Сравнительная характеристика каналов связи телекоммуникационных систем
Каналы передачи данных и их классификация. Аппаратура передачи данных, характеристики каналов и линий связи в вычислительных системах и телекоммуникациях. Создание программы с применением подпрограмм в вычислительных процессах на языке Assembler.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 15.09.2017 |
Размер файла | 604,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Федеральное государственное автономное
образовательное учреждение
высшего образования
«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»
ИНСТИТУТ УПРАВЛЕНИЯ БИЗНЕС ПРОЦЕССАМИ И ЭКОНОМИКИ
КАФЕДРА БИЗНЕС-ИНФОРМАТИКИ
КУРСОВАЯ РАБОТА
Сравнительная характеристика каналов связи телекоммуникационных систем
Е.М. Нербышев
Красноярск 2016
Содержание
- ВВЕДЕНИЕ
- 1. КАНАЛЫ ПЕРЕДАЧИ ДАННЫХ И ИХ КЛАССИФИКАЦИЯ
- 1.1 Классификация каналов связи
- 1.2 Цифровые каналы связи
- 2. ХАРАКТЕРИСТИКИ КАНАЛА СВЯЗИ
- 2.1 Аппаратура передачи данных
- 2.2 Характеристики каналов связи
- 3. ПРИМЕНЕНИЕ ПОДПРОГРАММ В ВЫЧИСЛИТЕЛЬНЫХ ПРОЦЕССАХ НА ЯЗЫКЕ ASSEMBLER
- 3.1 Условие задачи
- 3.2 Блок-схема алгоритма
- 3.3 Код программы с комментариями
- ЗАКЛЮЧЕНИЕ
- СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
ВВЕДЕНИЕ
Канал связи - система технических средств и среда распространения сигналов для односторонней передачи данных (информации) от отправителя (источника) к получателю (приёмнику).
Линия связи и канал связи - это не одно и то же.Линия связи - это физическая среда, по которой передаются информационные сигналы. В одной линии связи могут быть организованы несколько каналов связи путем временного, частотного кодового и других видов разделения тогда говорят о логических (виртуальных) каналах. Если канал полностью монополизирует линию связи, то он может называться физическим каналом, и в этомслучае совпадает с линией связи.
Хотя допустимо, например, говорить об аналоговом или цифровом канале связи, но абсурдно заявлять об аналоговой или цифровой линии связи, раз линия - лишь физическая среда, в которой могут быть образованы каналы связи разного типа. Тем не менее, даже говоря о физической многоканальной линии, ее часто называют каналом связи. Линии связи являются обязательным звеном любой системы передачи информации.
Целью данной курсовой работы является - изучение сравнительной характеристики каналов связи телекоммуникационных систем.
Задачи курсовой работы:
1. Изучить классификацию каналов связи.
2. Рассмотреть аппаратную часть телекоммуникационных систем.
3. Изучить характеристики каналов связи
4. Создать программу с подпрограммой на языке assembler
Объектом исследования являются каналы связи в вычислительных системах и телекоммуникациях.
Предметом исследования являются сравнительные характеристики каналов связи телекоммуникационных систем.
1. КАНАЛЫ ПЕРЕДАЧИ ДАННЫХ И ИХ КЛАССИФИКАЦИЯ
1.1 Классификация каналов связи
По физической природе каналы связи делятся на:
- механические - используются для передачи материальных носителей информации;
- акустические - переносят звуковой сигнал;
- оптические - передают световой сигнал;
- электрические - передают электрический сигнал.
Электрические и оптические каналы связи могут быть:
- проводными, где для передачи сигналов служат проводниковые линии связи(электрические провода, кабели, световоды и т. д.);
- беспроводными (радиоканалы, инфракрасные каналы и т. д.), использующими для передачи сигналов электромагнитные волны, распространяющиеся по эфиру.
По форме представления передаваемой информации каналы связи делятся на:
- аналоговые - по аналоговым каналам передается информация, представленная в непрерывной форме, то есть в виде непрерывного ряда значений какой-либо физической величины;
- цифровые - по цифровым каналам пересылается информация, представленная в виде цифровых (дискретных, импульсных) сигналов той или иной физической природы.
В зависимости от возможных направлений передачи информации различают:
- симплексные каналы связи, позволяющие передавать информацию только в одном направлении;
- полудуплексные каналы связи, обеспечивающие попеременную передачу информации в прямом и в обратном направлениях;
- дуплексные каналы связи, позволяющие вести передачу информации одновременнои в прямом, и в обратном направлениях.
Каналы связи могут быть, наконец:
- коммутируемыми;
- некоммутируемыми.
Коммутируемые каналы создаются из отдельных участков (сегментов) только на время передачи по ним информации; по окончании сеанса связи такой канал ликвидируется (разрывается).
Некоммутируемые (выделенные) каналы организуются на длительное время и имеют постоянные характеристики по длине, пропускной способности, помехозащищенности.
По пропускной способности их можно разделить на:
- низкоскоростные каналы связи, скорость передачи информации в которых составляет от 50 до 200 бит/с;[7, с.53] это телеграфные каналы связи, как коммутируемые (абонентский телеграф), так и некоммутируемые;
- среднескоростные каналы связи, например аналоговые (телефонные) каналы связи; скорость передачи в них от 300 до 9600 бит/с, [7, с.53] а в новых стандартах v90-v.92 Международного консультативного комитета по телеграфии и телефонии (МККТТ) и до 56 000 бит/с[7, с.53];
- высокоскоростные (широкополосные) каналы связи, обеспечивающие скорость передачи информации выше 56 000 бит/с[7, с.53].
Физической средой передачи информации в низкоскоростных и среднескоростных каналов связи обычно являются проводные линии связи: группы либо параллельных,либо скрученных («витая пара») проводов.
Для организации широкополосных каналов связи используются различные кабели, в частности:
- неэкранированные с витыми парами из медных проводов (Unshielded TwistedPair - UTP);
- экранированные с витыми парами из медных проводов (Shielded TwistedPair - STP);
- волоконно-оптические (Fiber Optic Cable - FOC);
- коаксиальные (Coaxial Cable - CC);
- беспроводныерадиоканалы.
Витая пара - это изолированные проводники, попарно свитые между собойдля уменьшения перекрестных наводок между проводниками. Такой кабель,состоящий обычно из небольшого количества витых пар (иногда даже двух), характеризуется меньшим затуханием сигнала при передаче на высоких частотахи меньшей чувствительностью к электромагнитным наводкам, чем параллельнаяпара проводов.
UTP-кабели чаще других используются в системах передачи данных, в частности в вычислительных сетях. Выделяют пять категорий витых пар UTP: перваяи вторая категории используются при низкоскоростной передаче данных; третья,четвертая и пятая - при скоростях передачи соответственно до 16, 25 и 155 Мбит/с (а при использовании стандарта технологии GigabitEthernet на витой паре,введенного в 1999 году, и до 1000 Мбит/с). При хороших технических характеристиках эти кабели сравнительно недороги, они удобны в работе, не нуждаютсяв заземлении.
