Исследование нелинейного взаимодействия сдвиговых акустических волн в донных осадках

Представление теоретических и экспериментальных исследований поля, создаваемого параметрической акустической излучающей антенной в многофазной среде "вода – донные осадки", при наклонном падении на границу раздела под углами, близкими к критическим.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид статья
Язык русский
Дата добавления 28.07.2017
Размер файла 71,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Исследование нелинейного взаимодействия сдвиговых акустических волн в донных осадках, возбуждаемых параметрической излучающей антенной на границе раздела

Ю.В. Душенин

Для зондирования дна Мирового океана с последующим проникновением акустических волн в ДО, в последнее время широко используются параметрические гидролокаторы. Большая эффективность их применениядля решения задачстратификации ДО и обнаружения заиленных объектов обусловлена способностью формировать высоконаправленное излучение на низких частотах при малых габаритах исходной антенны накачки [1, 2]. Для приборов такого класса сама физическая среда обнаружения «вода - ДО» является «активным элементом» ПА и правомерно предположить зависимость ее характеристикот структуры ДО.

ДО по своей структуре являются сложными многофазными средами, в которых присутствуют как продольные, так и поперечные составляющие скорости распространения колебаний [3]. Наличие нескольких компонент скорости колебанийвДО открывает возможности возбуждения различного типа волн в них при использовании ПА, что может сделать параметрические гидролокаторы еще более востребованными для исследовательских задач.

В работе [4] рассмотрен случай падения продольной волны из воды на плоскую границу раздела под углами, близкими к критическим. Видно, что в ДО присутствуют две преломленные волны- продольная и сдвиговая, распространяющиесяпод углами l и со скоростями сlи с.

При этом энергию звукового поля можно представить в виде:

Амплитуды отраженной и прошедшей волн для углов падения меньших углов полного внутреннего отражения определяются из соотношений:

где V - коэффициент отражения;

Wl, W - коэффициенты прохождения продольной и сдвиговой волн соответственно. Определяемые выражениями [1, 3]:

где 0 - угол падения;

- угол преломления продольной волны;

- угол преломления поперечной волны.

Из анализа (4) видно, что чем больше угол падения плоской волны на границу раздела, тем меньше коэффициент прохождения для продольной волны ( 90, cos2 0), поэтому при углах, близких к углам скольжения Wl 0. Следовательно, при критических углах падения компонентой Pпр.l в (1) можно пренебречь. антенна донный осадок акустический

При наклонном падении под углами, близкими к критическим,на границу раздела не плоских волн, а взаимодействующих узких пучков ПА, условия формирования поля в ДОнесколько изменяются, однако выражения (3 - 5) применимы и в этом случае, согласно [1].

На плоскую границу раздела под углом 0 падает звуковой пучок, формируемый ПА. В воде, при нелинейном взаимодействии исходных волн накачки, образуются ВРЧ, которые, как и исходные, попадают на границу раздела. После чего, согласно (1), часть энергии волн звукового поля симметрично отражается, а оставшаяся частьпроходит через границу раздела в ДО, где происходит их трансформацияв сдвиговые волны накачки и ВРЧ. Существует два варианта формирования такого поля ПА. В первом случае граница раздела расположена в области нелинейного взаимодействия, т.е. в ближней зоне (h lз), гденелинейное взаимодействие волн накачки происходит до и после границы раздела. Во втором случае, привыполнении условия дальней зоны (lз h), взаимодействия в ДО не происходит, изадача сводится к рассмотрению обычной линейной модели. В данной работе рассмотрен первый вариант формирования поля ПА в ДО.

Вначале рассмотрим теоретическую модель, описывающую поведение поля ПА работающей в многофазной среде «вода-ДО» при углах падения, близких к критическим.

По аналогии с [3]считается, что ДО по своей структуре близки к жидким средам распространения, таким как вода. Поэтому, для описания поля ПА в этих средах можно использовать уравнение Хохлова-Заболотской-Кузнецова, традиционно применяемое в нелинейной гидроакустике [1].

Решение для расчета поля ПА в многофазной среде «вода - ДВО» при углах падения, близких к критическим, представлено в виде суммы трех интегралов:

,

где Q,Q1,Q2 - константы, включающие параметры сред взаимодействия и преобразователя накачки [4]; Ф(r,z) - подинтегральное выражение, являющееся передаточной функцией ПА для соответствующей среды распространения [4]; h - расстояние до границы раздела; z - расстояние до точки наблюдения в ДО.

Первый интеграл в уравнении (6) описывает процесс взаимодействия исходных волн накачки в воде. Второй интеграл - процесс возбуждения сдвиговой ВРЧ при трансформации из воды в ДО, третий - генерацию полявновь образованной сдвиговой ВРЧ за счет взаимодействия трансформировавшихся из воды в ДО сдвиговых волн накачки.

