко, Н.В. Бутырлагин, И.В. Пахомов

Емкостная нагрузка часто вносит проблемы в работу электронной схемы - уменьшается полоса выходного сигнала и скорость его нарастания. Кроме того, в драйверах на основе операционных усилителей с обратной связью возникает отставание фазы выходного сигнала от фазы входного, что может приводить к нестабильности [1, 2].

Неизбежность управления емкостной нагрузкой в некоторых схемах может приводить к перегрузке, перерегулированию и, иногда, возбуждению. Эффекты становятся более ощутимыми при управлении значительной емкостной нагрузкой (жидко-кристаллические индикаторные панели, плохо согласованные коаксиальные кабели и т.д.). Однако эти проблемы могут возникать и в низкочастотных прецизионных схемах. Поэтому при работе на существенную емкостную нагрузку (усилители выборки-хранения, пиковые детекторы, формирователи сигналов для передачи по коаксиальным кабелям) должны использоваться элементы внешней коррекции [3-6].

Дифференциальные структуры имеют ряд преимуществ в сравнении с недифференциальными устройствами обработки сигналов. Применение дифференциального выхода в усилительных каскадах позволяет снизить влияние синфазных помех, уменьшить уровень второй гармоники в спектре выходного сигнала, в два раза увеличить максимальную амплитуду выходного напряжения, снизить эффект «пролезания» цифровых сигналов через подложку в аналого-цифровых микросхемах СВЧ диапазона[7].

1. Постановка задачи

Для расширения диапазона рабочих частот дифференциального драйвера и уменьшения времени переходного процесса предлагается подключить к его выходам (рис. 1) специальные цепи коррекции (ЦК) с некоторыми передаточными функциями Sк (р)

. (1)

. (2)

Элементы схемы рис.1 Rвых1, Rвых2 моделируют конечные значения выходных сопротивлений, Rн1, Rн2 - сопротивления нагрузки, которые зашунтированы ёмкостями нагрузки Cн1, Cн2.

Рис. 1 Динамическая коррекция дифференциального драйвера с емкостной нагрузкой Сн1=Сн2

Решаемая ниже задача состоит в установлении свойств Sк(р), которые обеспечивают расширение диапазона рабочих частот драйвера и повышение его быстродействия.

1.1 Синтез цепи коррекции

дифференциальный обработка сигнал усилительный

Синтез цепи коррекции Sк(р) сводится к определению ее структуры и параметров элементов, при которых в идеальном случае обеспечивается частотная независимость коэффициента передачи драйвера, а также важнейшие динамические параметры - заданное значение верхней граничной частоты скорректированного драйвера и время установления переходного процесса при импульсном изменении входного сигнала.

Будем в дальнейшем считать, что емкостная и активная составляющие входного и выходного импедансов ЦК учитываются в схеме рис. 1 в эквивалентной емкости Сн и сопротивлении нагрузки Rн.

В операторной форме выходное напряжение первого выхода драйвера рис. 1 определяется формулой

, (3)

где ;

;

- коэффициент передачи в диапазоне низких частот.

После преобразований формулы (3) можно найти передаточную функцию драйвера в операторной форме

. (4)

Потребуем, чтобы цепь коррекции была дифференцирующим звеном, т.е.

Sк1(р) = рSк1, (5)

где Sк1 - параметр цепи коррекции.

В этом случае уравнение (4) принимает вид:

, (6)

где = R12Cн1 - постоянная времени цепи нагрузки драйвера без коррекции.

Потребуем далее, чтобы желаемая передаточная функция скорректированного драйвера рис. 1 имела вид апериодического звена первого порядка с достаточно малой постоянной времени :

. (7)

Выполнение условия (7) при обеспечит расширение диапазона рабочих частот драйвера и гарантирует, в тоже время, его устойчивость как звена первого порядка. Поэтому цепь коррекции Sк(р), обеспечивающая уравнение (7), должна удовлетворять условиям

. (8)

Из уравнения (8) можно найти

, (9)

где - желаемая верхняя граничная частота драйвера с коррекцией ().

Если заданы значения , fв, Сн1, то

,

где fв - верхняя граничная частота драйвера до коррекции ().