STP-кабели обладают хорошими техническими характеристиками, но имеют высокую стоимость, жестки и неудобны в работе и требуют заземления экрана. Ониделятся на типы: Type 1A, Type 2A, Туре ЗА, Type 5A, Type 9A. Из них Туре ЗАопределяет характеристики неэкранированного телефонного кабеля, aType 5A-волоконно-оптического кабеля. Наиболее популярен кабель Type 1A стандартаIBM, состоящий из двух пар скрученных проводов, экранированных проводящейоплеткой, которую положено заземлять. Его характеристики примерно соответствуют характеристикам UTP-кабеля категории 5.
Коаксиальный кабель представляет собой медный проводник, покрытый диэлектриком и окруженный свитой из тонких медных проводников экранирующей защитной оплеткой. Коаксиальные кабели для телекоммуникаций делятся на двегруппы:
- «толстые» коаксиалы;
- «тонкие» коаксиалы.
Толстый коаксиальный кабель имеет наружный диаметр 12,5 мм и достаточнотолстый проводник (2,17 мм), обеспечивающий хорошие электрические и механические характеристики. Скорость передачи данных по толстому коаксиальному кабелю достаточно высокая (до 50 Мбит/с), но, учитывая определенное неудобство работы с ним и его значительную стоимость, рекомендовать его дляиспользования в сетях передачи данных можно далеко не всегда. Тонкий коаксиальный кабель имеет наружный диаметр 5-6 мм, он дешевле и удобнее в работе,но тонкий проводник в нем (0,9 мм) обусловливает худшие электрические (передает сигнал с допустимым затуханием на меньшее расстояние) и механическиехарактеристики. Рекомендуемые скорости передачи данных по «тонкому» коаксиалу не превышают 10 Мбит/с[7, с.68].
Основу волоконно-оптического кабеля составляют «внутренние подкабели» - стеклянные или пластиковые волокна диаметром 8-10 (одномодовые - однолучевые) и 50-60 (многомодовые - многолучевые) микрон, окруженные твердымзаполнителем и помещенные в защитную оболочку диаметром 125 мкм[7, с.72]. В одномкабеле может содержаться от одного до нескольких сотен таких «внутреннихподкабелей». Кабель, в свою очередь, окружен заполнителем и покрыт болеетолстой защитной оболочкой, между которыми проложены кевларовые волокна,принимающие на себя обеспечение механической прочности кабеля.
По одномодовому волокну (диаметр их 8-10 мкм) оптический сигнал распространяется, почти не отражаясь от стенок волокна (входит в волокно параллельноего стенкам), чем обеспечивается очень широкая полоса пропускания (до сотенгигагерц на километр). По многомодовому волокну (его диаметр 40-100 мкм)распространяются сразу много волн различной длины, каждая из которых входит в волокно под своим углом и, соответственно, отражается от стенок волокнав разных местах (полоса пропускания многомодового волокна 500-800 МГц накилометр) [7, с.73].
Радиоканал - это беспроводный канал связи, прокладываемый через эфир. Система передачи данных (СПД) по радиоканалу включает в себя радиопередатчики радиоприемник, настроенные на один и тот же радиоволновой диапазон, который определяется частотной полосой электромагнитного спектра, используемойдля передачи данных. Часто такую СПД называют просто радиоканалом. Скорости передачи данных по радиоканалу практически не ограничены (они ограничиваются полосой пропускания приемо-передающей аппаратуры).
1.2 Цифровые каналы связи
Поскольку цифровые сигналы можно более эффективно и гибко обрабатывать
и передавать чем аналоговые, стали развиваться цифровые каналы связи.
Перед вводом в такой канал аналогового сигнала он оцифровывается - преобразуется в цифровую форму: каждые 125 мкс (частота оцифровки обычно равна8 кГц) текущее значение аналогового сигнала отображается 8-разрядным двоичным кодом. Скорость передачи данных по базовому цифровому каналу, такимобразом, составляет 64 Кбит/с; но путем некоторых технических ухищрений несколько цифровых каналов можно объединять в один (мультиплексировать), тесть создавать более скоростные каналы. Простейшим мультиплексированы цифровым каналом является канал со скоростью передачи 128 Кбит/с. Болеесложные каналы, мультиплексирующие, например, 32 базовых канала, обеспечивают пропускную способность 2048 Мбит/с. Базовые или мультиплексированные цифровые каналы используются повсеместно в современных магистральных
системах, а также для подсоединения к ним офисных цифровых АТС.
В последние годы за рубежом стал весьма популярным цифровой абонентскидоступ, при котором оцифровка (дискретизация) звукового сигнала выполняется уже в абонентской телефонной системе, содержащей интерфейсный цифровой адаптер.
Наиболее распространенной и активно развивающейся в настоящее время является цифровая сеть с интеграцией услуг - ISDN (Integrated Services DigitaNetwork), опирающаяся на цифровые абонентские каналы.
Цифровые коммуникации более надежны, чем аналоговые, обеспечивают большую целостность каналов связи, позволяют эффективнее внедрять механизмзащиты данных, основанные на их шифровании. Важным является и то, что длясоздания ISDN можно использовать уже имеющуюся инфраструктуру телефонных сетей, правда, из-за установки дополнительного оборудования и сложностего настройки возрастают затраты на организацию системы связи. Затраты нподключение к ISDN физических лиц составляют $600-800. Но, учитывая высокую пропускную способность сетей ISDN, они достаточно быстро окупаются.
Вместе с тем, существуют проблемы совместимости ISDN-оборудования различных производителей.
Из активно развивающихся цифровых систем следует отметить модификациитехнологии цифровых абонентских линий (DSL, Digital Subscriber Line). Эта технология обеспечивает высокоскоростную передачу данных на коротком участке витой пары, соединяющем абонента, на стороне которого установлен xDLS модем, с ближайшей автоматической телефонной станцией (АТС), то есть обеспечивает решение проблемы «последней мили», отделяющей потребителя от поставщика услуг.
В 1990 году компания Bellcore предложила технологию HDSL (High Bit RateDSL), являющуюся высокоскоростным воплощением абонентской линии ISDN.
HDLS использует четырехуровневую амплитудно-импульсную модуляцию, прикоторой одним импульсом можно передавать два бита информации. Передачаведется в дуплексном режиме по одной паре проводов со скоростью 768 или1024 Кбит/с (в зависимости от сервиса Т1 или Е1) на расстояния до 3,6 км. Прииспользовании двух или трех пар проводов обеспечивается скорость передачиданных от 1,544 до 2,048 Мбит/с.
