Исследование работы направленных микрофонов типа "бегущая волна" и "линейного" типа
Принципы действия направленных микрофонов и методика проведения испытаний. Работоспособность цифровых приборов на контролируемой полосе движения автомобильной дороги. Исследование работы направленных микрофонов типа "бегущая волна" и "линейного" типа.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | статья |
Язык | русский |
Дата добавления | 06.06.2017 |
Размер файла | 475,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Исследование работы направленных микрофонов типа "бегущая волна" и "линейного" типа
Францев Сергей Михайлович,
Коробов Михаил Александрович
Аннотация
Проведено исследование работы микрофонов типа «бегущая волна» и «линейного» типа. Описаны принципы действия направленных микрофонов и методика проведения испытаний. Проведены натурные исследования изготовленных микрофонов на контролируемой полосе движения автомобильной дороги. Результаты исследований показали работоспособность данных микрофонов.
Ключевые слова: интенсивность транспортного потока, направленный микрофон, пассивный акустический детектор, транспортный шум
Направленные микрофоны обладают чувствительность ко звуку с одного направления. Наибольшая чувствительность, при этом, достигается вдоль оси микрофона. микрофон цифровой автомобильный линейный
Одним из вариантов использования направленных микрофонов является подсчет интенсивности транспортного потока.
Интенсивность транспортного потока - это количество автотранспортных средств, проходящих через сечение дороги в единицу времени [1, 2].
Подсчет интенсивности осуществляется при помощи различных детекторов транспорта, передающих информацию в дорожный контроллер или в автоматизированную систему управления дорожным движением [3, 4]. Наиболее простыми и дешевыми при реализации являются пассивные акустические детекторы, для которых требуется вовлечение в их состав направленного микрофона [5]. По простоте реализации наиболее оптимальными являются направленные микрофоны типа «бегущая волна» и «линейного» типа [6, 7].
Авторами изготовлены микрофоны типов «бегущая волна» и «линейного» (две разных конструкции) и проведено исследование их работы.
Микрофоны располагались на высоте 6 м от дорожного полотна под углом 45? к нему и направлялся на контролируемую полосу движения (на вторую полосу четырех полосной дороги). Микрофоны подключались поочередно через микрофонный разъем к ноутбуку, оснащенного WEB-камерой, с последующей записью видео и шума, исходящего от автомобилей.
Шум - это акустическая характеристика потока, включающая в себя неупорядоченное сочетание различных по силе и частоте звуков [8].
Преобразование шума исходящего от автомобилей в аудиофайл и его визуализация проводились в пакете «MATLAB». Результаты исследования приведены на рис. 1-6. На рисунках точками отмечены моменты проезда автомобилей по контролируемой полосе движения.
Микрофон типа «бегущая волна».
Микрофон (рис. 1) представляет собой трубку, заглушенную с одной стороны, а с другой - закреплен чувствительный элемент (конденсаторный микрофон). По поверхности трубки просверлен ряд детектирующих отверстий. Микрофон работает следующим образом: так как скорость распространения звука внутри и снаружи трубки одна и та же, при падении звука по оси трубки все парциальные волны приходят к мембране одновременно, в фазе. При падении звука под углом к оси парциальные волны доходят до мембраны с различной задержкой, определяемой расстоянием от соответствующего отверстия до микрофона. При этом из-за их интерференции на поверхности мембраны происходит частичное или полное гашение, т.е. давление на поверхности мембраны микрофона уменьшается [9].
Результаты визуализации аудиофайла записанного с помощью микрофона типа «бегущая волна» приведены на рис. 2.
Рисунок 1 Направленный микрофон типа «бегущая волна»
Рисунок 2 Визуализация аудиофайла записанного с помощью микрофона типа «бегущая волна
Микрофоны «линейного» типа.
Линейный микрофон № 1 (рис. 3) представляет
собой трубку, открытую с одной стороны, а с другой закреплен чувствительный элемент (конденсаторный микрофон). По поверхности трубки выпилен ряд отверстий с четырех сторон. Микрофон работает следующим образом. Звук поступает по трубке к конденсаторному микрофону, и нежелательные шумы выходят через прорези по бокам с четырех сторон [10].
Результаты визуализации аудиофайла записанного с помощью «линейного» микрофона № 1 приведены на рис. 4.
Рисунок 3 «Линейный» микрофон №1
Рисунок 4 Визуализация аудиофайла записанного с помощью «линейного» микрофона №1
Линейный микрофон № 2 (рис. 5) представляет собой трубку, открытую с одной стороны, а с другой закреплен чувствительный элемент (конденсаторный микрофон). По поверхности трубки выпилен ряд отверстий с двух сторон. Микрофон работает следующим образом. Звук поступает по трубке к конденсаторному микрофону, и нежелательные шумы выходят через прорези по бокам с двух сторон [10].