На основании уравнения (6) произведены расчеты основных характеристик поля ПА в многофазной среде «вода - ДО» при углах падения, близких к критическим, которые будут приведены на графиках ниже, совместно с результатами экспериментов.

Для расчетов в качестве физических моделей ДО были выбраны глина и песок со следующими параметрами:

- глина - удельная плотность = 1440 кг/м3; продольная скорость сl = 1830 м/с; поперечная скорость с = 350 м/с; коэффициент прохождения при падении под углами близкими к критическим W = 0,15; коэффициент затухания сдвиговых волн накачки на частоте 275 кГц0 = 60 дБ/м; коэффициент затухания сдвиговых ВРЧ в диапазоне частот от 10 до 50 кГц_ = 8 _30 дБ/м; угол падения = 65 _ 75, параметр нелинейности = 8;

- песок _ удельная плотность = 2100 кг/м3;продольная скорость сl = 1830 м/с; поперечная скорость с = 250 м/с; коэффициент прохождения при падении под углами близкими к критическим W = 0,10; коэффициент затухания сдвиговых волн накачки на частоте 275 кГц0 = 80 дБ/м; коэффициент затухания сдвиговых ВРЧ в диапазоне частот от 10 до 50 кГц_ = 12 _ 40 дБ/м; угол падения = 70 - 80,параметр нелинейности = 10.

Для подтверждения правильности выбора данной теоретической модели, были проведены экспериментальные исследованияосновных характеристик поляПА при работе в многофазной среде «вода - ДО» и возбуждении в ДО сдвиговых волн. Антенна накачки параметрического гидролокатора с центральной частотой f0 = 275 кГц и геометрическими размерами a = 0,12 м,b = 0,09 м, размещалась на координатном устройстве. Лабораторный бассейн имел размеры 2,0 х 1,2 х 1,9 м. На его дне располагалисьв отдельных кюветахдегазированные глина и песок, выбранные в качестве физических моделей ДО. Толщина каждого слоя ДО составляла 0,7 м. Сверху ДО заливались слоем воды глубиной 1,2 м. Отдельно в глине и песке, для регистрации сигналов,помещались по 10 измерительных сферических гидрофонов. Они располагались на глубинах от0,05 до 0,5 м, с шагом 0,05 м. Для возбуждения в ДОсдвиговых волн с,антенна накачки ориентироваласьв пределах углов 0 = 65 ч 80 к нормали границы раздела. При проведении экспериментальных исследований диапазон значений ВРЧ варьировался от 10 до 50 кГц.

На первом этапе была произведена оценка давлений падающего, отраженного и прошедшего в ДО сигналов.

Из данных зависимостей видно, что от границы раздела «вода - песок» отражается порядка 90 %, а от границы раздела «вода - глина» порядка 85 % от падающего излучаемого сигнала, оставшаяся часть энергии проходит непосредственно в ДО.

На втором этапе была получена экспериментально снятая зависимость амплитуды звукового давления сдвиговых ВРЧ от угла ввода колебаний 0 к нормали границы раздела для каждого типа ДО. Распределения амплитуд звуковых давлений сигналов первичных и вторичных полей на оси до границы раздела и после нее следует отнести к наиболее информативным характеристикам процесса нелинейного взаимодействия, позволяющим составить наиболее полную физическую картину особенностей формирования ВРЧ.

Так, на следующем этапе по формуле (1) были вначале рассчитаны, а затем экспериментально получены осевые распределения амплитуд звукового давления ВРЧ в воде до границы раздела и после нее сдвиговых ВРЧ в песке и глине.

Сплошными кривыми показаны расчетные результаты, значками со штриховыми кривыми - экспериментальные. Исследования проводились для частот F_ = 10; 30; 50 кГц. Амплитудно-частотные зависимости позволяют увидеть эффективность процессов нелинейного взаимодействия в средах.

Полученные расчетные и экспериментальные зависимости АЧХ в ДО достаточно хорошо совпадают. Эффективность процессов нелинейного взаимодействия узких звуковых пучков в ДО возрастает с увеличением значений частотысдвиговых ВРЧ.

Основным достоинством устройств и систем, работающих на принципах нелинейной гидроакустики, является возможность формирования высоконаправленного излучения звуковых пучков при малых габаритах исходного излучателя накачки [5]. Поэтому наиболее важной характеристикой процесса нелинейного взаимодействия, как продольных [6], так и сдвиговыхакустических волн в ДО, как и в воде, является поперечное распределение.

