Фактори впливу та методи визначення електромагнітної обстановки офісного приміщення

Джерела та фактори, що погіршують електромагнітну обстановку у приміщенні. Аварійні потенціали на елементах заземлювального пристрою. Розробка програми безпечного розташування офісної техніки та організація робочих місць. Моніторинг напруги живлення.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык украинский
Дата добавления 08.10.2017
Размер файла 80,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Електричний випромінювач

Магнітний випромінювач

Ближня зона

Дальня зона

На основі формул, приведених в таблиці 2.1, можна зробити висновок, що в ближній зоні складові Е і Н для електричного випромінювача й Е і Н для магнітного знаходяться в квадратурі і тому середнє значення вектора Пойнтинга дорівнює нулю.

Це означає, що в ближній зоні електромагнітна хвиля не формується, саме тому ближню зону називають зоною індукції або зоною наведення.

Інша особливість ближньої зони полягає в тому, що хвильовий опір залежить не тільки від параметрів середовища, але й від виду випромінювача.

Для електричного випромінювача:

(2.7)

тобто поле високоімпедансне; для магнітного випромінювача:

(2.9)

тобто поле низькоімпедансне.

Для того щоб у точці Р(x0,y0,z0) одержати повний груповий сигнал, який створююється сукупністю випромінювань від m незалежних джерел, необхідно векторно просумувати напруженості відповідних полів:

(2.10)

(2.11)

Якщо число m>>1, оцінити ЕМО по співвідношеннях (1.31) і (1.32) важко. Для попередньої оцінки ЕМО можна скористатися методикою формального упорядкування складових зосередженої завади, розташувавши їх у виді ієрархічних ступіней. Крім того, використання електродинамічного підходу до опису ЕМО ускладнюється тим, що розподіл струмів по об'єму, який займає випромінююча система, не завжди відомий.

2.2 Енергетичний метод

При реалізації енергетичного методу опису ЕМО доцільно відокремити завади, зосереджені за спектром, від завад, зосереджених за часом, тобто розглядати їх роздільно.

Завади на вході прийомної антени, зосереджені за спектром, являють собою ансамбль вузькосмугових сигналів, які випромінюються сторонніми РЕЗ [15].

Якщо i-й вузькосмуговий сигнал записати у вигляді:

,(2.12)

де Ei(t) та (t) -- огинаюча і фаза напруженості поля радіохвилі, яка створюється i-м джерелом;

0i=2f0i -- кругова несуча частота.

Зосереджену заваду можна представити сумою:

(2.13)

і при великій кількості доданків розглядати як широкосмуговий нормальний стаціонарний процес.

В точці прийому діюче значення напруженості поля, яке створюється i-м джерелом, визначається співвідношенням

мВ/м,(2.14)

де Pi -- потужність, що підводиться до антени i-го джерела, кВт;

Di -- коефіцієнт підсилення i-ї антени;

ri відстань від i-го джерела до точки прийому, км;

Fi множник ослаблення.

При цьому потужність, що розвивається в антені приймача під дією зосередженої завади (2.13), нВт, визначається на підставі виразу (2.14) як сума

,(2.15)

де D - коефіцієнт підсилення антени приймача.

Через труднощі розрахунку ЕМО при дії декількох джерел застосовують упорядкування складових зосередженої завади по дискретних енергетичних рівнях.

Таке упорядкування можна проводити згідно з методикою, рекомендованою В. Д. Челишевим [16].

2.3 Імовірнісний метод

Для оцінки ЕМО також використовується імовірнісний метод. Інформація про реальну ЕМО міститься у вихідному сигналі радіоприймального пристрою.

Цей сигнал можна записати і піддати статистичній обробці [15].

Статистичні характеристики сигналу залежать від того, чи знаходиться радіопередавальний пристрій (РПП) тільки під впливом вхідного сигналу або на його вхід діє сукупність сигналу і завад. Ідеалізовану ЕМО, що відповідає першому випадку, можна прийняти за опорну, з яким порівняти реальну.

Таким чином, про якість реальної ЕМО можна судити, порівнюючи статистичні характеристики двох вихідних сигналів РПП.

