Повышение эффективности направленных свойств адаптивных гидроакустических систем с параметрическими антеннами

Результаты обобщения теоретических и экспериментальных исследований влияния гидрофизических неоднородностей на характеристику направленности параметрической антенны. Оценка влияния изменения скорости звука на направленность параметрической антенны.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид статья
Язык русский
Дата добавления 30.07.2017
Размер файла 596,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Южный федеральный университет

Повышение эффективности направленных свойств адаптивных гидроакустических систем с параметрическими антеннами

И.А. Кириченко

Аннотация

В рамках решения задачи повышения эффективности направленных свойств адаптивных гидроакустических систем с параметрическими излучающими антеннами в работе представлены результаты обобщения теоретических и экспериментальных исследований влияния гидрофизических неоднородностей на характеристику направленности параметрической антенны. Проводится сравнение результатов расчетов характеристики направленности параметрической антенны, полученных на основе модели Хохлова-Заболотской-Кузнецова, с результатами экспериментальных измерений направленных свойств параметрической антенны. Получена нормированная зависимость ширины характеристики направленности параметрической антенны от снижения разностной частоты относительно центральной частоты волн накачки от 5 до 16 раз. Проведена оценка влияния изменения скорости звука на направленность параметрической антенны. Получена нормированная зависимость ширины характеристики направленности параметрической антенны от значения скорости звука у поверхности преобразователя накачки. Установлено, что наибольшее влияние на характеристику направленности параметрической антенны оказывает изменение скорости звука до расстояний равных 1-2 длинам зоны дифракции волн накачки.

Ключевые слова: адаптивная гидроакустическая система, эффективность, параметрическая антенна, характеристика направленности, скорость звука. антенна гидрофизический параметрический звук

Повышение эффективности адаптивных гидроакустических систем (АГАС) является важной задачей для развития современных акустических методов исследования океана [1]. При разработке АГАС с параметрическими излучающими антеннами (ПА) необходимо учитывать реальные океанологические условия работы таких систем. Наиболее важными факторами, оказывающими влияние на работу ПА в океане, являются гидрофизические неоднородности различного временного и пространственного масштаба, такие как [2]:

-флуктуации гидрофизических параметров (скорость звука, температура, соленость, гидростатическое давление);

-изменения гидрологических условий (сезонная зависимость профиля вертикального распределения скорости звука, коэффициента отражения звука от дна и коэффициента обратного объемного рассеяния, пространственно-временная изменчивость характеристик подводных звуковых каналов, пространственно-временная изменчивость водной среды, обусловленная влиянием рельефа дна и береговой линии).

Ранее [3-5] при разработке принципов адаптивного подхода к созданию АГАС были определены условия адаптивности и основные функции АГАС. Теоретическое рассмотрение задачи позволило систематизировать явления, которые определяют процесс нелинейного взаимодействия акустических волн, а также был рассмотрен ряд гидрофизических неоднородностей, оказывающих наибольшее влияние на формирование ПА.

В сравнении с линейными гидролокаторами АГАС с ПА являются качественно новым инструментом исследования океана благодаря совокупности технических характеристик, таких как высокая направленность на низких частотах при относительно малых размерах апертуры преобразователя накачки ПА, постоянство ширины характеристики направленности (ХН) в полосе рабочих частот [1, 6]. При практической реализации высокая эффективность в АГАС с ПА достигается в случае формирования высоконаправленного излучения [1]. На рисунках 1 и 2 показаны теоретически рассчитанные по теоретическим моделям ХН линейной акустической антенны [7] и ПА на основе модели Хохлова-Заболотской-Кузнецова (ХЗК) [1], соответственно.

Из представленных на рис. 1 и рис.2 ХН видно, что для ПА боковое поле практически отсутствует. Результаты экспериментальных исследований, подробно представленные в [1, 6], подтверждают полученные теоретические закономерности формирования ХН ПА.

Разностная частота ПА не совпадает с частотами, излучаемыми преобразователями накачки [1], что необходимо учитывать проектировании приемного тракта АГАС с ПА.

Рис. 1. - Характеристика направленности линейной антенны

Рис. 2. - Характеристика направленности параметрической антенны

Прием акустических сигналов может осуществляться различными типами приемных антенн. На практике, наиболее часто встречаются два варианта решения [6]:

-прием сигналов линейной антенной, ХН которой равна ХН ПА в режиме излучения;

-прием сигналов резонансной антенной с линейными размерами, равными преобразователю накачки ПА.

