Выбор числа и мощности трансформаторов связи на электростанции

Осуществление выборки трансформаторов и составление структурной схемы электростанции. Расчет мощностей трех режимов работы электрооборудования. Условия выбора мощности трансформаторов. Обслуживание выключателей и генератора в процессе эксплуатации.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 03.08.2017
Размер файла 408,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http: //www. allbest. ru/

Липецкий государственный технический университет

Факультет Автоматизации и Информатики

Кафедра Электрооборудования

КУРСОВАЯ РАБОТА

по электрооборудование электрических станций

«Выбор числа и мощности трансформаторов связи на электростанции»

Студент Фролов С.Н.

Группа ЭО-14-2

Руководитель

Ст.преподаватель Чуркина Е.В

Липецк 2017

Аннотация

В данной курсовой работе, для осуществления выборки трансформаторов и составления структурной схемы электростанции в течении нескольких этапов, были произведены расчеты мощностей трех режимов и последующий выбор наибольшей из них. Были рассчитаны полная расчетная мощность, высокое напряжение, низкое напряжение. На основе этих расчетов были определены условия выбора мощности блочных трансформаторов и трансформаторов, подключённых к ГРУ, при помощи этих условий была произведена выборка трансформаторов и было осуществлено построение структурной схемы электростанции. Также рассмотрели принципы эксплуатации трёх типов выключателей.

Оглавление

Аннотация

1. Составление структурной схемы электростанции

2. Расчет и выбор трансформаторов

3. Определение Кз, Sлэп, Uлэп

4. Эксплуатация генераторов

Заключение

Список использованных источников

1. Составление структурной схемы электростанции

Составим структурную схему электростанции и нанесем на нее исходные данные:

Рисунок 1 Структурная схема электростанции

В дальнейшем, нам будет необходимо произвести выбор блочных трансформаторов и трансформаторов ГРУ, и нанести их на исходную схему.

2. Расчет и выбор трансформаторов

Поскольку отсутствуют графики электрической нагрузки для трансформаторов, подключённых к ГРУ, вычислим мощности трех режимов и выбираем наибольшую из них.

Рассчитаем необходимые величины для расчета мощностей трех режимов.

Рассчитаем активную мощность одного генератора и его собственных нужд:

Пассчитаем реактивную мощность одного генератора и его собственных нужд:

Рассчитаем реактивную минимальную и максимальную нагрузки на генераторном напряжении:

Найдем новое число генераторов, подключенных к ГРУ для третьего режима

Мощность первого режима рассчитывается при минимальном потреблении нагрузки на генераторном напряжении:

Мощность второго режима рассчитывается при максимальном потреблении нагрузки на генераторном напряжении:

Мощность третьего режима рассчитывается при отключении одного генератора и максимальном потреблении нагрузки на генераторном напряжении:

Максимальная расчётная мощность у первого режима:

Условие выбора мощности трансформатора, подключенного к ГРУ, имеет вид:

При блочном подключении трансформаторов и генераторов:

Условие выбора мощности блочного трансформатора:

3. Определение Кз, Sлэп, Uлэп

Чтобы выбрать трансформаторы необходимо знать полную расчетную мощность, высокое напряжение, низкое напряжение.

При расчете высокого напряжения, нужно предварительно определить активную мощность, которая передаётся от электростанции в ЛЭП. Её найдём из следующего выражения:

Высокое напряжение определяют из следующего соотношения:

Используя шкалу напряжений выбираем значение Uвн:

Рассчитаем полную передаваемую мощность без учета потерь:

Используя таблицу зависимости Кпот = F (cos?г), определим коэффициент потерь в трансформаторе, в данном случае он будет равен Кпот = 1,07

Полная передаваемая мощность с учетом потерь определяется как:

Приближенно потери в трансформаторах можно определить из следующих соотношений:

Выбираем трансформаторы по справочным данным - таблицы А.1-А.3 в соответствии с условиями выбора трансформаторов.