Эксперименты проводились на фиксированных расстояниях, для воды h = 1 м, для глины и песка z = 0,5 м, для значений ВРЧ 10; 30 и50 кГц.

Кроме того, поскольку исходная антенна накачки расположена под углом к границе раздела, то за счет разности хода лучей падающего звукового пучка происходит искажение поперечного распределения при формировании поля сдвиговых ВРЧ в ДО.

Необходимо отдельно отметить, что при проведении всех экспериментальных исследований, сдвиговые волны в глине и песке распознавались по временному положению сигналов от расстояния. При этом с увеличением глубины в глине скорость изменялась в диапазоне от 330 до 380 м/с, в песке - от 220 до 270 м/с.

На последнем этапе исследований проводились эксперименты доказывающие возможность использования сдвиговых волн в ДОв эхолокационном режиме.

На глубине 0,3 м в глине и песке были зарыты алюминиевые пластины размерами 0,25 х 0,15 м, расположенные перпендикулярно к углам прихода сдвиговых волн. Приемный гидрофон крепился к платформе антенны накачки. Полное расстояние, пройденное сигналом до объектов и обратно, составило 2,7 м. При этом скорость сдвиговой ВРЧ в глине составила 350 м/с, в песке - 250 м/с.

Для данного режима получены АЧХ сдвиговых волн, отраженных от объектов в глине и песке Таким образом, представленные в работе результаты доказывают факт трансформации, возбуждения и генерации сдвиговых ВРЧ в ДО. Кроме того,данныеисследования основных характеристик поля, создаваемого ПА вмногофазной среде «вода - ДО» при наклонном падении на границу раздела под углами близкими к критическим, дают достаточно хорошее совпадение, что подтверждает факт правильности выбора физической модели эффективного возбуждения, генерации и распространения сдвиговых ВРЧв ДО.

Предложенный в работе метод эхолокации можно использовать в параметрических гидролокаторах для стратификации ДО и обнаружения в них различных инородных целей.

Литература

1. Новиков Б.К., Тимошенко В.И. Параметрические антенны в гидролокации. - Л.: Судостроение. 1990.- 256 с.

2. Мюир Т. Дж. Нелинейная акустика и ее роль в геофизике морских осадков./ В кн.: Акустика морских осадков. - М.: Мир. 1977.- С.227 - 273.

3. Бреховских Л.М., Лысанов Ю.П. Теоретические основы акустики океана. - Л.: Гидрометеоиздат. 1982.- 264 с.

4. Душенин Ю.В., Рыбачек М.С. Исследование взаимодействия акустических волн на неоднородной границе раздела двух сред.// Известия высших учебных заведений, журн. «Электромеханика», Новочеркасск, Изд-во НГТУ, 1995.- С.30 - 32.

5. Рыбачек М.С. Исследование взаимодействия акустических волн и разработка параметрического излучателя звука. Дис. канд. тех. наук, Таганрог, 1978.- 214 с.

6. Душенин Ю.В., Гурский В.В. Исследование основных характеристик поля параметрической антенны в донных осадках при вертикальном падении пучка на границу раздела.// Известия ЮФУ, Технические науки. Тематический выпуск. «Экология 2013 - море и человек». Таганрог. Изд-во ТТИ ЮФУ, 2013. № 9. - С.109 - 114.

Размещено на Allbest.ru

...

Подобные документы

  • Падение плоской волны на границу раздела двух сред, соотношение волновых сопротивлений и компонентов поля. Распространение поляризованных волн в металлическом световоде, расчет глубины их проникновения. Определение поля внутри диэлектрического световода.

    курсовая работа [633,8 K], добавлен 07.06.2011

  • Параметры и характеристики головок громкоговорителей, используемых в портативных акустических излучателях. Применение контрапертурного преобразования. Исследование в области конструирования, дизайна и качественного воспроизведения звуковых волн.

    дипломная работа [474,6 K], добавлен 20.06.2017

  • Особенности функционирования РТС в высоких широтах. Экспериментальное исследование процессов нелинейного преобразования (при наклонном распространении), умножения и смещения (при вертикальном зондировании) частоты мощных радиосигналов в ионосфере.

    курсовая работа [5,0 M], добавлен 26.01.2010

  • Принцип распространения звуковых волн в помещении и звукоизоляция. Акустические каналы утечки информации. Способы перехвата акустической (речевой) информации из выделенных помещений. Порядок проведения измерений с помощью шумомера АТЕ-9051, его настройка.

    дипломная работа [3,3 M], добавлен 15.06.2013

  • Плоские электромагнитные волны в однородной изотропной среде, их поляризация. Поток энергии в плоской волне. Закон сохранения электромагнитной энергии для однородной линейной непроводящей среды. Отражение и преломление волн на плоской границе раздела.