При реализации первого варианта исполнения приемной антенны увеличиваются общие размеры акустической системы, а во втором варианте ХН приемной антенны оказывается шире, чем ХН в режиме излучения. Для ряда задач применяют широкополосную приемную антенну, размещенную рядом с преобразователем накачки ПА [8]. На рис. 3 показана ХН линейной приемной антенны, размеры активной части которой равны преобразователю накачки (рис. 1).

Рис. 3. - Характеристика направленности приемной линейной антенны

Как уже было отмечено выше, ХН является одной из наиболее важных технических характеристик ПА. Анализ результатов теоретических исследований формирования ХН ПА и экспериментальных измерений ХН ПА позволил определить примерный диапазон изменения направленных свойств ПА в реальных условиях работы. С целью обобщения результатов теоретических и экспериментальных исследований, полученных для различных ПА, было проведено сравнение нормированных значений ширины ХН ПА ИFi/Иf0 для случая снижения разностной частоты F ПА относительно центральной частоты волн накачки f0 в диапазоне f0/F от 5 до 16. Полученные нормированные зависимости ширины ХН ПА (1 - теоретическая зависимость, 2 - экспериментальная зависимость), показаны на рис. 4.

Рис. 4. - Нормированная зависимость ширины ХН ПА от снижения разностной частоты ПА относительно центральной частоты волн накачки

Полученные результаты показывают, что отличие ширины ХН ПА в реальных условиях от теоретической ХН может составлять до 10%. Учет таких отличий позволит повысить эффективность применения АГАС с ПА при проведении исследований океана, связанных с измерениями обратного объемного рассеяния акустических волн.

Модели, описывающие характеристики ПА в дальней зоне и оказываются справедливыми лишь в определенной области изменения параметров [1, 6, 9-11]. Так как область нелинейного взаимодействия представляет собой объемную антенну, то при разработке ПА необходимо учитывать влияние гидрофизических неоднородностей на процесс нелинейного взаимодействия и формирование характеристик ПА. Результаты проведенных теоретических исследований математической модели нелинейного взаимодействия акустических волн, учитывающей влияние изменения скорости звука на ХН ПА, показали, что увеличение скорости звука в среде помимо уменьшения уровня давления волны разностной частоты приводит к расширению ХН ПА. Так с увеличением скорости звука от 1500м/с до 1540м/с ХН расширяется примерно на 1 для высокочастотной ПА и на 0,5 для низкочастотной ПА, при значении ширины ХН ПА 6 и 4, соответственно. На рис. 5 показана нормированная зависимость углового распределения уровня звукового давления волны разностной частоты высокочастотной ПА от скорости звука (И1500 - ширина ХН ПА при значении скорости звука в воде, равном 1500м/с, Иi - ширина ХН ПА при значении скорости звука в воде, равном i, где i =1500; 1520; 1540м/с).

Рис. 5. - Нормированная зависимость углового распределения уровня звукового давления ПА от скорости звука

В результате был установлен диапазон изменения направленных свойств ПА, который составляет от 0,5 до 2. Такое изменение является существенным при ширине ХН ПА 4-6. В проводимых теоретических исследованиях значение скорости звука в воде принималось постоянным во всей области нелинейного взаимодействия. Дополнительно была рассмотрена задача определения той части области нелинейного взаимодействия, которая оказывает наибольшее влияние на изменение ХН ПА. С этой целью проведен ряд расчетов с различным градиентом скорости звука в области нелинейного взаимодействия, результаты которых показали, что необходимо учитывать изменение скорости звука до расстояний равных 1-2 длинам зоны дифракции волн накачки.

Таким образом, при разработке АГАС, с целью повышения эффективности направленных свойств ПА, необходимо выделить два момента:

-выбор и расчет ХН ПА и приемной антенны, позволяющих адаптировать параметры АГАС для решения конкретной задачи в целом;

-определение и оптимизация параметров нелинейного излучающего тракта ПА с учетом реальных гидрофизических неоднородностей.