Трансформаторы ГРУ: ТДН - 16000/110. Блочный трансформатор: ТДН - 16000/110. Паспортные данные трансформатора приведены в таблице 1.

Таблица 1 Паспортные данные трансформаторов

Тип

ВН, кВ

НН, кВ

,кВт

,кВт

Uкз,%

Ixx,%

ТДН - 16000/110

115

11

85

18

10,5

0,7

Определим коэффициенты загрузки трансформаторов

;

.

Исключим 3 блочных трансформатора, так как они недогруженные. Тогда коэффициенты загрузки трансформаторов будут равны:

;

.

Рисунок 2 Структурная схема электростанции с условными обозначениями

4. Эксплуатация генераторов

Эксплуатация воздушных выключателей

Конструктивные схемы воздушных выключателей различны. Однко их общими элементами являются:

1) дугогасительные устройства;

2) устройства создания изоляционного промежутка между контактами выключателя при его отключенном положении;

3) изоляционные конструкции;

4) шунтирующие резисторы;

5) резервуары для хранения сжатого воздуха;

6) механизмы системы управления.

В воздушных выключателях сжатый воздух выполняет следующие две функции: гашение дуги и управление механизмом выключателя.

Конструктивные схемы воздушных выключателей на ПС отличаются способом создания изоляционного промежутка между контактами выключателя, способом подачи сжатого воздуха в дугогасящие устройства, системой управления выключателем, наличием шунтирующих резисторов и делителей напряжения и др.

В качестве материала для изоляции токоведущих частей от земли служит фарфор.

Наиболее характерными причинами отказов воздушных выключателей являются следующие:

1) отказы в отключении токов КЗ, которые происходят из-за недостаточной отключающей способности воздушных выключателей гасить электрическую дугу, а также при отключении неудаленных КЗ, сопровождающихся большой скоростью восстановления напряжения на контактах. При удалении точки КЗ от шин ПС скорость восстановления напряжения уменьшается. Для улучшения работы выключателей в таких случаях применяется шунтирование дугового разрыва низкоомным резистором и повышение эффективности дугогасящих устройств путем увеличения последовательно включенных мест разрыва;

2) дефекты контактных систем из-за дефектов конструкций отдельных узлов выключателя, заклинивания деталей, приводящих к зависанию подвижных контактов в промежуточном положении или к недостаточному вжиманию контактов. Если зависание происходит во время отключения КЗ, то горящей дугой разрушаются контактные системы и фарфоровая изоляция;

3) перекрытия опорной изоляции по наружной поверхности, которые обусловлены в основном загрязнением изоляторов уносами с предприятий и пылью при ее увлажнении. Проникновение влаги внутрь изоляторов, а также прекращение продувки внутренних полостей воздухопроводов приводит к перекрытию изоляции по внутренней поверхности и разрушениям выключателей;

4) неисправности механизмов приводов и клапанов, с которыми связано значительное число отказов в работе выключателей, обусловленных дефектами клапанов, попаданием под клапаны посторонних предметов, повреждением электромагнитов и цепей управления. Иногда происходит самопроизвольное уменьшение сброса давления из-за попадания в каналы клапанов пыли и смазки. Все эти неисправности, как правило, приводят к неполнофазной работе выключателей;

5) повреждение резиновых уплотнителей происходит из-за потери упругих свойств резины и приводит к нарушению герметичности соединений. Для устранения таких нежелательных явлений производится обжатие всех элементов эластичного крепления изоляторов. Следует учесть, что частые обжатия приводят к деформации и преждевременному выходу из строя резиновых прокладок и уплотнений.

Осмотры воздушных выключателей являются неотъемлемой частью процедуры их обслуживания.

При осмотре по показаниям сигнальных ламп и манометров проверяется фактическое положение всех фаз воздушного выключателя, отсутствие утечек воздуха, целостность изоляторов гасительных камер, отделителей, шунтирующих резисторов и емкостных делителей напряжения, опорных колонок и изолирующих растяжек, а также отсутствие загрязненности поверхности изоляторов.