Сейчас имеется несколько стандартизованных модификаций HDSL:
- SDSL (Symmetric DSL) представляет собой разновидность HDSL, использующую только одну пару проводов;
- RADSL (Rate Adaptive DSL) обеспечивает возможность выбора для использования одной из нескольких (обычно из 8) линейных скоростей;
- MSDSL (Multirate SDSL) позволяет динамически изменять информационную скорость в диапазоне от 64 до 1152 Кбит/с в зависимости от параметров линии;
- ADSL (Asymmetric DSL) - наиболее популярная сейчас модификация, которая разрабатывалась специально для обеспечения доступа к информационным ресурсам сети Интернет[8, с.83].
Асимметричность состоит в увеличении скорости передачи в одном направлении за счет снижения этой скорости в другом. При передаче информации из сетиабоненту эта скорость может достигать 8 Мбит/с; в обратном направлении - 1,5 Мбит/с[8, с.94]. Эта технология удобна еще и тем, что дает возможность использования канала связи для передачи данных и ведения телефонных разговоров - дополнительно к модемам требуется оборудование разделения каналов данныхи голоса - сплиттеры (правда, в модемном стандарте для аналоговых линий V.92такая возможность тоже предусмотрена). Обычно ADSL-модемы, подключаемыек обоим концам линии между абонентом и АТС, образуют на основе частотногоразделения три логических (виртуальных) канала: быстрый канал передачи
данных от сети абоненту (downstream), менее быстрый канал передачи от абонента в сеть (upstream) и обычный канал телефонной связи для телефонных разговоров. Ввиду сугубо асимметричного трафика полоса пропускания широкополосного канала (витая пара) между этими каналами делится также асимметрично.
В 1997 году была предложена более дешевая и удобная в работе модификация
ADSL - Universal ADSL (UADSL), обеспечивающая, правда, существенно болеенизкие скорости передачи данных:
- при длине линии до 3,5 км скорость передачи от сети составляет 1,5 Мбит/с, а от абонента - 384 Кбит/с;
- при длине линии до 5,5 км (средняя длина абонентских линий городских АТС) скорость передачи от сети составляет 640 Кбит/с, а от абонента - 196 Кбит/с[8, с.123].
Но если одновременная передача голоса и данных по технологии ADSL требуетустановки на стороне абонента сплитера (фильтра), отделяющего речевой трафик от данных, то по технологии UADSL этого не требуется. Кроме того, пониженные скорости передачи позволяют снизить требования к качеству линии связи и к системе обработки сигнала (приемнику).
Существует множество видов каналов связи, среди которых наиболее часто выделяют каналы проводной связи (воздушные, кабельные, световодные и др.) и каналы радиосвязи (тропосферные, спутниковые и др.). Такие каналы в свою очередь принято квалифицировать на основе характеристик входного и выходного сигналов, а также по изменению характеристик сигналов в зависимости от таких явлений, происходящих в канале, как замирания и затухание сигналов.
2. ХАРАКТЕРИСТИКИ КАНАЛА СВЯЗИ
2.1 Аппаратура передачи данных
Аппаратура передачи данных (АПД или DCE - Data Circuit terminating Equipment) непосредственно связывает компьютеры или локальные сети пользователя с линией связи и является, таким образом, пограничным оборудованием. Традиционно аппаратуру передачи данных включают в состав линии связи. Примерами DCE являются модемы, терминальные адаптеры сетей ISDN, оптические модемы, устройства подключения к цифровым каналам. Обычно DCE работает на физическом уровне, отвечая за передачу и прием сигнала нужной формы и мощности в физическую среду.
Аппаратура пользователя линии связи, вырабатывающая данные для передачи по линии связи и подключаемая непосредственно к аппаратуре передачи данных, обобщенно носит название оконечное оборудование данных (00 Д или DTE - Data Terminal Equipment). Примером DTE могут служить компьютеры или маршрутизаторы локальных сетей. Эту аппаратуру не включают в состав линии связи.
Разделение оборудования на классы DCE и DTE в локальных сетях является достаточно условным. Например, адаптер локальной сети можно считать как принадлежностью компьютера, то есть DTE, так и составной частью канала связи, то есть DCE.
Промежуточная аппаратура обычно используется на линиях связи большой протяженности. Промежуточная аппаратура решает две основные задачи:
улучшение качества сигнала;
создание постоянного составного канала связи между двумя абонентами сети.
В локальных сетях промежуточная аппаратура может совсем не использоваться, если протяженность физической среды - кабелей или радиоэфира - позволяет одному сетевому адаптеру принимать сигналы непосредственно от другого сетевого адаптера, без промежуточного усиления. В противном случае применяются устройства типа повторителей и концентраторов.
В глобальных сетях необходимо обеспечить качественную передачу сигналов на расстояния в сотни и тысячи километров. Поэтому без усилителей сигналов, установленных через определенные расстояния, построить территориальную линию связи невозможно. В глобальной сети необходима также и промежуточная аппаратура другого рода - мультиплексоры, демультиплексоры и коммутаторы. Эта аппаратура решает вторую указанную задачу, то есть создает между двумя абонентами сети составной канал из некоммутируемых отрезков физической среды - кабелей с усилителями. Важно отметить, что приведенные на рисунке 2.1 мультиплексоры, демультиплексоры и коммутаторы образуют составной канал на долговременной основе, например,на месяц или год, причем абонент не может влиять на процесс коммутации этого канала - эти устройства управляются по отдельным входам, абоненту недоступным. Наличие промежуточной коммутационной аппаратуры избавляет создателей глобальной сети от необходимости прокладывать отдельную кабельную линию для каждой пары соединяемых узлов сети. Вместо этого между мультиплексорами и коммутаторами используется высокоскоростная физическая среда, например, волоконно-оптический или коаксиальный кабель, по которому передаются одновременно данные от большого числа сравнительно низкоскоростных абонентских линий. А когда нужно образовать постоянное соединение между какими-либо двумя конечными узлами сети, находящимися, например, в разных городах, то мультиплексоры, коммутаторы и демультиплексоры настраиваются оператором канала соответствующим образом. Высокоскоростной канал обычно называют уплотненным каналом.
Промежуточная аппаратура канала связи прозрачна для пользователя, он ее не замечает и не учитывает в своей работе. Для него важны только качество полученного канала, влияющее на скорость передачи дискретных данных. В действительности же промежуточная аппаратура образует сложную сеть, которую называют первичной сетью, так как сама по себе она никаких высокоуровневых служб (например, файловой или передачи голоса) не поддерживает, а только служит основой для построения компьютерных, телефонных или иных сетей.
В зависимости от типа промежуточной аппаратуры все линии связи делятся на аналоговые и цифровые. В аналоговых линиях промежуточная аппаратура предназначена для усиления аналоговых сигналов, то есть сигналов, которые имеют непрерывный диапазон значений. Такие линии связи традиционно применялись в телефонных сетях для связи АТС между собой. Для создания высокоскоростных каналов, которые мультиплексируют несколько низкоскоростных аналоговых абонентских каналов, при аналоговом подходе обычно используется техника частотного мультиплексирования (Frequency Division Multiplexing, FDM).