Литература

Воронин В.А., Кузнецов В.П., Мордвинов Б.Г., Тарасов С.П. Тимошенко В.И. Нелинейные и параметрические процессы в акустике океана. Ростов-на-Дону: Ростиздат, 2007. 448с.

Акустика дна океана: под. ред. У. Купермана и Ф. Енсена; пер. с англ. М.: Мир, 1984. 454 с.

Кириченко И.А., Старченко И.Б. Принцип адаптивного подхода к управлению характеристиками акустических систем // Инженерный вестник Дона, Ростов-на-Дону, 2011, №4 URL: ivdon.ru/magazine/archive/n4y2011/553

Бублей И.Е., Кириченко И.А., Старченко И.Б. Информационная модель гидролокации и адаптивные принципы управления // Труды Конгресса по интеллектуальным системам и информационным технологиям «AIS-IT'10». Научное издание в 4-х томах. М.: Физматлит, 2010. Т.2. С.35-40.

Кириченко И.А., Старченко И.Б. Адаптивные гидроакустические средства: состояние и перспективы развития // Известия ЮФУ. Технические науки. Таганрог: ТТИ ЮФУ, 2013. №9. С.20-24.

Воронин В.А., Тарасов С.П. Тимошенко В.И. Гидроакустические параметрические системы. Ростов-на-Дону: Ростиздат, 2004. 416 с.

Смарышев М.Д. Направленность гидроакустических антенн. Л.: Судостроение, 1973. 275 с.

Воронин В.А., Пивнев П.П., Тарасов С.П. Широкополосные гидроакустические антенны систем экологического мониторинга водной среды и придонных осадочных пород // Инженерный вестник Дона, Ростов-на-Дону, 2015. №4 URL: ivdon.ru/ru/magazine/archive/n4p2y2015/3476

Новиков Б.К., Тимошенко В.И. Параметрические антенны в гидролокации. Л.: Судостроение, 1990. 275 с.

Akulichev V.A., Bezovetnykh V.V., Burenin A.V, Voytenko E.A., Kamenev S.I., Morgunov Yu.N., Polovinka Yu.A., Strobykin D.S. Remote Acoustic Sensing Methods for Studies in Oceanology // Ocean Science Journal, 2006. Vol. 41, №2. pp.105-111.

Lee Y.S., Hamilton M.F. Time Domain Modeling of pulsed finite-amplitude sound beams // J. Acous. Soc. Am., 1995. V.97. №2. pp. 906-917.

Размещено на Allbest.ru

...

Подобные документы

  • Определение элементов конструкции антенны. Выбор геометрических размеров рупорной антенны. Определение типа возбуждающего устройства, расчет его размеров. Размеры раскрыва пирамидального рупора. Расчет диаграммы направленности и фидерного тракта антенны.

    курсовая работа [811,9 K], добавлен 30.07.2016

  • Характеристики и параметры спиральных антенн, их геометрические размеры. Диаграмма направленности и коэффициент направленного действия. Зависимость усиления и ширины диаграммы направленности спиральной антенны от количества витков, согласование с фидером.

    курсовая работа [1019,4 K], добавлен 06.09.2014

  • Расчёт размеров зеркала, фокусного расстояний, угловых размеров. Конструктивный расчет однозеркальной антенны с линейной поляризацией. Расчет рупорного облучателя, геометрических размеров параболоида вращения и диаграммы направленности антенны.

    курсовая работа [461,6 K], добавлен 26.11.2014

  • Расчет основных электрических характеристик схемы питания и направленных свойств антенн, входящих в состав спутниковых систем радиосвязи, телевидения и радиорелейных линий связи. Определение коэффициента полезного действия фидера бортовой антенны.

    курсовая работа [38,9 K], добавлен 12.02.2012

  • Расчет геометрических размеров полотна и рефлектора секторной антенны, реактивного шлейфа. Определение количества вибраторов в этаже и конструкции рефлектора, количества этажей антенны. Диаграмма направленности в вертикальной и горизонтальной плоскости.

    контрольная работа [246,3 K], добавлен 20.12.2012

  • Принцип действия рупорных антенн, расчет диаграммы направленности рупорной антенны на заданной частоте. Освоение методики измерения диаграммы направленности, поляризационной диаграммы рупорной антенны и коэффициента стоячей волны в фидерной линии.

