Гибридный реверберационный алгоритм

Разработка алгоритма гибридного свёрточного ревербератора, позволяющего моделировать произвольное акустическое пространство при умеренных вычислительных затратах. Имитация отражений с помощью импульсных характеристик, записанных в реальных помещениях.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид статья
Язык русский
Дата добавления 30.05.2017
Размер файла 227,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Гибридный реверберационный алгоритм

Д.Д. Таранов

При создании фонограмм различного назначения, в особенности музыкальных, важной задачей является передача звучания в акустическом пространстве, которым может являться как большой концертный зал, так и маленькая звукозаписывающая студия. Как известно, субъективное ощущение пространства при прослушивании возникает лишь тогда, когда запись сигнала содержит реверберационную составляющую. Но высококачественная запись в реальных, незаглушенных помещениях - сложная, а иногда и невыполнимая задача. В технике широко используются ревербераторы - устройства или вычислительные комплексы, имитирующие реверберацию.

Как правило, задача большинства существующих ревербераторов, как вычислительных, так и выполненных в виде электронных устройств - не имитация конкретной акустической среды, а выполнение некоторых художественных задач при обработке акустических (например, музыкальных) сигналов, предварительно записанных в заглушенном помещении. Исключением является алгоритм свёрточной реверберации, представляющий собой свёртку импульсной характеристики конкретного помещения с исходным сигналом. Однако этот реверберационный алгоритм не обладает гибкостью, т.к. в принципе имитирует лишь отклик комнаты, заданный используемой импульсной характеристикой [1].

В данной статье предлагается алгоритм гибридного свёрточного ревербератора, позволяющего моделировать произвольное акустическое пространство при умеренных вычислительных затратах.

Любой реверберационный сигнал можно условно разделить на две составляющие: ранние и поздние отражения, фиксируемые относительно прямого сигнала. Условной границей между ними принято считать задержку, равную 100 мс. При этом поздние отражения - от 100 мс до полного затухания сигнала - представляют собой сумму большого числа диффузных отражений, имеющих различные траектории распространения. Как показывают экспертные оценки, именно поздние отражения в наибольшей степени характеризуют пространственные параметры помещения, в то время как ранние влияют на общую естественность воспроизведения сигнала [2].

В предлагаемом алгоритме процесс имитации реверберации разделяется на две части:

Имитация ранних отражений с помощью импульсных характеристик, записанных в реальных помещениях или сгенерированных при помощи приведённого ниже алгоритма.

Имитация поздних отражений с помощью массива гребенчатых фильтров. гибридный реверберационный алгоритм акустический

Предполагается, что такой гибридный алгоритм позволит добавить сразу несколько степеней свободы управления реверберационным сигналом. Очевидно, что свёртка исходного сигнала с импульсной характеристикой данного помещения даст субъективно более реалистичный результат, чем использование, например, линии задержки с отводами (Алгоритм Мурера [3]). При этом данный алгоритм позволяет изменять характеристики моделируемого помещения посредством изменения параметров гребенчатого фильтра, регулирующих размер виртуального помещения, положение источника звукового сигнала в комнате, положение слушателя и т.д.

Данный метод целесообразно использовать и для снижения вычислительных затрат при выполнении свёртки, поскольку длительность импульсной характеристики может выбираться в пределах 100мс, так как она используется лишь для имитации ранних отражений [4].

Таким образом, реализация данного алгоритма производится следующим образом:

- для имитации ранних отражений выполняется свёртка исходного сигнала с импульсной характеристикой реального помещения или заранее сгегенированной импульсной характеристикой (для увеличения производительности алгоритма используется свёртка в частотной области)

- выполняется моделирование поздних отражений с помощью алгоритма, представляющего собой развитие ревербератора Шредера, построенного на основе гребенчатых фильтров. Чтобы учесть временные соотношения и повысить достоверность результирующего сигнала, на вход ревербератора Шредера подаётся сигнал, полученный в результате свёртки.

Второй этап алгоритма включает в себя следующие элементы:

- параллельные гребенчатые фильтры, за которыми располагаются ФНЧ первого порядка. Характеристики этих фильтров обеспечивают плавное нарастание спада высокочастотных составляющих сигнала с течением времени.

- фазовые фильтры для увеличения плотности реверберационного «хвоста».

Рассмотрим подробнее алгоритм генерирования импульсных характеристик заданного помещения [5].

Введём следующие величины:

xs - х-координата источника звукового сигнала

xr - линейный размер комнаты по оси x

xm - координата точки приема сигнала

тогда можно написать выражение для длины траектории отраженного сигнала, принятого в точке xm.