В цифровых линиях связи передаваемые сигналы имеют конечное число состояний. Как правило, элементарный сигнал, то есть сигнал, передаваемый за один такт работы передающей аппаратуры, имеет 2 или 3 состояния, которые передаются в линиях связи импульсами прямоугольной формы. С помощью таких сигналов передаются как компьютерные данные, так и оцифрованные речь и изображение. В цифровых каналах связи используется промежуточная аппаратура, которая улучшает форму импульсов и обеспечивает их ресинхронизацию, то есть восстанавливает период их следования. Промежуточная аппаратура образования высокоскоростных цифровых каналов (мультиплексоры, демультиплексоры, коммутаторы) работает по принципу временного мультиплексирования каналов (Time Division Multiplexing, TDM), когда каждому низкоскоростному каналу выделяется определенная доля времени (тайм-слот или квант) высокоскоростного канала.
Аппаратура передачи дискретных компьютерных данных по аналоговым и цифровым линиям связи существенно отличается, так как в первом случае линия связи предназначена для передачи сигналов произвольной формы и не предъявляет никаких требований к способу представления единиц и нулей аппаратурой передачи данных, а во втором - все параметры передаваемых линией импульсов стандартизованы. Другими словами, на цифровых линиях связи протокол физического уровня определен, а на аналоговых линиях - нет.
2.2 Характеристики каналов связи
К основным характеристикам линий связи относятся:
- амплитудно-частотная характеристика;
- полоса пропускания;
- затухание;
- помехоустойчивость;
- пропускная способность;
- достоверность передачи данных;
- удельная стоимость.
В первую очередь разработчика вычислительной сети интересуют пропускная способность и достоверность передачи данных, поскольку эти характеристики прямо влияют на производительность и надежность создаваемой сети. Пропускная способность и достоверность - это характеристики как линии связи, так и способа передачи данных. Поэтому если способ передачи (протокол) уже определен, то известны и эти характеристики. Например, пропускная способность цифровой линии всегда известна, так как на ней определен протокол физического уровня, который задает битовую скорость передачи данных - 64 Кбит/с, 2 Мбит/с и т. п.
Таблица 1 - Сравнительная характеристика кабелей
Тип кабеля |
Скорость передачи, Мбит/с |
Длина передачи, м |
Простота установки |
Подверженность помехам |
Стоимость |
|
Неэкранированная витая пара |
100 |
100 |
Прост в установке |
Подвержен помехам |
Самый дешевый |
|
Тонкий коаксиальный |
10 |
185 |
Прост в установке |
Хорошая защита от помех |
Дороже витой пары |
|
Толстый коаксиальный |
10 |
500 |
Прост в установке |
Хорошая зашита от помех |
Дороже тонкого коаксиального кабеля |
|
Оптоволоконный |
100-2000 |
2000 |
Труден в установке |
Не подвержен помехам |
Самый дорогой |
Однако нельзя говорить о пропускной способности линии связи, до того как для нее определен протокол физического уровня. Именно в таких случаях, когда только предстоит определить, какой из множества существующих протоколов можно использовать на данной линии, очень важными являются остальные характеристики линии, такие как полоса пропускания, перекрестные наводки, помехоустойчивость и другие характеристики.
Для определения характеристик линии связи часто используют анализ ее реакций на некоторые эталонные воздействия. Такой подход позволяет достаточно просто и однотипно определять характеристики линий связи любой природы, не прибегая к сложным теоретическим исследованиям. Чаще всего в качестве эталонных сигналов для исследования реакций линий связи используются синусоидальные сигналы различных частот. Это связано с тем, что сигналы этого типа часто встречаются в технике и с их помощью можно представить любую функцию времени - как непрерывный процесс колебаний звука, так и прямоугольные импульсы, генерируемые компьютером.
Спектральный анализ сигналов на линиях связи
Из теории гармонического анализа известно, что любой периодический процесс можно представить в виде суммы синусоидальных колебаний различных частот и различных амплитуд (Рисунок 3). Каждая составляющая синусоида называется также гармоникой, а набор всех гармоник называют спектральным разложением исходного сигнала. Непериодические сигналы можно представить в виде интеграла синусоидальных сигналов с непрерывным спектром частот. Например, спектральное разложение идеального импульса (единичной мощности и нулевой длительности) имеет составляющие всего спектра частот, от - ? до + ? (Рисунок 4).
линия связь телекоммуникация assembler.
Рисунок 3- Представление периодического сигнала суммой синусоид
Рисунок 4 - Спектральное разложение идеального импульса
Техника нахождения спектра любого исходного сигнала хорошо известна. Для некоторых сигналов, которые хорошо описываются аналитически (например, для последовательности прямоугольных импульсов одинаковой длительности и амплитуды), спектр легко вычисляется на основании формул Фурье. Для сигналов произвольной формы, встречающихся на практике, спектр можно найти с помощью специальных приборов - спектральных анализаторов, которые измеряют спектр реального сигнала и отображают амплитуды составляющих гармоник на экране или распечатывают их на принтере. Искажение передающим каналом синусоиды какой-либо частоты приводит в конечном счете к искажению передаваемого сигнала любой формы, особенно если синусоиды различных частот искажаются неодинаково. Если это аналоговый сигнал, передающий речь, то изменяется тембр голоса за счет искажения обертонов - боковых частот. При передаче импульсных сигналов, характерных для компьютерных сетей, искажаются низкочастотные и высокочастотные гармоники, в результате фронты импульсов теряют свою прямоугольную форму (Рисунок 5). Вследствие этого на приемном конце линии сигналы могут плохо распознаваться.
Рисунок 5 - Искажение импульсов в линии связи
Линия связи искажает передаваемые сигналы из-за того, что ее физические параметры отличаются от идеальных. Так, например, медные провода всегда представляют собой некоторую распределенную по длине комбинацию активного сопротивления, емкостной и индуктивной нагрузки (Рисунок 6). В результате для синусоид различных частот линия будет обладать различным полным сопротивлением, а значит, и передаваться они будут по-разному. Волоконно-оптический кабель также имеет отклонения, мешающие идеальному распространению света. Если линия связи включает промежуточную аппаратуру, то она также может вносить дополнительные искажения, так как невозможно создать устройства, которые бы одинаково хорошо передавали весь спектр синусоид, от нуля до бесконечности.
Рисунок 6 - Представление линии как распределенной индуктивно-емкостной нагрузки
Кроме искажений сигналов, вносимых внутренними физическими параметрами линии связи, существуют и внешние помехи, которые вносят свой вклад в искажение формы сигналов на выходе линии. Эти помехи создают различные электрические двигатели, электронные устройства, атмосферные явления и т. д. Несмотря на защитные меры, предпринимаемые разработчиками кабелей и усилительно-коммутирующей аппаратуры, полностью компенсировать влияние внешних помех не удается. Поэтому сигналы на выходе линии связи обычно имеют сложную форму (как это и показано на Рисунке 5), по которой иногда трудно понять, какая дискретная информация была подана на вход линии.