При этом верхняя граничная частота скорректированного драйвера

. (10)

Для получения существенного выигрыша по необходимо иметь

. (11)

Для определения времени установления переходного процесса скорректированного драйвера примем во внимание, что его передаточная функция после введения цепи коррекции имеет вид апериодического звена первого порядка (7), для которого, в соответствии с [8] . Поэтому в рассматриваемой схеме:

. (12)

Таким образом, для заданных значений при известных величинах и цепь коррекции драйвера должна удовлетворять условиям

. (13)

Последнее уравнение можно представить в виде

,

где - время установления переходного процесса в драйвере до коррекции.

Если выполняется неравенство или , то требования к цепи коррекции можно представить в виде

. (14)

Таким образом, практическая реализация цепи коррекции драйвера, обеспечивающей существенное расширение его диапазона рабочих частот и повышение быстродействия, сводится к выполнению идентичных условий (11) и (14).

Для второго выхода драйвера все уравнения (3-14) аналогичны.

2. Цепи взаимной коррекции дифференциальных драйверов на основе инвертирующих усилителей тока

Наличие у драйвера рис.2. дифференциального выхода позволяет, в отличии от ранее рассмотренной схемы рис.1, обеспечить взаимную коррекцию переходных процессов с помощью инвертирующих усилителей тока УТ1, УТ2 и корректирующих конденсаторов Cк=C3=С4[9].

Рис. 2 Схема быстродействующего драйвера дифференциальной линии связи с цепью коррекции на основе инвертирующих усилителей тока УТ1, УТ2

В схеме рис. 2 напряжение на конденсаторе С1 передается на выход неинвертирующего повторителя напряжения ПН1, что создает ток через конденсатор С3. В результате на выходе инвертирующего усилителя тока УТ1 формируется корректирующий импульс тока, способствующий более быстрому разряду конденсатора С2. Об этом свидетельствуют графики рис. 4, когда при СкС3=19,9 пФ время установления переходного процесса уменьшается с 30 нС до 1,3 нС, т.е. более чем в 20 раз.

Аналогично, уменьшение напряжения на конденсаторе С2 передается на выход неинвертирующего повторителя напряжения ПН2, что создает ток через конденсатор С4. В итоге на выходе инвертирующего усилителя тока УТ2 формируется корректирующий импульс тока, ускоряющий процесс заряда конденсатора С1. Это подтверждается графиками рис. 5, когда при СкС3=19,9 пФ время установления переходного процесса уменьшается с 30 нС до 1,3 нС, т.е. более чем в 20 раз.

На рис. 3 приведена зависимость времени установления выходного напряжения (tуст) на выходе (Вых.1) драйвера от емкости корректирующих конденсаторов Ск1=С3 и Ск2=С4 (при Rвых1=Rвых2=500 Ом, С1=С2=20пФ).

Рис. 3 Зависимость времени установления выходного напряжения (tуст) на первом выходе драйвера от емкости конденсаторов Ск1=Ск2

На рис. 4 показана зависимость времени установления выходного напряжения на выходе (Вых.2) драйвера от емкости Ск1=С3 и Ск2=С4 (при Rвых1=Rвых2=500 Ом, С1=С2=20пФ).

Рис. 4 Зависимость времени установления выходного напряжения на втором выходе драйвера от емкостей Ск1 и Ск2

Из графиков рис. 4, рис. 5 следует, что при введении конденсаторов С3 и С4 время установления выходных импульсов драйвера уменьшается. Чем ближе значение Ск=С3=С4 к Сн=С1=С2, тем меньше tуст.

Нетрудно видеть, что возможности данного метода определяются характеристиками повторителей напряжения (ПН) и тока (УТ), которые могут быть достаточно широкополосными и реализовываться как каскады с общим коллектором и общей базой на основе SiGe технологических процессов[10-11].

Заключение

1. Разработан метод повышения быстродействия драйверов различных модификаций, работающих на емкостную нагрузку.

2. Полученные в статье соотношения позволяют по известным параметрам драйвера найти параметры цепи коррекции, обеспечивающей устойчивость и желаемое время установления переходного процесса при ступенчатом изменении входного сигнала, а также существенно расширить диапазон его рабочих частот.

3. Цепь коррекции может быть реализована на основе классических повторителей напряжения и тока с коэффициентами передачи, близкими к единице. Для этой цели могут использоваться схемы транзисторных каскадов с общим коллектором и общей базой на основе SiGe техпроцессов, инерционностью которых можно пренебречь до частот в несколько десятков-сотен гигагерц. Для многих практических схем драйверов это позволяет обеспечить существенное повышение быстродействия.

Литература

1. Gordon D. Long; Feedback amplifier circuit; patent US № 3.769.605; Tektronix, Inc. Filing: Feb 18, 1972 Issue: Oct 30, 1973.