При цьому можна одержати і кількісну оцінку ЕМО, якщо порівняти між собою імовірності перевищення заданого рівня вихідними сигналами приймача на інтервалі спостереження Т.

Перевагою розглянутого методу є те, що оцінка ЕМО здійснюється по реакції конкретного РПП на вхідний вплив, яка у непрямий спосіб враховує усі заходи як технічного, так і організаційного характеру, спрямовані на забезпечення ЕМС.

3. ПРАКТИЧНІ МЕТОДИ ВИЗНАЧЕННЯ ТА ОЦІНКИ ЕЛЕКТРОМАГНІТНОЇ ОБСТАНОВКИ

3.1 Оцінка параметрів заземлювального пристрою

Основним параметром, що характеризує заземлювальний пристрій (ЗП) є його опір розтікання на промисловій частоті (ПЧ). Для великих заземлювальних пристроїв до нього додаються опори основ електроапаратів щодо опорної точки, для якої вимірявся опір розтікання. Інші параметри (крокова напруга, напруга дотику) вводяться з міркувань електробезпеки персоналу.

Експериментальні методи виміру опору розтікання й опорів основ ЗП базуються на методі "амперметра-вольтметра". При цьому часто застосовують спеціальні прилади, які представляють собою, фактично, комбінацію амперметра, вольтметра і джерела струму для навантаження заземлювального пристрою.

При вимірах опору розтікання струмовий і потенційний електроди варто розташовувати на території, вільної від ліній електропередач і підземних комунікацій. Відстані від об'єкта (наприклад, підстанції) до струмового і потенційного електродів вибираються залежно від розмірів заземлювального пристрою і характерних рис навколишньої території.

Якщо ЗП має невеликі розміри, а довкола нього мається велика площа, вільна від ліній електропередач і підземних комунікацій, то відстані до електродів вибираються таким чином:

rет?5·D,(3.1)

rес?0.5·rет,(3.2)

де D -- найбільший лінійний розмір ЗП;

rес, rеп відстань від ЗП до струмового і потенційного електродів відповідно.

Значення, яке індукується на вимірювальному приладі, і є шуканий опір.

Якщо ЗП має великі розміри та відсутня можливість розміщення електродів, як зазначено вище, струмовий електрод варто розмістити на відстані rес?3·D. При цьому, щоб зберегти необхідну точність вимірів, методика дещо ускладнюється. Потенційний електрод розміщується послідовно на відстані rеп=(0.1,0.2,…0.9)·rес, причому обов'язково на тій же лінії, що й струмовий електрод. Для кожного розташування потенційного електрода rеп виміряється і заноситься в таблицю значення опору.

Далі будується крива залежності значення опору від відстані від ЗП до потенційного електрода rеп. Якщо крива монотонно зростає і має в середній частині горизонтальна ділянка, за еталонне значення опору приймається значення при rеп=0.5·rес. Це означає, що потенційний електрод знаходиться в зоні нульового потенціалу, практично поза зонами впливу ЗП і струмового електрода.

Якщо крива не монотонна, що є наслідком впливу різних комунікацій (підземних і надземних), завад і т. і., виміри повторюють в іншому напрямку від ЗП. Якщо крива опору плавно зростає, але не має горизонтальної ділянки (різниця опорів, обмірюваних при rеп=0.4·rес і rеп=0.6·rес більш ніж на 10% перевищує значення, виміряне при rеп=0.5·rес), і відсутні можливість переміщення струмового електрода на більшу відстань, можна використовувати два наступних методи.

За першим методом проводяться дві серії вимірів при rес=2·D і rес=3·D. Криві наносяться на один графік. Точка перетину кривих приймається за точне значення опору розтікання ЗП.

Другий метод відрізняється тим, що в якості потенційного і струмового електродів використовуються існуючі провідні комунікації (кабелі зв'язку і т. і.).