    реферат [95,9 K], добавлен 20.08.2015

  • Излучение и прием электромагнитных волн. Расчет антенной решетки стержневых диэлектрических антенн и одиночного излучателя. Сантиметровый и дециметровый диапазоны приема волн. Выбор диаметра диэлектрического стержня. Определение числа элементов решетки.

    курсовая работа [1,7 M], добавлен 17.10.2011

  • Нахождение оптимальных размеров двухдипольной излучающей системы с нумерацией диполей. Построение и анализ диаграмм направленности в пакете mathcad для всей плоскости в полярной системе координат. Плоскость электрического вектора. Листинг программы.

    курсовая работа [2,3 M], добавлен 17.06.2014

  • Анализ геометрических размеров помещения. Построение лучеграммы, выявление акустических дефектов зала. Расчет реверберационных характеристик помещения. Выбор и расчёт требуемых параметров звукового поля. Значение индекса усиления для различных установок.

    курсовая работа [3,2 M], добавлен 14.12.2013

  • Понятие параметрической надежности РЭС как вероятность отсутствия в изделии постепенных отказов при его работе в заданных условиях эксплуатации. Основные причины, вызывающие возникновение постепенных отказов. Способы оценки параметрической надежности.

    курсовая работа [42,5 K], добавлен 12.06.2010

  • Конструкция акустической системы - устройства для воспроизведения звука. Количество полос, на которые разбит диапазон частот колонки. Мощность как один из основных параметров, используемых при сопоставлении акустических систем. Частота кроссовера.

    презентация [4,2 M], добавлен 08.01.2016

  • Практическое освоение аналитических и численных методов определения выходных процессов в линейных радиотехнических цепях при негармонических воздействиях с использованием вычислительной техники и проведении экспериментальных исследований в среде Mathcad.

    курсовая работа [1,1 M], добавлен 24.06.2011

  • Анализ развития микроэлектроники и её достижения. Расчет волноводно-щелевой антенной решетки резонансного типа в плоскости. Выбор схемотехнического решения и конструктивной реализации. Моделирование в пакете прикладных программ Microwave office.

    дипломная работа [2,4 M], добавлен 05.12.2013

  • Выбор оптимальной рабочей длины волны. Конструкция антенной радиолокационной системы обзора летного поля. Размещение радиолокатора обзора летного поля. Минимальная дальность действия, обусловленная максимальным углом места. Методы измерения координат.

    курсовая работа [1,2 M], добавлен 22.03.2015

  • Анализ распространения радиоволн. Расчет волноводно-щелевой антенной решетки резонансного типа, направленность в плоскости Н. Исследование фазовой характеристики антенны. Параметры передачи и приема. Воздействие электромагнитных излучений на организм.

    курсовая работа [460,7 K], добавлен 05.06.2012

  • Анализ существующих решений обратной задачи рассеяния сложными объектами. Дискретное представление протяженной поверхности. Рассеяние электромагнитных волн радиолокационными целями. Феноменологическая модель рассеяния волн протяженной поверхностью.

    курсовая работа [5,7 M], добавлен 16.08.2015

  • Уравнения Максвелла для анизотропной среды. Магнитная и электрическая проницаемость вещества. Представление решения системы уравнений в виде плоских волн. Анализ составляющих частей волновода. Уравнения непрерывности электрического и магнитного полей.

    курсовая работа [218,7 K], добавлен 17.11.2010

  • При проектировании и конструировании фильтров необходимо решить ряд вопросов: согласование входной и выходной цепей с акустической частью, учет влияния погрешностей изготовления на фильтры, вторичных эффектов, выбор материалов звукопровода и др.

    реферат [70,5 K], добавлен 06.01.2009

  • Определение геометрических параметров антенной решетки. Расчет диаграммы направленности диэлектрической стержневой антенны, антенной решетки. Выбор и расчет схемы питания антенной решетки. Выбор фазовращателя, сектор сканирования, особенности конструкции.

    курсовая работа [2,7 M], добавлен 06.07.2010

  • Структура электромагнитного поля основной волны. Распространение электромагнитных волн в полом прямоугольном металлическом волноводе. Резонансная частота колебаний. Влияние параметров реальных сред на процесс распространения электромагнитных волн.

    лабораторная работа [710,2 K], добавлен 29.06.2012

  • Излучатель антенной решетки. Выбор конструкции вибратора и схемы питания. Антенная решетка системы излучателей. Расчет диаграммы направленности и геометрия антенной решетки. Расчет параметров решетки при заданном максимальном секторе сканирования.

    контрольная работа [250,6 K], добавлен 03.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.