(1)

Аналогично будут выглядеть выражения для длин траекторий этого сигнала по y и z-осям.

(2)

(3)

Полная длина траектории в трехмерном пространстве будет рассчитываться следующим образом:

(4)

Таким образом, время прихода отражённого сигнала в точку приёма будет рассчитываться по следующей формуле:

(5)

Далее необходимо учесть степень ослабления сигнала.

Введём коэффициент ослабления по расстоянию:

(6)

Если принимать коэффициенты отражений от каждой из стен помещения равными, то можно ввести коэффициент отражения kw, возведенный в степень n, где n=|i|+|j|+|k| - общее количество отражений. Введем понятие полного коэффициента отражений [6].

В том случае если каждая из стен имеет различный коэффициент отражения, ситуация несколько усложняется. В этой связи в рамках данной статьи ее рассмотрение не является целесообразным.

Представим полный алгоритм ревербератора в виде блок-схемы (Рис. 1)

Рис. 1. - Блок-схема предлагаемого алгоритма

Рассмотрим более подробно первый этап: имитацию ранних отражений с помощью свёртки. Данная задача является чисто вычислительной. Как правило, используемая вычислительная мощность существенно возрастает с увеличением длины исходного сигнала, что значительно усложняет использование такого алгоритма в реальном времени [7]. Поэтому предлагается применить несколько более сложный сверточный алгоритм, основанный на разделении сигнала во временной области на более короткие составляющие и перемножение их в частотной области с последующим переходом во временную область. При этом выходной сигнал можно представить следующим образом:

, (7)

где:х(n) - входной сигнал во временной области,

y(n) - входной сигнал во временной области,

Исходный сигнал делится на части, каждая из которых сворачивается с h(n). Пусть x(n) содержит Nx отсчётов, а h(n) - Nh = N+1 отсчётов (Nx>Nh). Тогда процедура выглядит следующим образом:

- h(n) дополняется нулями до длины 2N = 2(Nh-1).

- выполняется БПФ дополненного нулями фильтра, в результате получаем H(k), где k = 0, 1, 2 … N - 1,

- исходный сигнал x(n) разделяется на сегменты xi(n), имеющие длину N. Каждый из этих сегментов дополняется нулями до длины 2N.

- выполняется БПФ каждого дополненного нулями сегмента. В итоге получаем Xi(k), где k = 0, 1, 2 … 2N - 1.

- производится перемножение в частотной области:

(8)

- производится ОБПФ каждого Yi(k)

- результаты свёртки складываются. В результате получаем выходной сигнал y(n), длина которого составляет Nx + Nh - 1.

Оценим количество операций, выполняемых при этих преобразованиях. Будем учитывать только операции умножения, как наиболее громоздкие в вычислительном отношении. Количество операций БПФ для выборки длиной n, где n=2m, m - целое число: 2

Учитывая разбиение входного сигнала на M частей по N отсчётов, и рассматривая общее выражение для выходного сигнала, можно записать общее количество операций умножения, необходимое для получения результата:

(9)

При этом перемножение нулевых отсчётов не учитывалось, поскольку операция умножения на ноль практически не требует вычислительных затрат [8].

Рассмотрим более подробно второй этап: имитацию поздних отражений с помощью алгоритма реверберации поздних отражений, включающего в себя набор параллельных гребенчатых фильтров с последующими фазовыми фильтрами и ФНЧ.

Ранние отражения, полученные на первом этапе, далее поступают в массив параллельных гребенчатых фильтров.

Параллельные гребенчатые фильтры с обратной связью увеличивают плотность отдельных копий сигнала, полученных из линии задержки, имитируя увеличение количества отдельных отражений.

Гребенчатые фильтры с обратной связью характеризуются следующим разностным уравнением:

, (10)

где с - коэффициент усиления сигнала

g - коэффициент отрицательной обратной связи

M - длительность (количество отчётов) задержки

Как правило, с = 1. Тогда передаточная функция гребенчатого фильтра будет выглядеть следующим образом:

(11)

Соответственно, его АЧХ будет выглядеть следующим образом:

(12)

Рис. 2. - АЧХ и импульсная характеристика гребенчатого фильтра, использующегося в алгоритме

Как показано на Рисунке 1, за массивом гребенчатых фильтров расположены фазовые фильтры. Их назначение - также повысить «плотность» отражённого сигнала при имитации поздних отражений [9].

Рис. 3. - АЧХ и импульсная характеристика фазового фильтра при g=0,5 и М=1

ФНЧ осуществляют плавный частотный спад реверберационного сигнала, что придаёт дополнительную окраску сигналу [10]. Параметры алгоритма подбирались вручную экспериментальным путём.