Результаты визуализации аудиофайла записанного с помощью «линейного» микрофона № 2 приведены на рис. 6.
Рисунок 5 Линейный» микрофон № 2
Рисунок 6 Визуализация аудиофайла записанного с помощью «линейного» микрофона № 2
По результатам натурных исследований вычислена относительная погрешность, которая показана в таблице № 1.
Таблица 1 Результаты натурных исследований разработанных микрофонов
Типы микрофонов |
Истинное число автомобилей за время измерения, ед |
Измеренное число автомобилей за время измерения, ед |
Относительная погрешность, % |
|
Линейный микрофон № 1 |
13 |
13 |
50 |
|
Линейный микрофон № 2 |
6 |
9 |
60 |
|
«Бегущая волна» |
8 |
15 |
65 |
Из таблицы видно, что линейный микрофон № 1 показал погрешность меньше всего, и она составила 50 %. Результаты свидетельствуют о работоспособности данных микрофонов.
Натурные исследования, результаты которых приведены в [11], свидетельствуют, что использование микрофона типа «бегущая волна» позволило при установке его около проезжей части обеспечить погрешность 12 %.
Дальнейшее исследование предполагает натурные испытания данных типов микрофонов.
Библиографический список
1. Клинковштейн Г.И., Афанасьев М.Б. Организация дорожного движения: Учебник для вузов. - М:. Транспорт, 2001 - 247 с.
2. Кременец Ю.А., Печерский М.П., Афанасьев М.Б. Технические средства организации дорожного движения: Учебник для вузов. - М.: ИКЦ «Академкнига», 2005. - 279 с.
3. Traffic Detector Handbook: Third Edition--Volume I, Turner-Fairbank Highway Research Center, 2006, 288 p.
4. Traffic Detector Handbook: Third Edition--Volume II, Turner-Fairbank Highway Research Center, 2006, 394 p.
5. Направленные микрофоны: мифы и реальность. [Электронный ресурс]. URL: vrtp.ru/index.php?act=categories&CODE=article&article=165 (дата обращения: 23.12.2016).
6. Францев С.М., Савенков А.В. Определение интенсивности транспортного потока на основе фиксации уровня шума // Современные научные исследования и инновации. 2015. № 4 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2015/04/51555 (дата обращения: 23.12.2016).
7. Францев С.М., Савенков А.В. Исследование шумовых характеристик транспортного потока на базе направленного микрофона типа “бегущая волна”. Инженерный вестник Дона, №2, часть 2 (2015). URL: ivdon.ru/ru/magazine/archive/n2p2y2015/2956 (дата обращения: 23.12.2016).
8. Тэйлор Р. Шум. - М.: Мир, 1978, 308 с.
9. Акустика: Учебник для вузов / Ш.Я. Вахитов, Ю.А. Ковалгин, А.А. Фадеев, Ю.П. Щевьев. - М.: Горячая линия-Телеком, 2009 - 660 с.
10. Линейный микрофон (“Из чего это сделано”). [Электронный ресурс]. URL: http://www.youtube.com/watch?v=Qt0mOBtgT9o (дата обращения: 23.12.2016).
11. Францев С.М., А.В. Савенков А.В. Натурные исследования интенсивности транспортного потока на базе направленного микрофона типа «бегущая волна». Инженерный вестник Дона, № 4 (2016) URL. ivdon.ru/ru/magazine/archive/n4y2016/3813 (дата обращения: 23.12.2016).
12. Размещено на Allbest.ru
...Подобные документы
Микрофоны электромагнитной системы. Угольные, катушечные и ленточные микрофоны. Частотная характеристика, маркировка микрофонов электродинамической системы. Недостатки конденсаторных микрофонов. Микрофон электростатической системы, созданный Вентом.
реферат [252,3 K], добавлен 16.11.2010Описание устройства и принципа работы динамических, ленточных, конденсаторных и электретных микрофонов. Преимущества использования и области применения однонаправленных (кардиоидного, суперкардиоидного), всенаправленных и двунаправленных микрофонов.
реферат [776,1 K], добавлен 19.12.2011Микрофон как устройство обработки, усиления звуковых частот и передачи на расстояния звуковой информации. Устройство и электрические характеристики микрофонов в сочетании с звукоусилительной и записывающей аппаратурой. Функциональные виды микрофонов.
реферат [266,9 K], добавлен 05.09.2012Устройство и принцип работы лампы бегущей волны типа М. Путь построения теории лампы: продольная и переменная составляющие, решение характеристического уравнения. Амплитудно-частотная характеристика лампы. Устройство и принцип работы лампы обратной волны.