Амплитудно-частотная характеристика, полоса пропускания и затухание Степень искажения синусоидальных сигналов линиями связи оценивается с помощью таких характеристик, как амплитудно-частотная характеристика, полоса пропускания и затухание на определенной частоте.
Амплитудно-частотная характеристика (Рисунок 7) показывает, как затухает амплитуда синусоиды на выходе линии связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала. Вместо амплитуды в этой характеристике часто используют также такой параметр сигнала, как его мощность.
Рисунок 7 - Амплитудно-частотная характеристика
Знание амплитудно-частотной характеристики реальной линии позволяет определить форму выходного сигнала практически для любого входного сигнала. Для этого необходимо найти спектр входного сигнала, преобразовать амплитуду составляющих его гармоник в соответствии с амплитудно-частотной характеристикой, а затем найти форму выходного сигнала, сложив преобразованные гармоники.
Несмотря на полноту информации, предоставляемой амплитудно-частотной характеристикой о линии связи, ее использование осложняется тем обстоятельством, что получить ее весьма трудно. Ведь для этого нужно провести тестирование линии эталонными синусоидами по всему диапазону частот от нуля до некоторого максимального значения, которое может встретиться во входных сигналах. Причем менять частоту входных синусоид нужно с небольшим шагом, а значит, количество экспериментов должно быть очень большим. Поэтому на практике вместо амплитудно-частотной характеристики применяются другие, упрощенные характеристики - полоса пропускания и затухание.
Полоса пропускания (bandwidth) - это непрерывный диапазон частот, для которого отношение амплитуды выходного сигнала ко входному превышает некоторый заранее заданный предел, обычно 0,5. То есть полоса пропускания определяет диапазон частот синусоидального сигнала, при которых этот сигнал передается по линии связи без значительных искажений. Знание полосы пропускания позволяет получить с некоторой степенью приближения тот же результат, что и знание амплитудно-частотной характеристики. Как мы увидим ниже, ширина полосы пропускания в наибольшей степени влияет на максимально возможную скорость передачи информации по линии связи. Именно этот факт нашел отражение в английском эквиваленте рассматриваемого термина (width - ширина).
Затухание (attenuation) определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по линии сигнала определенной частоты. Таким образом, затухание представляет собой одну точку из амплитудно-частотной характеристики линии. Часто при эксплуатации линии заранее известна основная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по линии сигналов. Более точные оценки возможны при знании затухания на нескольких частотах, соответствующих нескольким основным гармоникам передаваемого сигнала.
Затухание А обычно измеряется в децибелах (дБ, decibel - dB) и вычисляется по следующей формуле:
А = 10 log10 Рвых /Рвх,
где Рвых ~ мощность сигнала на выходе линии, Рвх - мощность сигнала на входе линии[6, с.73].
Так как мощность выходного сигнала кабеля без промежуточных усилителей всегда меньше, чем мощность входного сигнала, затухание кабеля всегда является отрицательной величиной.
Например, кабель на витой паре категории 5 характеризуется затуханием не ниже -23,6 дБ для частоты 100 МГц при длине кабеля 100 м. Частота 100 МГц выбрана потому, что кабель этой категории предназначен для высокоскоростной передачи данных, сигналы которых имеют значимые гармоники с частотой примерно 100 МГц. Кабель категории 3 предназначен для низкоскоростной передачи данных, поэтому для него определяется затухание на частоте 10 МГц (не ниже -11,5 дБ)[6, с.74]. Часто оперируют с абсолютными значениями затухания, без указания знака.
Абсолютный уровень мощности, например уровень мощности передатчика, также измеряется в децибелах. При этом в качестве базового значения мощности сигнала, относительно которого измеряется текущая мощность, принимается значение в 1 мВт. Таким образом, уровень мощности р вычисляется по следующей формуле:
р = 10 log10 Р/1мВт [дБм],
где Р - мощность сигнала в милливаттах, а дБм (dBm) - это единица измерения уровня мощности (децибел на 1 мВт)[6, с.83].
Таким образом, амплитудно-частотная характеристика, полоса пропускания и затухание являются универсальными характеристиками, и их знание позволяет сделать вывод о том, как через линию связи будут передаваться сигналы любой формы.
Полоса пропускания зависит от типа линии и ее протяженности. На Рисуноке 8 показаны полосы пропускания линий связи различных типов, а также наиболее часто используемые в технике связи частотные диапазоны.
Пропускная способность линии
Пропускная способность (throughput) линии характеризует максимально возможную скорость передачи данных по линии связи. Пропускная способность измеряется в битах в секунду - бит/с, а также в производных единицах, таких как килобит в секунду (Кбит/с), мегабит в секунду (Мбит/с), гигабит в секунду (Гбит/с) и т. д.
Пропускная способность линий связи и коммуникационного сетевого оборудования традиционно измеряется в битах в секунду, а не в байтах в секунду. Это связано с тем, что данные в сетях передаются последовательно, то есть побитно, а не параллельно, байтами, как это происходит между устройствами внутри компьютера. Такие единицы измерения, как килобит, мегабит или гигабит, в сетевых технологиях строго соответствуют степеням ) 0 (то есть килобит - это 1000 бит, а мегабит - это 1 000 000 бит), как это принято во всех отраслях науки и техники, а не близким к этим числам степеням 2, как это принято в программировании, где приставка кило равна 210 =1024, а мега - 220 = 1 048576[6, с.93].
Рисунок 8 - Полосы пропускания линий связи и популярные частотные диапазоны
Пропускная способность линии связи зависит не только от ее характеристик, таких как амплитудно-частотная характеристика, но и от спектра передаваемых сигналов. Если значимые гармоники сигнала (то есть те гармоники, амплитуды которых вносят основной вклад в результирующий сигнал) попадают в полосу пропускания линии, то такой сигнал будет хорошо передаваться данной линией связи и приемник сможет правильно распознать информацию, отправленную по линии передатчиком (Рисунок 2.9, а). Если же значимые гармоники выходят за границы полосы пропускания линии связи, то сигнал будет значительно искажаться, приемник будет ошибаться при распознавании информации, а значит, информация не сможет передаваться с заданной пропускной способностью (Рисунок 9, б).
Рисунок 9 - Соответствие между полосой пропускания линии связи и спектром сигнала
Выбор способа представления дискретной информации в виде сигналов, подаваемых на линию связи, называется физическим или линейным кодированием. От выбранного способа кодирования зависит спектр сигналов и, соответственно, пропускная способность линии. Таким образом, для одного способа кодирования линия может обладать одной пропускной способностью, а для другого - другой. Например, витая пара категории 3 может передавать данные с пропускной способностью 10 Мбит/с при способе кодирования стандарта физического уровня l0Base-T и 33 Мбит/с при способе кодирования стандарта 100Base-T4. В примере, приведенном на Рисуноке 2.9, принят следующий способ кодирования - логическая 1 представлена на линии положительным потенциалом, а логический 0 - отрицательным.