Рис. 4. - АЧХ и импульсная характеристика гребенчатого фильтра с последовательно подключенным ФНЧ первого порядка.

Описанный в статье гибридный реверберационный алгоритм опирается на известные вычислительные процедуры, и требует относительно небольших вычислительных затрат. Помимо этого, он обладает гибкостью при имитации отклика различных помещений и, как ожидается, естественностью передачи исходного сигнала. Таким образом, данный алгоритм может быть применён в звукозаписывающей практике с целью повышения достоверности сигнала, воспринимаемого слушателем, а также для достижения различных художественных эффектов.

Литература

1. И.А. Кириченко, И.Б. Старченко. Принцип адаптивного подхода к управлению характеристиками акустических систем [электронный ресурс] // - «Инженерный вестник Дона», 2011, №4. - Режим доступа: http://ivdon.ru/magazine/archive/n4y2011/553 - Загл. с экрана. - Яз. рус.

2. Zцlzer U. DAFX // John Wiley & Sons. West Sussex. - 2002. - 554 p.

3. Toma, N., Topa, M.D., Popescu, V., Szopos, E. Comparative Performance Analysis of Artificial Reverberation Algorithms // IEEE Automation, Quality and Testing, Robotics. - 2006. - Vol. 1. - P. 138-142.

4. Toma, N., Topa, M., Szopos, E. Aspects of reverberation algorithms // ISSCS International Symposium on Signals, Circuits and Systems. - 2005. - Vol. 2. - P. 577-580.

5. Campbell, D. RoomSim acoustic toolbox for MatLab // IEEE CS Tech. Com. On Computer Generated Music. - 2007. - Vol.1. - P.120-126.

6. McGovern, Stephen G. A Model for Room Acoustics [электронный ресурс] // - University of Victoria, 2004. - Режим доступа: http://www.sgm-audio.com - Загл. с экрана. - Яз. англ.

7. Smith, W. The Scientist and Engineer's Guide to Digitial Signal Processing [электронный ресурс] // 2007. - Режим доступа: http://www.dspguide.com - Загл. с экрана. - Яз. англ.

8. А.Г. Тимошенко, Ю.В. Круглов, К.М. Ломовская, Е.О. Белоусов, А.В. Солодков. Особенности проектирования схем для исследования интегральных антенн [электронный ресурс] // - «Инженерный вестник Дона», 2011, №3. - Режим доступа: http://ivdon.ru/magazine/archive/n3y2011/476 - Загл. с экрана. - Яз. рус.

9. Smith, J. Spectral Audio Signal Processing // Center for Computer Research in Music and Acoustics (CCRMA). Stanford, California. - 2010. - 235 p.

10. W. G. Gardner. 3D Audio and Acoustic Environment Modeling // Wave Arts, Inc. - 1999. - 109 p.Размещено на Allbest.ru

...

Подобные документы

  • Применение генетических алгоритмов в качестве оптимизационных средств расчета антенн; характерные ограничения, введение дополнительного этапа методом картирования пространства. Классификация конфигураций решеток; гибридный оптимизационный алгоритм.

    реферат [24,8 K], добавлен 29.03.2011

  • Решение задачи компоновки для функциональной схемы с использованием последовательного алгоритма, пошаговое описание алгоритма. Размещение элементов в принципиальной электрической схеме. Трассировка цепей питания и земли с помощью волновых алгоритмов.

    курсовая работа [1,1 M], добавлен 19.06.2010

  • Разработка усилителя тока с помощью средств систем автоматизированного проектирования. Моделирование усилителя тока в Multisim. Расчет размеров, размещение радиоэлектронных компонентов на печатной плате, ее трассировка с помощью волнового алгоритма.

    курсовая работа [3,0 M], добавлен 21.10.2015

  • Изучение временных диаграмм на входе и выходе GMSK-модулятора и спектра модулированного сигнала с помощью программы MatLab. Получение временных и спектральных характеристик сигналов, их анализ. Расчет и иллюстрация импульсных характеристик фильтра НЧ.

    лабораторная работа [1,5 M], добавлен 01.12.2013

  • Разработка алгоритма функционирования устройства. Разработка и отладка рабочей программы на языке команд микропроцессора. Составление и описание электрической принципиальной схемы. Расчет АЧХ устройства для заданных и реальных значений коэффициентов.