    контрольная работа [330,4 K], добавлен 04.03.2011

  • Понятие параметрической надежности РЭС как вероятность отсутствия в изделии постепенных отказов при его работе в заданных условиях эксплуатации. Основные причины, вызывающие возникновение постепенных отказов. Способы оценки параметрической надежности.

    курсовая работа [42,5 K], добавлен 12.06.2010

  • Геометрические параметры антенны. Определение оптимального сопротивления активного вибратора. Определение расстояний между вибраторами. Построение диаграммы направленности антенны. Расчет коэффициента направленного действия и входного сопротивления.

    курсовая работа [177,3 K], добавлен 24.10.2013

  • Разработка зеркальной антенны - параболоида вращения, работающей в дециметровом диапазоне: расчет основных параметров, диаграммы направленности и сравнение с реальной ДН. Выполнение эскиза антенны, включающего все коммутационные узлы и возможный крепеж.

    реферат [59,7 K], добавлен 03.12.2010

  • Симметричная вибраторная антенна, построенная из симметричных вибраторов. Удобство при монтаже, обеспечение широкого рабочего диапазона частот. Описание конструкции антенны, результаты ее исследования. Влияния длины второго вибратора на согласование.

    контрольная работа [942,7 K], добавлен 14.01.2017

  • Основные геометрические свойства параболоида вращения. Эффективность параболической антенны. Расчет диаграмм направленности с учетом тени, создаваемой облучателем. Расчет себестоимости зеркальной антенны. Электромагнитное и ионизирующее излучения.

    дипломная работа [3,7 M], добавлен 09.10.2014

  • Понятие и основные достоинства радиорелейных линий. Сравнительная характеристика и выбор типа антенны, изучение ее конструкции. Расчет высоты установки антенны над поверхностью Земли. Определение диаграммы направленности и расчет параметров рупора.

    курсовая работа [439,3 K], добавлен 21.04.2011

  • Конструкция антенны и схема питания. Расчет диаграммы направленности и коэффициента усиления антенны. Расчет дальности приема на всех каналах. Определение входного сопротивления и коэффициента стоячей волны. Расчет низкочастотного фильтра прототипа.

    курсовая работа [644,3 K], добавлен 06.01.2012

  • Расчет размеров диэлектрического стержня. Выбор подводящего коаксиального кабеля. Расчет размеров волновода и возбудителя, характеристики антенны. Результаты моделирования: общий вид проектируемого устройства, диаграмма направленности, согласование.

    курсовая работа [107,0 K], добавлен 27.10.2011

  • Описание принципа действия и особенности конструкции директорной антенны. Электрический и конструктивный расчет директорной антенны. Определение сопротивления рефлектора и диаграммы направленности. Разработка конструкции деталей антенны и узлов.

    курсовая работа [721,7 K], добавлен 04.06.2012

  • Теоретические сведения об антенне. Аналитический расчет синтезируемой антенны. Расчет согласующего устройства. Количество вибраторов в этаже антенны. Длина короткозамкнутых шлейфов, компенсирующих реактивную составляющую входных сопротивлений вибраторов.

    курсовая работа [752,1 K], добавлен 10.01.2016

  • Антенны в современной радиоэлектронике. Электрические параметры антенн. Общие сведения и принцип действия зеркальной антенны. Геометрические характеристики параболоидного зеркала. Методика моделирования ближнего поля. Конструирование зеркальных систем.

    реферат [706,1 K], добавлен 28.01.2009

  • Расчет диаграммы направленности волноводно-щелевой антенны, геометрических размеров и характеристик параболического отражателя; диаграммы направленности зеркальной антенны; элементов фидерного тракта; относительной погрешности ширины конструкции.

    контрольная работа [486,4 K], добавлен 16.06.2013

  • Создание модели антенны и оптимизация ее конструкции. Свойства антенны горизонтальной поляризации с учетом свойств поверхности земли в направлении максимального КНД и влияние диаметра проводников симметричного вибратора на рабочую полосу частот.

    курсовая работа [1,0 M], добавлен 23.02.2016

  • Общая характеристика, принцип работы и схематическое изображение логопериодической антенны. Геометрический расчет коэффициента направленного действия и рабочего интервала частот антенны. Проектирование конструкции антенны с помощью программы MMANA.

    курсовая работа [1,3 M], добавлен 27.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.