2. Xiaofei Xiang, Xunqiao Hu, Xicheng Xie; Fully differential non-inverted parallel amplifier for detecting biology electrical signal; patent US № 7.863.977; Edan Instruments Inc. Filing: Sep 14, 2009 Issue: Jan 4, 2011.

3. S. Bendaoud, G. Marino Practical Techniques to Avoid Instability Due to Capacitive Loading, Analog Dialogue, 38, 2004.

4. Prokopenko N. N., Budyakov A. S. Architecture of high-speed operational amplifiers with nonlinear correction // 2st IEEE International Conference on Circuits and Systems for Communication. Moscow, Russia, June, 2004.

5. Картер Б., Манчини Р. Операционные усилители для всех. М.: Додэка-ХХI, 2011. 544 c.

6. Шестаков А.Л. Коррекция динамической погрешности измерительного преобразователя линейным фильтром на основе модели датчика // Известия вузов СССР. Приборостроение. 1991. № 4. С. 8-12.

7. Будяков П.С. Архитектура СВЧ дифференциалных операционных усилителей с парафазным выходом / Н.Н. Прокопенко, П.С. Будяков, А.И. Серебряков // Всероссийская научно-техническая конференция “Проблемы разработки премпективных микро-наноэлектронных систем (МЭС)”: Сборник трудов. - М.: Институт проблем проектирования в микроэлектронике РАН, 2010. №1. С. 571-576.

8. Гайдук А.Р. Теория автоматического управления: Учебник. М.: Высшая школа, 2010. 415 с.

9. Быстродействующий драйвер дифференциальной линии связи: заявка на патент РФ; МПК: H03F 3/34, H03F 3/45 / Н.Н. Прокопенко, Н.В. Бутырлагин, И.В. Пахомов, А.В. Бугакова. №2013120169/08; Заявл. 30.04.13.

10. Н.Н. Прокопенко, В.В. Суворов, И.В. Пахомов, Быстродействующий аттенюатор для входных цепей аналого-цифровых интерфейсов [Электронный ресурс] // «Инженерный вестник Дона», 2013 г, №1. Режим доступа: ivdon.ru/uploads/article/pdf/IVD_110_prokopenko.pdf_.

1580.pdf (доступ свободный). Загл. с экрана. Яз. рус.

11. Н.Н. Прокопенко, П.С. Будяков, И.В. Пахомов, В.В. Суворов, Метод расширения диапазона рабочих частот истоковых и эмиттерных повторителей напряжения [Электронный ресурс] // «Инженерный вестник Дона», 2013г, №1. Режим доступа: http://www.ivdon.ru/magazine/ /archive/n1y2013/1559 (доступ свободный). Загл. с экрана. Яз. рус.

Размещено на Allbest.ru

...

Подобные документы

  • Исследование различных схем выпрямителей и их работа на различные типы нагрузок. Снятие диаграмм напряжений и токов, выполнение необходимых расчетов. Схема выпрямителя однофазного однополупериодного с активной или индуктивной–емкостной нагрузкой.

    лабораторная работа [1,3 M], добавлен 01.06.2015

  • Рассмотрение правил включения транзистора по разным вариантам схем - с общим эмиттером, общей базой, общим коллектором. Описание особенностей работы усилительных каскадов в области высоких и низких частот. Представление схемы дифференциального каскада.

    реферат [138,3 K], добавлен 17.03.2011

  • Характеристика и особенности принципа работы однополупериодного выпрямителя с активной и емкостной нагрузкой. Порядок подключения выпрямителя к осциллографу, установка показателей синусоидального сигнала и частоты, зарисовка осциллограммы сигнала.

    лабораторная работа [1,8 M], добавлен 17.01.2011

  • Основные радиационные эффекты в элементах интегральных микросхем. Классификация радиационных эффектов. Действие облучения на биполярные транзисторы. Радиационные эффекты в усилительных и дифференциальных каскадах. Радиационные эффекты в ИОУ.

    реферат [1,3 M], добавлен 09.03.2007

  • Методы расчета двухконтурной цепи связи генератора с нагрузкой. Нагрузочные характеристики лампового генератора с внешним возбуждением. Расчет значений максимальной мощности и оптимального сопротивления связи XсвОПТ для двух режимов работы генератора.

    курсовая работа [210,6 K], добавлен 21.07.2010

  • Эффект увеличения мощности полезного сигнала при сравнительно точном сохранении его формы и спектрального состава. Методы анализа усилительных каскадов. Качество работы типовых усилительных каскадов с транзистором в роли активного электронного прибора.