Теория информации говорит, что любое различимое и непредсказуемое изменение принимаемого сигнала несет в себе информацию. В соответствии с этим прием синусоиды, у которой амплитуда, фаза и частота остаются неизменными, информации не несет, так как изменение сигнала хотя и происходит, но является хорошо предсказуемым. Аналогично, не несут в себе информации импульсы на тактовой шине компьютера, так как их изменения также постоянны во времени. А вот импульсы на шине данных предсказать заранее нельзя, поэтому они переносят информацию между отдельными блоками или устройствами.
Большинство способов кодирования используют изменение какого-либо параметра периодического сигнала - частоты, амплитуды и фазы синусоиды или же знак потенциала последовательности импульсов. Периодический сигнал, параметры которого изменяются, называют несущим сигналом или несущей частотой, если в качестве такого сигнала используется синусоида.
Если сигнал изменяется так, что можно различить только два его состояния, то любое его изменение будет соответствовать наименьшей единице информации - биту. Если же сигнал может иметь более двух различимых состояний, то любое его изменение будет нести несколько бит информации.
Количество изменений информационного параметра несущего периодического сигнала в секунду измеряется в бодах (baud). Период времени между соседними изменениями информационного сигнала называется тактом работы передатчика.
Пропускная способность линии в битах в секунду в общем случае не совпадает с числом бод. Она может быть как выше, так и ниже числа бод, и это соотношение зависит от способа кодирования.
Если сигнал имеет более двух различимых состояний, то пропускная способность в битах в секунду будет выше, чем число бод. Например, если информационными параметрами являются фаза и амплитуда синусоиды, причем различаются 4 состояния фазы в 0,90,180 и 270 градусов и два значения амплитуды сигнала, то информационный сигнал может иметь 8 различимых состояний. В этом случае модем, работающий со скоростью 2400 бод (с тактовой частотой 2400 Гц) передает информацию со скоростью 7200 бит/с, так как при одном изменении сигнала передается 3 бита информации[6, с.153].
При использовании сигналов с двумя различимыми состояниями может наблюдаться обратная картина. Это часто происходит потому, что для надежного распознавания приемником пользовательской информации каждый бит в последовательности кодируется с помощью нескольких изменений информационного параметра несущего сигнала. Например, при кодировании единичного значения бита импульсом положительной полярности, а нулевого значения бита - импульсом отрицательной полярности физический сигнал дважды изменяет свое состояние при передаче каждого бита. При таком кодировании пропускная способность линии в два раза ниже, чем число бод, передаваемое по линии.
На пропускную способность линии оказывает влияние не только физическое, но и логическое кодирование. Логическое кодирование выполняется до физического кодирования и подразумевает замену бит исходной информации новой последовательностью бит, несущей ту же информацию, но обладающей, кроме этого, дополнительными свойствами, например возможностью для приемной стороны обнаруживать ошибки в принятых данных. Сопровождение каждого байта исходной информации одним битом четности - это пример очень часто применяемого способа логического кодирования при передаче данных с помощью модемов. Другим примером логического кодирования может служить шифрация данных, обеспечивающая их конфиденциальность при передаче через общественные каналы связи. При логическом кодировании чаще всего исходная последовательность бит заменяется более длинной последовательностью, поэтому пропускная способность канала по отношению к полезной информации при этом уменьшается.
Связь между пропускной способностью линии и ее полосой пропускания
Чем выше частота несущего периодического сигнала, тем больше информации в единицу времени передается по линии и тем выше пропускная способность линии при фиксированном способе физического кодирования. Однако, с другой стороны, с увеличением частоты периодического несущего сигнала увеличивается и ширина спектра этого сигнала, то есть разность между максимальной и минимальной частотами того набора синусоид, которые в сумме дадут выбранную для физического кодирования последовательность сигналов. Линия передает этот спектр синусоид с теми искажениями, которые определяются ее полосой пропускания. Чем больше несоответствие между полосой пропускания линии и шириной спектра передаваемых информационных сигналов, тем больше сигналы искажаются и тем вероятнее ошибки в распознавании информации принимающей стороной, а значит, скорость передачи информации на самом деле оказывается меньше, чем можно было предположить.
Связь между полосой пропускания линии и ее максимально возможной пропускной способностью, вне зависимости от принятого способа физического кодирования, установил Клод Шеннон:
С = F log2 (1 + Рс/Рш),
где С - максимальная пропускная способность линии в битах в секунду, F - где С - максимальная пропускная способность линии в битах в секунду, F - ширина полосы пропускания линии в герцах, Рс - мощность сигнала, Рш - мощность шума[6, с.162].
Из этого соотношения видно, что хотя теоретического предела пропускной способности линии с фиксированной полосой пропускания не существует, на практике такой предел имеется. Действительно, повысить пропускную способность линии можно за счет увеличения мощности передатчика или же уменьшения мощности шума (помех) на линии связи. Обе эти составляющие поддаются изменению с большим трудом. Повышение мощности передатчика ведет к значительному увеличению его габаритов и стоимости. Снижение уровня шума требует применения специальных кабелей с хорошими защитными экранами, что весьма дорого, а также снижения шума в передатчике и промежуточной аппаратуре, чего достичь весьма не просто. К тому же влияние мощностей полезного сигнала и шума на пропускную способность ограничено логарифмической зависимостью, которая растет далеко не так быстро, как прямо-пропорциональная. Так, при достаточно типичном исходном отношении мощности сигнала к мощности шума в 100 раз повышение мощности передатчика в 2 раза даст только 15 % увеличения пропускной способности линии.
Близким по сути к формуле Шеннона является следующее соотношение, полученное Найквистом, которое также определяет максимально возможную пропускную способность линии связи, но без учета шума на линии:
С = 2F log2 М,
где М - количество различимых состояний информационного параметра[6, с.125].
Если сигнал имеет 2 различимых состояния, то пропускная способность равна удвоенному значению ширины полосы пропускания линии связи (Рисунок 2.10, а). Если же передатчик использует более чем 2 устойчивых состояния сигнала для кодирования данных, то пропускная способность линии повышается, так как за один такт работы передатчик передает несколько бит исходных данных, например 2 бита при наличии четырех различимых состояний сигнала (Рисунок 10, б).
