Сравнение методов останова операций отсеивания при эмпирической модовой декомпозиции сигналов

Сравнение S- и SD-методов останова операций отсеивания функций эмпирической модовой декомпозиции сигналов. Анализ результатов декомпозиции ряда сигналов среде программирования LabView. Изменение величины ошибки декомпозиции в зависимости от итерации.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид статья
Язык русский
Дата добавления 28.07.2017
Размер файла 174,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Казанский государственный энергетический университет

Статья

на тему: Cравнение методов останова операций отсеивания при эмпирической модовой декомпозиции сигналов

Выполнил:

А.Р. Загретдинов

Аннотация

В статье проводится сравнение S- и SD-методов останова операций отсеивания функций IMF. Рассмотрен пример с тестовым сигналом, проведен анализ эффективности декомпозиции.

Ключевые слова: модовая эмпирическая декомпозиция сигналов, ошибка декомпозиции, эмпирические моды, внутренние колебания, S-метод, SD-метод, нормализованная квадратичная разность, операция отсеивания, LabView, преобразование Гильберта-Хуанга.

Метод эмпирической модовой декомпозиции сигналов (Empirical Mode Decomposition, EMD) представляет собой адаптивную итерационную вычислительную процедуру разложения исходных сигналов на эмпирические моды или внутренние колебания (intrinsic mode functions, IMF) [1]. Применение данной процедуры к многокомпонентным сигналам допускает создание их частотно-временного представления на основе преобразования Гильберта [2-5].

Процедура эмпирической модовой декомпозиции реализует следующий алгоритм действий [1,6-8].

1. В сигнале y(t) определяется положение всех локальных экстремумов.

2. Кубическим сплайном вычисляется верхняя ua(t) и нижняя ub(t) огибающие процесса соответственно. Определяется функция средних значений m1(t) между огибающими.

(1)

Разность между сигналом y(t) и функцией m1(t) дает первую компоненту отсеивания - функцию h1(t), которая является первым приближением к первой функции IMF:

. (2)

3. Повторяются операции 1 и 2, принимая вместо y(t) функцию h1(t), и находится второе приближение к первой функции IMF - функция h2(t).

(3)

Останов операций отсеивания может осуществляться по заданному значению нормализованной квадратичной разности (4) между двумя последовательными итерациями (SD-метод) или по заданному ограничению числа итераций (S-метод).

(4)

4. Последнее значение hi(t) итераций принимается за наиболее высокочастотную функцию с1(t) = hi(t) семейства IMF, которая непосредственно входит в состав исходного сигнала y(t). Это позволяет вычесть с1(t) из состава сигнала и оставить в нем более низкочастотные составляющие:

. (5)

Функция r1(t) обрабатывается как новые данные по аналогичной методике с нахождением второй функции IMF - c2(t), после чего процесс продолжается.

Таким образом, достигается декомпозиция сигнала в n-эмпирическом приближении:

. (6)

Приведенный алгоритм модовой декомпозиции реализован нами в среде программирования LabView [9]. Для вычисления ошибки декомпозиции при сравнении разных методов останова итераций (S- и SD-методов) будем использовать следующую величину [10]:

, (7)

где yi и y'i - значения для i-ого отсчета исходного и реконструированного по формуле (6) сигналов соответственно.

В качестве примера смоделирован гармонический сигнал (рис.1) с частотными составляющими 50, 250 и 450 Гц. Длина сигнала составляет 1000 отсчетов при частоте дискретизации 1кГц.

Рис. 1. - Фрагмент смоделированного сигнала

Результаты расчетов ошибки декомпозиции сигнала при задании останова операции отсеивания по S-методу представлены на рис. 2. Из рисунка видно, что с увеличением количества итераций возрастает ошибка декомпозиции сигнала. Минимальное значение ошибки было достигнуто на второй операции приближения.