По манометрам, установленным в распределительном шкафу, контролируется давление воздуха в резервуарах выключателя и поступление его на вентиляцию.

У воздушных выключателей давление должно быть на уровне 2 МПа. При давлении ниже 1,6 МПа один из манометров размыкает цепь включения и отключения, а другой при давлении ниже 1,9 МПа переключает цепи АПВ на отключение.

Контроль за поступлением воздуха на вентиляцию ведется по указателю продувки, представляющему собой стеклянную трубку с находящимся в ней алюминиевым шариком. Шарик под действием струи воздуха должен находиться во взвешенном состоянии между рисками, нанесенными на указателе. Регулирование расхода воздуха осуществляется винтом на верхней части редукторного клапана.

Включение выключателей, длительно находящихся без вентиляции, должно производиться после просушки их изоляции путем усиления продувки в течение 12-24 ч. При этом шарик указателя продувки будет находиться в верхнем положении.

При осмотре визуально проверяется целостность резиновых уплотнений в соединениях изоляторов гасительных камер, отделителей и их опорных колонок. трансформатор мощность генератор электрооборудование

Обслуживание выключателей в процессе эксплуатации включает проведение следующих мероприятий:

1) из резервуаров выключателей с периодичностью 1-2 раза в месяц удаляется накопившийся в них конденсат;

2) с той же периодичностью продувается сжатым воздухом рабочего давления воздухораспределительная сеть. Несоблюдение периодичности продувок при резких изменениях температуры окружающей среды приводит к конденсации влаги в резервуарах выключателей и образованию льда в воздухораспределительной сети;

3) чтобы не допускать скопления конденсата в блоках пневматических клапанов, из них также удаляют конденсат через спускной клапан;

4) при понижении температуры окружающего воздуха ниже 5 °C в шкафах управления и в распределительном шкафу включают электрический обогрев;

5) не реже 2 раз в год проверяют работоспособность выключателя путем контрольных опробований на отключение и включение при номинальном и минимально допустимом давлении.

Воздух, поступающий в резервуары выключателей, должен быть очищен от механических примесей. Очистка и осушка воздуха производятся компрессорной воздухоприготовительной установкой. Для дополнительной очистки сжатого воздуха в распределительных шкафах выключателей установлены войлочно-волосяные фильтры. Смена фильтрующих патронов в них должна производиться систематически в зависимости от степени загрязнения воздуха.

Эксплуатация элегазовых выключателей

Элегазовые выключатели являются одним из самых современных типов высоковольтных выключателей и получают все более широкое применение, в основном в КРУ 110-220 кВ. Эти выключатели являются достаточно надежными в работе и долговечными; они позволяют осуществлять не менее 10 тысяч операций включения и отключения номинального тока и 40 отключений номинального тока КЗ.

В качестве дугогасительной, изолирующей и теплоотводящей среды в них применяется электротермический газ (элегаз) - шестифтористая сера SF6.

Элегаз обладает следующими достоинствами: он безвреден, химически не активен, не горит и не поддерживает горение, обладает повышенной теплопроводностью, удачно сочетает в себе изоляционные и дугогасящие свойства и легкодоступен. Электрическая прочность элегаза в 2,5 раза больше прочности воздуха. Его электрические характеристики обладают высокой стабильностью. При нормальной эксплуатации элегаз не действует на материалы и конструкции, не стареет и не требует такого ухода, как, например, масло.

Электрическая дуга частично разлагает элегаз. Основная масса продуктов разложения восстанавливается (рекомбинирует). Оставшаяся часть поглощается фильтрами-поглотителями, встроенными в резервуары выключателей. Продукты разложения, не поглощенные фильтрами, взаимодействуют с влагой, кислородом и парами металла и выпадают в выключателях в виде тонкого слоя порошка. Сухой порошок является хорошим диэлектриком.