Рисунок 10 - Повышение скорости передачи за счет дополнительных состояний сигнала
Хотя формула Найквиста явно не учитывает наличие шума, косвенно его влияние отражается в выборе количества состояний информационного сигнала. Для повышения пропускной способности канала хотелось бы увеличить это количество до значительных величин, но на практике мы не можем этого сделать из-за шума на линии. Например, для примера, приведенного на Рисуноке 10, можно увеличить пропускную способность линии еще в два раза, использовав для кодирования данных не 4, а 16 уровней. Однако если амплитуда шума часто превышает разницу между соседними 16-ю уровнями, то приемник не сможет устойчиво распознавать передаваемые данные. Поэтому количество возможных состояний сигнала фактически ограничивается соотношением мощности сигнала и шума, а формула Найквиста определяет предельную скорость передачи данных в том случае, когда количество состояний уже выбрано с учетом возможностей устойчивого распознавания приемником.
Приведенные соотношения дают предельное значение пропускной способности линии, а степень приближения к этому пределу зависит от конкретных методов физического кодирования, рассматриваемых ниже.
Помехоустойчивость и достоверность
Помехоустойчивость линии определяет ее способность уменьшать уровень помех, создаваемых во внешней среде, на внутренних проводниках. Помехоустойчивость линии зависит от типа используемой физической среды, а также от экранирующих и подавляющих помехи средств самой линии. Наименее помехоустойчивыми являются радиолинии, хорошей устойчивостью обладают кабельные линии и отличной - волоконно-оптические линии, малочувствительные ко внешнему электромагнитному излучению. Обычно для уменьшения помех, появляющихся из-за внешних электромагнитных полей, проводники экранируют и/или скручивают.
Перекрестные наводки на ближнем конце (Near End Cross Talk - NEXT) определяют помехоустойчивость кабеля к внутренним источникам помех, когда электромагнитное поле сигнала, передаваемого выходом передатчика по одной паре проводников, наводит на другую пару проводников сигнал помехи. Если ко второй паре будет подключен приемник, то он может принять наведенную внутреннюю помеху за полезный сигнал. Показатель NEXT, выраженный в децибелах, равен 10 log Рвых/Рнав, где Рвых - мощность выходного сигнала, Рнав - мощность наведенного сигнала.
Чем меньше значение NEXT, тем лучше кабель. Так, для витой пары категории 5 показатель NEXT должен быть меньше -27 дБ на частоте 100 МГц.
Показатель NEXT обычно используется применительно к кабелю, состоящему из нескольких витых пар, так как в этом случае взаимные наводки одной пары на другую могут достигать значительных величин. Для одинарного коаксиального кабеля (то есть состоящего из одной экранированной жилы) этот показатель не имеет смысла, а для двойного коаксиального кабеля он также не применяется вследствие высокой степени защищенности каждой жилы. Оптические волокна также не создают сколь-нибудь заметных помех друг для друга.
В связи с тем, что в некоторых новых технологиях используется передача данных одновременно по нескольким витым парам, в последнее время стал применяться показатель PowerSUM, являющийся модификацией показателя NEXT. Этот показатель отражает суммарную мощность перекрестных наводок от всех передающих пар в кабеле.
Достоверность передачи данных характеризует вероятность искажения для каждого передаваемого бита данных. Иногда этот же показатель называют интенсивностью битовых ошибок (Bit Error Rate, BER). Величина BER для каналов связи без дополнительных средств защиты от ошибок (например, самокорректирующихся кодов или протоколов с повторной передачей искаженных кадров) составляет, как правило,10-4 - 10-6, в оптоволоконных линиях связи - 10-9. Значение достоверности передачи данных, например, в 10-4 говорит о том, что в среднем из 10000 бит искажается значение одного бита.
Искажения бит происходят как из-за наличия помех на линии, так и по причине искажений формы сигнала ограниченной полосой пропускания линии. Поэтому для повышения достоверности передаваемых данных нужно повышать степень помехозащищенности линии, снижать уровень перекрестных наводок в кабеле, а также использовать более широкополосные линии связи.
Таким образом, амплитудно-частотная характеристика, полоса пропускания и затухание являются универсальными характеристиками, и их знание позволяет сделать вывод о том, как через линию связи будут передаваться сигналы любой формы.
3. ПРИМЕНЕНИЕ ПОДПРОГРАММ В ВЫЧИСЛИТЕЛЬНЫХ ПРОЦЕССАХ НА ЯЗЫКЕ ASSEMBLER
3.1 Условие задачи
Определить среднее значение элементов массива А(I) и В(I). Определение среднего значения оформить в виде подпрограммыI= 1,2,..,10.
3.2 Блок-схема алгоритма
Распространенный тип схем (графических моделей), описывающих алгоритмы или процессы, в которых отдельные шаги изображаются в виде блоков различной формы, соединенных между собой линиями, указывающими направление последовательности (Рисунок 11).
Рисунок 11 - Блок схема алгоритма
3.3 Код программы с комментариями
.modelsmall ; модельпамяти
.8086
.data ; сегментданных
Adb 4,1,3,1,4,6,2,1,4,5 ; массивA
Bdb 4,3,2,3,1,4,6,1,2,3 ;массивB
tmpdb 0 ; переменная для результата
.stack ;сегмент стека
db 255 dup(?)
.code
start:
movax,@data ; физический адрес сегмента данных в регистр
movds,ax ;копируется содержимое ax в ds
leaax,A ; перезапись массива A в регистр ax
pushax ; помещаем axв стек
leabx,B ; перезапись массива B в регистр bx
pushbx ; помещаем bxв стек
callavg ; вызов процедуры avg
movtmp,al ; передаем значение процедуры в переменную
movah,4Ch
moval,00h
int 21h
avgproc ; начало процедуры
pushbp ; обращение к параметрам внутри процедуры
movbp,sp ; обращение к параметрам внутри процедуры
xorah,ah ; обнуление регистра
movdi,4 ;
movcx,2 ; присвоение значение сх 2
big:
pushcx ; помещаем сxв стек
movcx,10 ; присвоение значение сх 10
mov si,[bp+di] ;
sum:
lodsb
addah,al ; прибавить к AH содержимое AL
loopsum
adddi,2 ; прибавить к di 2
popcx
loop big
popbp
xchgah,al ; поменять местами
movbl,20 ; присвоить регистру bl
cbw ;преобразовать байт в слово
idivbl ; разделить нацело на 20
retn 4 ;вернуться из подпрограммы
avgendp ; завершение процедуры
end start
3.4 Результат выполнения программы
Для запуска программы, необходимо создать виртуальную среду, затем перейти в нее. После чего проверяем код на наличие ошибок, при их наличии, высвечиваются строки в который были обнаружены ошибки.
Если ошибок не было обнаружено, то создаем исполнительный файл (*.exe) и запускаем программу (Рисунок 1).
Рисунок 1 - Начало работы
Запускаем программу (Рисунок 2).
Рисунок 2 - Запуск программы
Для проверки программы используем инспектор (data > inspector), в нем вводим tmp, переменная в которой должен быть результат программы(Рисунок 3). В нашем случае, занчение переменной tmpдолжно быть равно 3, т.к. сумма элементов массива равна 60, а элементов всего 20, значит среднее значение равно 3.