реферат [715,7 K], добавлен 20.08.2015Устройство и принцип работы лампы бегущей волны (ЛБВ). Расчет ее электрических и геометрических параметров по схеме. Общий принцип работы ЛБВ, описание технологических процессов и алгоритм проведения расчетов при изготовлении коллекторного узла лампы.
курсовая работа [1,9 M], добавлен 05.06.2011Исследование принципа действия импульсного преобразователя постоянного напряжения понижающего типа. Фазы работы преобразователя. Расчёт силовой части схемы. Определение динамических потерь транзистора, возникающих в момент его включения и выключения.
курсовая работа [1,4 M], добавлен 16.10.2014Анализ дальности связи в радиосети гектометрового диапазона при использовании направляющей линии и стационарных Г-образных антенн, в метровом диапазоне волн для заданного типа трассы. Определение типа трассы для перегона ВГ согласно заданному профилю.
курсовая работа [2,7 M], добавлен 17.11.2013Описание активного эксперимента с целью проведения математического описания линейного статического объекта и исследования работы системы стабилизации температуры объекта с помощью микроконтроллера типа PIC16F84 фирмы MICROCHIP. Кривая разгона (нагрева).
лабораторная работа [456,1 K], добавлен 24.04.2013Принципы работы существующего оборудования громкоговорящей связи. Технологические, инструментальные и методические способы подавления шумов и наводок в аудиотехнике. Дифференциальный метод подключения микрофонов. Автоматическая регулировка усиления.
курсовая работа [1,5 M], добавлен 21.02.2012Выбор частоты дискретизации первичного сигнала и типа линейного кода сигнала ЦСП. Расчет количества разрядов в кодовом слове. Расчет защищенности от шумов квантования для широкополосного и узкополосного сигнала. Структурная схема линейного регенератора.
курсовая работа [2,0 M], добавлен 05.01.2013Синтез комбинационных схем. Построение логической схемы комбинационного типа с заданным функциональным назначением в среде MAX+Plus II, моделирование ее работы с помощью эмулятора работы логических схем. Минимизация логических функций методом Квайна.
лабораторная работа [341,9 K], добавлен 23.11.2014Разработка транзисторного автогенератора с трансформаторной связью. Выбор типа активного элемента и определение режима его работы. Построение сигнала на выходе схемы, определение ширины его спектра. Окончательная коррекция схемотехнического построения.
курсовая работа [196,9 K], добавлен 26.04.2014Спектр электромагнитных волн. Дальность действия ультракоротких волн. Повышение эффективности систем связи. Применение направленных приемных антенн в радиоастрономии. Возможность фокусирования высокочастотных радиоволн. Поглощение сигнала атмосферой.
лекция [279,9 K], добавлен 15.04.2014Изучение конструкции, принципа действия и паспортных технических характеристик преобразователей частоты типа FR-Е 540. Методы работы на лабораторной установке на базе комплектного электропривода. Исследование систем электропривода переменного тока.
лабораторная работа [225,4 K], добавлен 07.12.2014Сущность и сферы использования микрофона. История изобретения и принцип работы конденсаторного, динамического, пьезоэлектрического, электретного микрофонов. Воздействие давления звуковых волн на мембрану, вследствие чего возникают электрические колебания.
презентация [8,3 M], добавлен 16.04.2012Исследование поведения микрополосковой антенны типа "спираль Архимеда" и аналогичной синфазной антенны. Расчет физических параметров, моделирование и практическое использование СВЧ антенного устройства на частоте стандартного Wi-Fi-устройства 2,4 ГГц.
курсовая работа [1,9 M], добавлен 15.09.2013Динамический микрофон — электроакустический прибор, преобразовывающий звуковые колебания в колебания электрического тока, устройство ввода. История, классификация; типы микрофонов по принципу действия, функциональные виды, характеристики, применение.
презентация [465,8 K], добавлен 11.10.2011Расчет элементов схемы несимметричного мультивибратора на полевых транзисторах с управляющим p-n переходом и каналом p-типа. Исследование типичных форм прямоугольных колебаний. Построение временных диаграмм мультивибратора на биполярных транзисторах.
контрольная работа [1,0 M], добавлен 21.09.2016Структурная схема, характеристики и режимы работы микросхемы преобразователя Угол-Код для обработки сигналов индуктивных датчиков типа СКВТ (синусно-косинусные вращающиеся трансформаторы). Ее сравнение с зарубежными аналогами и модулями на их основе.
статья [3,1 M], добавлен 28.01.2015Выбор типа и геометрических размеров линзы. Расчет диаграммы направленности в плоскостях E и H, коэффициента направленного действия, коэффициента усиления антенны. Выбор типа фидера, расчет затухания и его КПД. Построение эскиза рассчитанных конструкций.
курсовая работа [206,9 K], добавлен 15.12.2011