Рис. 2. - Изменение величины ошибки декомпозиции Error в зависимости от номера итерации

Для апробации на тестовом сигнале SD-метода были оценены значения нормализованной квадратичной разности для каждой операции приближения по S-методу. Следует отметить, что для каждой эмпирической моды в пределах одного номера итерации они имеют разные значения и могут отличаться на несколько порядков. В соответствии с этим был выбран диапазон задания порога останова по значению нормализованной квадратичной разности от 1E_08 до 1.

Значения ошибки декомпозиции сигнала с применением SD-метода представлены на рис. 3. Из него видно, что минимальное значение ошибки было достигнуто при задании порога останова SDmin=1E_02. Слишком строгий критерий останова завышает величину ошибки декомпозиции, а при значении SDmin=1E_08 достигает 0,753287.

Рис. 3. - Изменение величины ошибки декомпозиции Error в зависимости от задания значения нормализованной квадратичной разности

Анализ результатов декомпозиции ряда тестовых сигналов показал схожие результаты с приведенным примером и позволяет сделать следующие выводы: модовая эмпирическая декомпозиция сигнал

1. S- и SD-методы методы показали одинаковую эффективность декомпозиции, минимальные значения ошибки (7) практически совпадают.

2. Завышение критерия останова S- и SD-методов приводит к изменению форм IMF и искажает условия заданные выражением (6).

3. В случае обработки большого количества данных предпочтительным является S-метод останова операций отсеивания в виду упрощения вычислительного алгоритма.

Литература

1. Norden E. Huang, Samuel S.P. Shen. The Hilbert-Huang transform and its applications // World Scientific Publishing Co. Pte. Ltd. 2005. 325 p.

2. Берстень М.П., Зенов А.Ю. Концепция организации обработки информации в системах диагностики и распознавания // Инженерный вестник Дона, 2013, № 1.

3. Чернов А.В., Пугачева О.Ю, Абидова Е.А. Обработка диагностической информации при оценке технического состояния электроприводной арматуры АЭС // Инженерный вестник Дона, 2011, № 3 URL: ivdon.ru/ru/magazine/archive/n3y2011/499.

4. Павлов А.Н., Филатова А.Е., Храмов А.Е., Иванов А.В., Шурыгина С.А., Куркин С.А., Москаленко И.О., Павлова О.Н. Анализ и диагностика многокомпонентных сигналов сейсмограмм с использованием преобразования Гильберта-Хуанга // Вестник ТГУ. 2012. № 4. С. 1122-1124.

5. Павлов А.Н., Филатова А.Е., Храмов А.Е. Частотно-временной анализ нестационарных процессов: концепции вейвлетов и эмпирических мод // Известия вузов. Прикладная нелинейная динамика. 2011. № 2. С. 141-157.

6. Бороноев В.В., Омпоков В.Д., Козин В.А. Эмпирическая модовая декомпозиция пульсовых сигналов // Вестник ВСГТУ. 2015. № 1. С. 40-43.

7. Феоктистов А.С., Нежевенко Е.С. Классификация гиперспектральных изображений с помощью преобразования Гильберта-Хуанга // ИНТЕРЭКСПО ГЕО-СИБИРЬ. 2015. № 2. С. 23-27.

8. Huang N. E., Wu M. C., Long S. R. et al. A confidence limit for empirical mode decomposition and Hilbert spectral analysis // Proc. R. SOC. London, Ser. A. 2003. № 459. pp. 2317-2345.

9. LabVIEW: стиль программирования / Блюм П., Пер. с англ. под ред. Михеева П. М.: 2008. 400 с.

10. Сафиуллин Н.Т. Разработка методики анализа временных рядов с помощью преобразования Хуанга-Гильберта: дис. канд. техн. наук: 05.13.01. Новосиб., 2015. 193 с.

References

1. Norden E. Huang, Samuel S.P. Shen. The Hilbert-Huang transform and its applications. World Scientific Publishing Co. Pte. Ltd. 2005. 325 p.