Рисунок 3 - Проверка работы программы
ЗАКЛЮЧЕНИЕ
В ходе написания работы была достигнута поставленная цель, то есть мы изучили сравнительные характеристика каналов связи. А так же, выполнили необходимые задачи, рассмотрели классификацию каналов связи и аппаратную часть. А так же создали программу на языке Assembler, в которой использовали подпрограмму, для решения практической задачи.
При построении сетей применяются линии связи, использующие различную физическую среду: телефонные и телеграфные провода, подвешенные в воздухе, медные коаксиальные кабели, медные витые пары, волоконно-оптические кабели, радиоволны.
Линии связи могут использовать, кроме кабеля, промежуточную аппаратуру, прозрачную для пользователей. Промежуточная аппаратура выполняет две основные функции: усиливает сигналы и обеспечивает постоянную коммутацию между парой пользователей линии.
В зависимости от типа промежуточной аппаратуры линии связи делятся на аналоговые и цифровые. В аналоговых линиях связи для уплотнения низкоскоростных каналов абонентов в общий высокоскоростной канал используется метод разделения частот (FDM), а в цифровых - метод разделения во времени (TDM).
...Подобные документы
Основные характеристики дискретных каналов. Проблема их оптимизации. Классификация каналов передачи дискретной информации по различным признакам. Нормирование характеристик непрерывных каналов связи. Разновидности систем передачи дискретных каналов.
контрольная работа [103,7 K], добавлен 01.11.2011Классификация линий передачи по назначению. Отличия цифровых каналов от прямопроводных соединений. Основные методы передачи данных в ЦПС. Ethernet для связи УВК с рабочими станциями ДСП и ШНЦ. Передача данных в системах МПЦ через общедоступные сети.
реферат [65,1 K], добавлен 30.12.2010Диапазоны частот, передаваемых основными типами направляющих систем. Параметры каналов линий связи. Обозначения в линиях связи. Переключатель каналов с мультиплексированием по времени. Характеристики каналов на коаксиальном кабеле, оптических кабелей.
презентация [590,2 K], добавлен 19.10.2014Тенденции развития систем безопасности с точки зрения использования различных каналов связи. Использование беспроводных каналов в системах охраны. Функции GSM каналов, используемые системами безопасности. Вопросы безопасности при эксплуатации систем.
дипломная работа [1,6 M], добавлен 22.07.2009Сведения о характеристиках и параметрах сигналов и каналов связи, методы их расчета. Структура цифрового канала связи. Анализ технологии пакетной передачи данных по радиоканалу GPRS в качестве примера цифровой системы связи. Определение разрядности кода.
курсовая работа [2,2 M], добавлен 07.02.2013Характеристика Белорусской железной дороги. Схема сети дискретной связи. Расчет количества абонентских линий и межстанционных каналов сети дискретной связи и передачи данных, телеграфных аппаратов. Емкость и тип станции коммутации и ее оборудование.
курсовая работа [1,0 M], добавлен 07.01.2013Структурная схема устройства передачи данных и команд. Принцип действия датчика температуры. Преобразование сигналов, поступающих с четырех каналов. Модель устройства передачи данных. Построение кода с удвоением. Формирование кодовых комбинаций.
курсовая работа [322,1 K], добавлен 28.01.2015Основные компоненты технической системы передачи информации, аппаратура для коммутации и передачи данных. Интерфейсы доступа к линиям связи. Передача дискретной информации в телекоммуникационных системах, адаптеры для сопряжения компьютера с сетью.
презентация [1,6 M], добавлен 20.07.2015Принципы построения систем передачи информации. Характеристики сигналов и каналов связи. Методы и способы реализации амплитудной модуляции. Структура телефонных и телекоммуникационных сетей. Особенности телеграфных, мобильных и цифровых систем связи.
курсовая работа [6,4 M], добавлен 29.06.2010Общие характеристики систем радиорелейной связи. Особенности построения радиорелейных линий связи прямой видимости. Классификация радиорелейных линий. Виды модуляции, применяемые в радиорелейных системах передачи. Тропосферные радиорелейные линии.
дипломная работа [1,1 M], добавлен 23.05.2016Разработка системы сжатия и уплотнения каналов и определение её параметров и характеристик. Проектирование и применение систем уплотнения каналов с целью уменьшения плотности и сложности линий связи, увеличения числа каналов, улучшение качества связи.
курсовая работа [487,0 K], добавлен 25.12.2008Оценка моделей радиоканалов в системах доступа четвертого поколения. Основные методы оценки каналов в системах связи с использованием технологии OFDM-MIMO, их влияние на эффективность функционирования таких систем. Технология многоантенной передачи.
дипломная работа [10,0 M], добавлен 02.02.2016Общие положения по техническому обслуживанию центральных средств передачи в процессе эксплуатации. Принципы и правила технической эксплуатации сетевых трактов и каналов передачи. Методика восстановления узлов, линий передачи, трактов и каналов передачи.
контрольная работа [27,4 K], добавлен 24.12.2014Архитектура вычислительных сетей, их классификация, топология и принципы построения. Передача данных в сети, коллизии и способы их разрешения. Протоколы TCP-IP. OSI, DNS, NetBios. Аппаратное обеспечение для передачи данных. Система доменных имён DNS.
реферат [1,1 M], добавлен 03.11.2010Особенности проводных сетей передачи данных. Виды соединений. Разработка структурной схемы организации каналов, спецификации оборудования передачи. Взаимодействие с оборудованием связи, локальными вычислительными сетями и информационными комплексами.
курсовая работа [2,9 M], добавлен 16.03.2011Характеристика проводных (воздушных) линий связи как проводов без изолирующих или экранирующих оплеток, проложенных между столбами в воздухе. Конструкция кабельных линий и применение волоконной оптики. Инфракрасные беспроводные сети для передачи данных.
доклад [16,0 K], добавлен 22.11.2010Построение радиорелейных и спутниковых линий передачи, виды применяемых модуляций. Характеристика цифровых волоконно-оптических систем передачи. Применение программно-аппаратного комплекса LabView для тестирования сигнализации сети абонентского доступа.
дипломная работа [2,9 M], добавлен 26.06.2011Состав каналов для передачи дискретных сообщений. Наиболее распространенные способы задания непрерывных каналов, описание их с помощью операторов преобразования входных сигналов и задание действующих помех. Дискретный канал непрерывного времени.
презентация [294,9 K], добавлен 21.04.2015Разработка локальной сети передачи данных с выходом в Интернет для небольшого района города. Определение топологии сети связи. Проверка возможности реализации линий связи на медном проводнике трех категорий. Расчет поляризационной модовой дисперсии.
курсовая работа [733,1 K], добавлен 19.10.2014Изучение закономерностей и методов передачи сообщений по каналам связи и решение задачи анализа и синтеза систем связи. Проектирование тракта передачи данных между источником и получателем информации. Модель частичного описания дискретного канала.
курсовая работа [269,2 K], добавлен 01.05.2016