    курсовая работа [313,9 K], добавлен 28.11.2010

  • Описание алгоритма работы и разработка структурной схемы микропроцессорной системы управления. Разработка принципиальной схемы. Подключение микроконтроллера, ввод цифровых и аналоговых сигналов. Разработка блок-схемы алгоритма главной программы.

    курсовая работа [3,3 M], добавлен 26.06.2016

  • Технические системы сбора телеметрической информации и охраны стационарных и подвижных объектов, методы обеспечения целостности информации. Разработка алгоритма и схемы работы кодирующего устройства. Расчет технико-экономической эффективности проекта.

    дипломная работа [3,8 M], добавлен 28.06.2011

  • Вейвлетная компрессия в современных алгоритмах компрессии изображений. Алгоритм фрактального сжатия изображения. Применение алгоритма SPIHT для оптимальной прогрессирующей передачи изображений и их сжатия. Основные черты алгоритма и структура его данных.

    реферат [78,4 K], добавлен 28.03.2011

  • Реализация КИХ и БИХ фильтра на процессоре TMS320C50. Блок-схема алгоритма программы, командные файлы компоновки и программного имитатора. Расчет максимально возможной частоты дискретизации. Расчет и результаты фильтра с помощью пакета Filter Design.

    курсовая работа [1,3 M], добавлен 26.05.2014

  • Эксплуатация, обслуживание, ремонт электронных вычислительных систем. Выбор параметров для диагностики, построение алгоритма поиска неисправностей, выбор вида аппаратуры контроля. Разработка технологической инструкции по эксплуатации и ремонту устройства.

    курсовая работа [81,8 K], добавлен 16.04.2009

  • Принципиальная схема генератора пачек импульсов и перечень его элементов, разработка алгоритма и программы функционирования. Обзор архитектуры AT90S2313 и система его команд. Моделирование работы генератора пачек импульсов с помощью Visual Micro Lab.

    курсовая работа [1,2 M], добавлен 06.06.2011

  • Электронный замок: общая характеристика и принцип действия. Анализ вариантов реализации устройства. Разработка алгоритма функционирования, структурной и электрической принципиальной схемы электронного замка. Блок-схема алгоритма работы программы.

    курсовая работа [363,3 K], добавлен 10.05.2015

  • Методы определения пространственной ориентации вектора-базы. Разработка и исследование динамического алгоритма определения угловой ориентации вращающегося объекта на основе систем спутниковой навигации ГЛОНАСС (GPS). Моделирование алгоритма в MathCad.

    дипломная работа [2,0 M], добавлен 11.03.2012

  • Анализ геометрических размеров помещения. Построение лучеграммы, выявление акустических дефектов зала. Расчет реверберационных характеристик помещения. Выбор и расчёт требуемых параметров звукового поля. Значение индекса усиления для различных установок.

    курсовая работа [3,2 M], добавлен 14.12.2013

  • Генераторы импульсных признаков (модуляторы). Задающий каскад двухчастотного генератора из системы ДЦ "Нева". Переключение генератора с одной частоты на другую. Шифраторы импульсных признаков и шифраторы комбинаций. Дешифраторы импульсных признаков.

    реферат [2,8 M], добавлен 28.03.2009

  • Разработка алгоритма нахождения оптимальной сети наземного цифрового телевизионного вещания. Программная реализация поиска точного решения задачи полным перебором множества проектов сетей. Обзор и схема коммуникационных операций типа точка-точка.

    дипломная работа [1,3 M], добавлен 22.08.2016

  • Общие принципы построения импульсных источников питания. Организационно-экономический раздел: расчет сметы затрат на проектирование ИМС. Схема включения ИМС в составе импульсного источника питания. Разработка библиотеки элементов, схема электрическая.

    дипломная работа [1,5 M], добавлен 01.11.2010

  • Исследование влияния электромагнитного поля на подземную антенну, расположенную на определенной глубине. Расчеты напряжения нагрузки проволочной антенны. Разработка программного продукта, позволяющего выполнять основные операции разработанного алгоритма.

    дипломная работа [1,7 M], добавлен 07.06.2012

  • Разработка структурной и принципиальной электрической схемы системы телерегулирования. Выбор линии связи и структуры сигналов, элементной базы. Алгоритм функционирования контролируемого пункта и пункта управления. Расчет частотных и временных параметров.

    курсовая работа [443,8 K], добавлен 13.03.2014

  • Проверка в вычислительных экспериментах схемы модельного синтеза дифракционных антенн с заданными электродинамическими характеристиками. Исследование физических особенностей в процессах излучения импульсных и монохроматических волн такими антеннами.

    презентация [464,9 K], добавлен 09.10.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.