Полюс элегазового выключателя представляет собой герметичный заземленный, заполненный сжатым воздухом металлический резервуар, в котором размещено дугогасительное устройство. Оно крепится к стенкам резервуара с помощью эпоксидных опорных изоляторов.

Подвижные части дугогасящего устройства выключателя перемещаются изоляционной тягой, связанной с пневматическим приводом, шток которого входит в резервуар.

В процессе обслуживания элегазовых выключателей персонал обязан следить за давлением элегаза в резервуарах выключателей, с тем чтобы предотвратить чрезмерные утечки элегаза и снижение по этой причине электрической прочности изоляционных промежутков.

Контроль давления осуществляется по показаниям манометров и плотномеров. Плотномеры используются в случаях, когда температура окружающей среды изменяется в широких пределах, что затрудняет измерение давления.

При эксплуатации практически невозможно обеспечить абсолютную герметизацию резервуара, в связи с чем утечки элегаза неизбежны, но они не должны превышать 3 % общей массы в год.

Проводить операции с выключателями при пониженном давлении элегаза не допускается.

При осмотрах выключателей проверяется: чистота наружной поверхности, отсутствие звуков электрических разрядов, треска, вибраций, работа приточно-вытяжной вентиляции, температура в помещении РУ (должна поддерживаться на уровне не ниже 5 °C), а также проверяется давление в резервуарах пневматических приводов выключателей (должно находиться в пределах 1,6-2,1 МПа).

Элегаз в 5 раз тяжелее воздуха и при утечках скапливается в пониженных местах (на полу, в подвалах, траншеях, кабельных каналах). Персонал, находящийся в таких местах, почувствует недостаток кислорода и удушье. Безопасный уровень концентрации чистого (не загрязненного продуктами разложения) элегаза в помещении составляет порядка 0,1 % (5000 мг/м3), а при кратковременном пребывании - до 1 %.

Поэтому проведение работ в помещениях РУ, где обнаружена утечка элегаза, может допускаться при включенной приточно-вытяжной вентиляции и применении средств индивидуальной защиты. Следует иметь в виду, что в продуктах разложения элегаза электрической дугой содержатся активные высокотоксичные фториды и сернистые соединения. Наличие продуктов разложения обнаруживается по неприятному запаху. Эти химические соединения в газообразном и твердом состоянии очень опасны для людей.

Эксплуатация вакуумных выключателей

Вакуумные выключатели находят широкое применение в электроустановках напряжением 10 кВ и выше. По сравнению с другими выключателями высокого напряжения вакуумные выключатели имеют следующие преимущества:

1) высокое быстродействие;

2) полную взрыво- и пожаробезопасность;

3) экологическую чистоту;

4) широкий диапазон температур (от +200 до ?70 °C);

5) надежность в работе;

6) минимальные эксплуатационные затраты;

7) минимальные габаритные размеры;

8) повышенную устойчивость к ударным вибрационным нагрузкам;

9) высокую изностойкость при коммутации токов нагрузки;

10) произвольное рабочее положение вакуумного дугогасительного устройства.

Принцип использования вакуума для гашения дуги при высоких напряжениях был известен давно. Однако на практике их стали применять лишь после появления технических возможностей - создания вакуумночистых проводниковых и изоляционных материалов больших размеров, проведения вакуумночистых сборок этих материалов и получения высокого вакуума.

Главной частью вакуумного выключателя является вакуумная дугогасительная камера.

Конструктивно вакуумный выключатель выполнен следующим образом.

Цилиндрический корпус камеры, как правило, состоит из двух секций полых керамических изоляторов, соединенных металлической прокладкой и закрытых с торцов фланцами. Внутри камеры расположена контактная система и электростатические экраны, защищающие изоляционные поверхности от металлизации продуктами эрозии контактов и способствующие распределению потенциалов внутри камеры. Неподвижный контакт жестко прикреплен к нижнему фланцу камеры, а подвижный контакт проходит через верхний фланец камеры и соединяется с ним сильфоном из нержавеющей стали, создающим герметичное подвижное соединение. Камеры полюсов выключателя крепятся на металлическом каркасе с помощью опорных изоляторов.