2. Bersten' M.P., Zenov A.Yu. Inzhenernyy vestnik Dona (Rus), 2013, № 1.

3. Chernov A.V., Pugacheva O.Yu, Abidova E.A. Inzhenernyj vestnik Dona (Rus), 2011, № 3 URL: ivdon.ru/ru/magazine/archive/n3y2011/499.

4. Pavlov A.N., Filatova A.E., Khramov A.E., Ivanov A.V., Shurygina S.A., Kurkin S.A., Moskalenko I.O., Pavlova O.N. Vestnik TGU. 2012. № 4. pp. 1122-1124.

5. Pavlov A.N., Filatova A.E., Khramov A.E. Izvestiya vuzov. Prikladnaya nelineynaya dinamika. 2011. № 2. pp. 141-157.

6. Boronoev V.V., Ompokov V.D., Kozin V.A. Vestnik VSGTU. 2015. № 1. pp. 40-43.

7. Feoktistov A.S., Nezhevenko E.S. INTEREKSPO GEO-SIBIR''. 2015. № 2. pp. 23-27.

8. Huang N. E., Wu M. C., Long S. R. et al. A confidence limit for empirical mode decomposition and Hilbert spectral analysis. Proc. R. SOC. London, Ser. A. 2003. № 459. pp. 2317-2345.

9. LabVIEW: stil' programmirovaniya [The LabVIEW Style Book]. Blyum P., Per. s angl. pod red. Mikheeva P. Moscow. 2008. 400 p.

10. Safiullin N.T. Razrabotka metodiki analiza vremennykh ryadov s pomoshch'yu preobrazovaniya Khuanga-Gil'berta [The method of time series analysis using the Hilbert-Huang transform]: dis. kand. tekhn. nauk: 05.13.01. Novosibirsk, 2015. 193 p.

Размещено на Allbest.ru

...

Подобные документы

  • Характеристика видов и цифровых методов измерений. Анализ спектра сигналов с использованием оконных функций. Выбор оконных функций при цифровой обработке сигналов. Исследование спектра сигналов различной формы с помощью цифрового анализатора LESO4.

    дипломная работа [2,5 M], добавлен 03.05.2018

  • Анализ методов обнаружения и определения сигналов. Оценка периода следования сигналов с использованием методов полных достаточных статистик. Оценка формы импульса сигналов для различения абонентов в системе связи без учета передаваемой информации.

    дипломная работа [3,0 M], добавлен 24.01.2018

  • Исследование помехоустойчивости методов разнесенного приема сигналов в декаметровом канале связи, сравнение показателей качества этих методов. Метод комбинированной обработки цифровых сигналов при разнесенном приеме. Интерференция и методы борьбы с ней.

    диссертация [5,2 M], добавлен 11.11.2010

  • Принцип действия системы "Эшелон" - глобальной системы радиоэлектронной разведки и контроля. Анализ функциональной декомпозиции первичной и вторичной обработки сигналов. Основы функционирования радиоэлектронных систем получения и обработки информации.

    курсовая работа [47,9 K], добавлен 12.05.2014

  • Сигналы и их характеристики. Линейная дискретная обработка, ее сущность. Построение графиков для периодических сигналов. Расчет энергии и средней мощности сигналов. Определение корреляционных функций сигналов и построение соответствующих диаграмм.

    курсовая работа [731,0 K], добавлен 16.01.2015

  • Угрозы, существующие в процессе функционирования сетей с кодовым разделением каналов. Исследование методов защиты информации от радиоэлектронных угроз, анализ недостатков сигналов. Построение ансамблей дискретных ортогональных многоуровневых сигналов.

    курсовая работа [360,2 K], добавлен 09.11.2014

  • Исследование принципов разработки генератора аналоговых сигналов. Анализ способов перебора адресов памяти генератора аналоговых сигналов. Цифровая генерация аналоговых сигналов. Проектирование накапливающего сумматора для генератора аналоговых сигналов.