    реферат [304,4 K], добавлен 25.06.2009

  • Особенности построения генераторов на основе цифровых интегральных схем. Использование усилительных свойств логических инверторов для обеспечения устойчивых колебаний. Расчет активных и пассивных элементов схемы мультивибратора на логических элементах.

    курсовая работа [188,5 K], добавлен 13.06.2013

  • Схема однокаскадного усилителя с емкостной связью на биполярном транзисторе с общим эмиттером. Расчет каскада по постоянному току и в области высоких частот. Графики статической, динамической линий нагрузки. Стандартные номинальные значения сопротивлений.

    курсовая работа [241,9 K], добавлен 17.01.2010

  • Изучение представления о булевой алгебре. Сравнительная оценка базовых логических элементов. Устройство и принцип работы резисторно–емкостной транзисторной и транзисторно–транзисторной логики с диодами Шоттки. Примеры и характеристики серии микросхем.

    контрольная работа [635,0 K], добавлен 24.11.2015

  • Принципы построения делителя частоты цифровых сигналов, составные части асинхронного и синхронного счетчиков. Разработка и обоснование функциональной схемы устройства. Расчет элементов, выходных параметров схемы, однополярного блока питания для счетчика.

    курсовая работа [1,0 M], добавлен 28.06.2012

  • Построение и изучение свойств усилителя синусоидальных сигналов. Изучение особенностей работы осциллографа. Схема для исследования усилителя с эмиттерной термостабилизацией. Краткая характеристика принципа действия дифференциального усилительного каскада.

    лабораторная работа [581,0 K], добавлен 18.12.2017

  • Понятие моделей источников цифровых сигналов. Программы схемотехнического моделирования цифровых устройств. Настройка параметров моделирования. Определение максимального быстродействия. Модели цифровых компонентов, основные методы их разработки.

    курсовая работа [2,4 M], добавлен 12.11.2014

  • Выбор и анализ структурной схемы усилителя постоянного тока. Расчет дифференциального каскада усилителя, определение величины напряжения питания. Выбор транзисторов, расчет номинала резисторов. Коэффициент усиления конечного и дифференциального каскадов.

    курсовая работа [197,2 K], добавлен 12.01.2015

  • Разработка функционально законченного устройства для обработки входных сигналов линии с использованием цифровых устройств и аналого-цифровых узлов. Алгоритм работы устройства. Составление программы на языке ассемблера. Оценка быстродействия устройства.

    курсовая работа [435,5 K], добавлен 16.12.2013

  • Исследование помехоустойчивости методов разнесенного приема сигналов в декаметровом канале связи, сравнение показателей качества этих методов. Метод комбинированной обработки цифровых сигналов при разнесенном приеме. Интерференция и методы борьбы с ней.

    диссертация [5,2 M], добавлен 11.11.2010

  • Целесообразность применения радиорелейных линий в России. проектирования цифровых микроволновых линий связи, работающих в диапазонах частот выше 10 ГГц и предназначенных для передачи цифровых потоков до 34 Мбит/c. Выбор мест расположения станций.

    курсовая работа [7,4 M], добавлен 04.05.2014

  • Кодирование длин участков (или повторений) один из элементов известного алгоритма сжатия изображений JPEG. Широко используется для сжатия изображений и звуковых сигналов метод неразрушающего кодирования, им является метод дифференциального кодирования.

    реферат [26,0 K], добавлен 11.02.2009

  • Расчет напряжения, параметров элементов усилителя. Коэффициент передач электрических сигналов. Выбор марки транзисторов. Моделирование устройства в системе схемотехнического моделирования Electronics Workbench. Характеристики усилительных каскадов.

    курсовая работа [260,9 K], добавлен 24.11.2014

  • Простейшие преобразователи напряжения в ток. Преобразователи напряжение-ток (ПНТ) на основе дифференциальных каскадов. Повышение линейности ПНТ. Дифференциальное выходное сопротивление транзисторов. Операционные усилители в цепи обратной связи.

    курсовая работа [1,0 M], добавлен 21.03.2011

  • Сущность линейной обработки дискретных сигналов. Характеристика основных структурных элементов цифровых фильтров - элемента единичной задержки (на интервал дискретизации сигнала), сумматора и умножителя. Виды последовательности дискретных отчетов.

    презентация [79,8 K], добавлен 19.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.