Подвижные контакты камер управляются общим приводом с помощью изоляционных тяг и перемещаются при отключении на 12 мм, что позволяет достигать высоких скоростей отключения - порядка 1,7-2,3 м/с.

Воздух из камер откачан до глубокого вакуума, который сохраняется в течение всего срока их службы. Поэтому гашение электрической дуги в вакуумном выключателе происходит при полном отсутствии среды, проводящей электрический ток. Вследствие этого изоляция межэлектродного промежутка восстанавливается быстро и дуга гаснет при первом же прохождении тока через нулевое значение. При этом эрозия контактов под действием дуги незначительна - в пределах допустимого значения (4 мм).

При обслуживании вакуумных выключателей проверяется отсутствие дефектов изоляторов (сколов и трещин) и загрязнений их поверхности, а также отсутствие следов разрядов и коронирования.

Заключение

В ходе выполнения курсовой работы мной были произведены расчеты, которые необходимы для составления структурной схемы электростанции. Также были произведены расчеты необходимые для выбора трансформаторов, с последующим вычислением их коэффициентов загрузки трансформаторов. Также были описаны принципы эксплуатации трёх типов выключателей.

Список литературы

1. Шпиганович, А. Н., Захаров, К. Д. Внутризаводское электроснабжение и режимы. Липецк: ЛГТУ, 2007. 742 с.

2. Бессонов, Л. А. Теоретические основы электротехники. Электрические цепи. М.: Гардарики, 2002. 638 с.

Размещено на Аllbеst.ru

...

Подобные документы

  • Выбор мощности турбогенераторов, структурной и электрической схем электростанции. Выбор числа и мощности автотрансформаторов. Расчет теплового импульса. Выбор электрооборудования, проверка токоведущих частей. Система электрических измерений на станции.

    курсовая работа [2,8 M], добавлен 04.04.2015

  • Проектирование электрической сети. Выбор числа и мощности силовых трансформаторов. Анализ установившихся режимов электрической сети. Расчёт токов короткого замыкания. Главная схема электрических соединений. Конструктивное выполнение подстанции.

    дипломная работа [372,0 K], добавлен 16.03.2004

  • Методы расчета двухконтурной цепи связи генератора с нагрузкой. Нагрузочные характеристики лампового генератора с внешним возбуждением. Расчет значений максимальной мощности и оптимального сопротивления связи XсвОПТ для двух режимов работы генератора.

    курсовая работа [210,6 K], добавлен 21.07.2010

  • Электротехнический расчет сетей 0,38 кВ и выбор оборудования. Выбор мощности трансформаторов. Выбор сечения проводов ВЛ 0,38 кВ. Экономическая часть. Монтаж воздушных линий напряжением 380/220 В. Техника безопасности.

    дипломная работа [103,2 K], добавлен 13.10.2003

  • Определение ожидаемой суммарной расчетной нагрузки. Определение числа и мощности трансформаторов ГПП, схемы внешнего электроснабжения. Определение напряжений, отклонений напряжений. Расчет токов короткого замыкания. Эксплуатационные расходы.

    курсовая работа [110,7 K], добавлен 08.10.2007

  • Расчет мощности и выбор числа и типов генераторных агрегатов электростанции. Однолинейная принципиальная электрическая схема генераторной панели. Расчет и выбор аппаратов защиты. Выбор электроизмерительных приборов. Выбор коммутационной аппаратуры.

    курсовая работа [995,7 K], добавлен 23.02.2015

  • Основные параметры усилителей мощности. Чувствительность акустической системы. Описание схемы электрической структурной. Анализ схемы электрической принципиальной. Условия эксплуатации. Расчет теплового режима устройства. Суммарная интенсивность отказов.

    курсовая работа [360,2 K], добавлен 01.07.2013

  • Расчет генератора синусоидальных сигналов как цель работы. Выбор принципиальной схемы высокочастотного генератора средней мощности. Порядок расчета LC-генератора на транзисторе, выбор транзистора. Анализ схемы (разработка математической модели) на ЭВМ.