    курсовая работа [513,0 K], добавлен 18.06.2013

  • Обзор особенностей речевых сигналов, спектрального анализа и способов его применения при обработке цифровых речевых сигналов. Рассмотрение встроенных функций и расширений Matlab по спектральному анализу. Реализация спектрального анализа в среде Matlab.

    курсовая работа [2,2 M], добавлен 25.05.2015

  • Угрозы функционирования беспроводных систем передачи информации с кодовым разделением. Исследование стохастического формирования сигналов и методов защиты информации от радиоэлектронных угроз. Недостатки ансамблей дискретных ортогональных сигналов.

    курсовая работа [207,6 K], добавлен 14.11.2014

  • Временные функции, частотные характеристики и энергия сигналов. Граничные частоты спектров сигналов. Технические характеристики аналого-цифрового преобразователя. Информационная характеристика канала и расчёт вероятности ошибки оптимального демодулятора.

    курсовая работа [1,2 M], добавлен 06.11.2011

  • Временные функции сигналов, частотные характеристики. Граничные частоты спектров сигналов, определение кодовой последовательности. Характеристики модулированного сигнала. Расчет информационных характеристик канала, вероятности ошибки демодулятора.

    курсовая работа [594,5 K], добавлен 28.01.2013

  • Преимущества и недостатки ВОЛС. Устройство, материалы и размеры оптоволокна, его типы по индексу преломления и модовой структуре света. Каналы утечки информации в волоконно-оптических сетях, методы их формирования. Дисперсия сигналов в оптоволокне.

    реферат [2,1 M], добавлен 14.01.2012

  • Расчет временных и спектральных моделей сигналов с нелинейной модуляцией, применяемых в радиолокации и радионавигации. Анализ корреляционных и спектральных характеристик детерминированных сигналов (автокорреляционных функций, энергетических спектров).

    курсовая работа [1,6 M], добавлен 07.02.2013

  • Сигнал - материальный носитель информации и физический процесс в природе. Уровень, значение и время как основные параметры сигналов. Связь между сигналом и их спектром посредством преобразования Фурье. Радиочастотные и цифровые анализаторы сигналов.

    реферат [118,9 K], добавлен 24.04.2011

  • Изучение основ построения математических моделей сигналов с использованием программного пакета MathCad. Исследование моделей гармонических, периодических и импульсных радиотехнических сигналов, а также сигналов с амплитудной и частотной модуляцией.

    отчет по практике [727,6 K], добавлен 19.12.2015

  • Общее понятие и классификация сигналов. Цифровая обработка сигналов и виды цифровых фильтров. Сравнение аналогового и цифрового фильтров. Передача сигнала по каналу связи. Процесс преобразования аналогового сигнала в цифровой для передачи по каналу.

    контрольная работа [24,6 K], добавлен 19.04.2016

  • Расчет спектральной плотности непериодических сигналов. Спектральный анализ непериодических сигналов. Определение ширины спектра по заданному уровню энергии. Расчет автокорреляционной функции сигнала и корреляционных функций импульсных видеосигналов.

    контрольная работа [96,4 K], добавлен 29.06.2010

  • Методы реализации цифровых фильтров сжатия и их сравнение. Разработка модуля сжатия сложных сигналов. Разработка структурной схемы модуля и выбор элементной базы. Анализ работы и оценка быстродействия. Программирование и конфигурирование микросхем.

    дипломная работа [5,7 M], добавлен 07.07.2012

  • Исследование математических методов анализа сигналов с помощью преобразований Фурье и их связь. Соотношение Парсеваля, которое выполняется для вещественной, частотно-ограниченной функции f(t), интегрируемой на интервале, соответствующем одному периоду.

    контрольная работа [903,7 K], добавлен 16.07.2016

  • Электрическое преобразование сигналов. Регулирование коэффициента усиления. Импульсы напряжения с выходов предварительного усилителя. Сумматоры сигналов, оптимизация сопротивлений резисторной матрицы. Интегратор координатных и энергетических сигналов.

    реферат [851,4 K], добавлен 11.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.