    курсовая работа [258,5 K], добавлен 10.05.2009

  • Назначение и область применения генератора синусоидальных колебаний со встроенным усилителем мощности в радиотехнике и измерительной технике. Описание принципиальной схемы проектируемого устройства, расчет элементов генератора и его усилителя мощности.

    курсовая работа [157,2 K], добавлен 06.08.2010

  • Расчет усилителя мощности с представлением структурной схемы промежуточных каскадов на операционных усилителях. Расчет мощности, потребляемой оконечным каскадом. Параметры комплементарных транзисторов. Выбор операционного усилителя для схемы бустера.

    курсовая работа [1,6 M], добавлен 05.02.2013

  • Выбор системы электропитания в соответствии с категорией надежности. Составление предварительной структурной схемы. Расчет параметров вводной сети переменного тока дизель-генератора. Выбор предохранителей, автоматических выключателей и ограничителей.

    курсовая работа [540,3 K], добавлен 05.02.2013

  • Составление предварительной структурной схемы электропитания. Выбор преобразователей для бесперебойного питания нагрузок в аварийном режиме. Расчет числа элементов аккумуляторной батареи, параметров вводной сети переменного тока и дизель-генератора.

    контрольная работа [232,2 K], добавлен 05.02.2013

  • Сфера использования широкополосных трансформаторов сопротивлений и устройств, выполненных на их основе. Модели высокочастотных широкополосных трансформаторов. Устройства на идентичных двухпроводных линиях. Исследование оптимального варианта ТДЛ.

    дипломная работа [3,3 M], добавлен 02.01.2011

  • Формула габаритной мощности при проведении расчетов и конструировании трансформаторов, их нагрузочные характеристики и КПД. Особенности конструкции и работы дросселей в цепях электропитания. Принцип действия и рабочие конструкции магнитных усилителей.

    реферат [387,0 K], добавлен 10.02.2009

  • Выбор схемы выходного каскада. Расчет напряжений питания, потребляемой мощности, КПД, мощности на коллекторах оконечных транзисторов. Выбор оконечных транзисторов, расчет площади теплоотводов. Выбор и расчет выпрямителя, блока питания и схемы фильтра.

    курсовая работа [997,7 K], добавлен 28.01.2016

  • Расчет напряжений питания, потребляемой мощности, КПД, мощности на коллекторах оконечных транзисторов. Выбор оконечных транзисторов, определение площади теплоотводов, элементов усилителя мощности. Выбор и расчет выпрямителя, схемы фильтра, трансформатора.

    курсовая работа [474,7 K], добавлен 22.09.2012

  • Выбор оптимального варианта структурной схемы передатчика, синтез его функциональной схемы. Характеристика транзисторного автогенератора, фазового детектора, усилителей постоянного тока и мощности, опорного генератора. Расчет автогенератора и модулятора.

    курсовая работа [133,3 K], добавлен 16.01.2013

  • Назначение, технические описания и принцип действия устройства. Разработка структурной и принципиальной схем цифрового генератора шума, Выбор микросхемы и определение ее мощности. Расчет блока тактового генератора. Компоновка и разводка печатной платы.

    курсовая работа [434,5 K], добавлен 22.03.2016

  • Расчет мощности трансформатора на ГПП по электрическим нагрузкам цехов химического комбината, проверка коэффициентов в нормальном и послеаварийном режимах. Сведения по контролируемым событиям в системе электроснабжения, требующим принятия решений.

    контрольная работа [22,6 K], добавлен 12.07.2010

  • Разработка структурной, функциональной и принципиальной схемы тахометра. Выбор генератора тактовых импульсов, индикаторов и микросхем для счетного устройства. Принцип действия индикатора. Описание работы тахометра. Расчет потребляемой тахометром мощности.

    курсовая работа [322,3 K], добавлен 30.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.