При проведенні вимірів як допоміжні електроди зазвичай застосовують сталеві стрижні або труби діаметром до 50 мм. Стрижні повинні бути очищені від фарби, а в місці приєднання сполучних провідників також від іржі. Стрижні забиваються або угвинчуються в ґрунт на глибину 1.0…1.5 м. Якщо є потреба струмовий електрод виконується з декількох паралельно з'єднаних електродів, розташовуваних по окружності, на відстані 1.0…1.5 м один від одного.

Іноді в якості струмових і потенційних зондів використовують пристрої інших заземлювальних об'єктів, а для подачі струму і виміру потенціалу використовуються ті чи інші існуючі ланцюги.

При виборі або спорудженні струмового електрода необхідно виконати перевірку відповідності опору струмового кола технічним даним приладу, за допомогою якого пропонується провести виміри.

Зрозуміло, ті ж виміри можна провести безпосередньо методом амперметра ( вольтметра. Величина струму джерела залежить від величини завад вимірам.

Потрібно також враховувати вплив поля, створюваного великим струмом навантаження, на кола потенційного електрода.

3.2 Моніторинг напруги живлення

Для оцінки якості напруги в мережі електроживлення 220 В 50 Гц використовують спеціальні прилади аналізатори, що дозволяють провести моніторинг системи електроживлення протягом тривалого часу в автономному режимі. За результатами вимірів видається підсумкова статистика, що описує зміни таких параметрів напруги живлення, як

діюче значення;

коефіцієнт несинусоідальності (вміст гармонік); деякі прилади дозволяють одержувати дані по кожній гармоніці (наприклад, з першої по п'ятидесяту);

частота;

деякі прилади видають статистичну інформацію по короткочасним коливанням напруги (флікер).

Багато приладів також фіксують імпульсні завади, короткочасні провали і викиди напруги, різкі зміни частоти і коефіцієнта несинусоідальності.

При аналізі цих осцилограм потрібно пам'ятати, що робочі частоти аналізаторів мережі зазвичай значно нижче, ніж у спеціалізованих осцилографів. Тому імпульсні завади з фронтами порядку декількох мікросекунд можуть відображатися некоректно.

При аналізі напруги електроживлення варто мати загальне представлення про схему електроживлення на об'єкті вимірів. Це дозволяє коректно визначити всі необхідні точки і режими виміру.

Аналогічний моніторинг рекомендується проводити і для вторинних мереж живлення, які слугують для розведення споживачам гарантованого електропостачання від акумуляторної батареї або джерела безперервного живлення. В деяких випадках це дозволяє вчасно виявити такі проблеми, як перевантаження ДБЖ, наявність джерел імпульсних перешкод в самій вторинній мережі електроживлення і т.п.

3.3 Контроль електромагнітних полів комп'ютерної техніки

Достовірне знання рівнів і просторового розподілу електромагнітних полів від різних блоків ПЕОМ є однією з необхідних умов їхньої безпечної експлуатації.

Контроль наявності і рівнів електричних і магнітних полів комп'ютерної техніки здійснюється по дворівневій системі. На першому рівні контроль відповідності комп'ютерної техніки національним або міжнародним вимогам безпеки в частині електромагнітних полів виконуються за заявкою виробника або продавця цієї техніки шляхом проведення сертифікаційних випробувань в спеціалізованих акредитованих лабораторіях. На другому рівні комп'ютерна техніка може перевірятися по санітарно-гігієнічних вимогах безпосередньо на робочих місцях або в аналогічних їм умовах.

3.3.1 Сертифікаційні випробування відеотерміналів та ПЕОМ

Сертифікація відеотерміналів та ПЕОМ по параметрах електромагнітних полів здійснюється в стаціонарних умовах спеціалізованих акредитованих випробувальними центрів або лабораторій у повній відповідності з положенням про сертифікацію. В цих лабораторіях повинні бути забезпечені спеціальні (обговореними стандартами) умови випробувань для одержання об'єктивних результатів, що мають чисто фізичний зміст і визначаючі якість комп'ютерної техніки безвідносно до реальних умов її експлуатації.

Найбільш повним закордонним документом по даному питанню можна вважати 2-ге видання (1995 р.) шведського стандарту SS 436 14 90 "Комп'ютери й офісна техніка. Методи виміру створюваних ними електричного і магнітного полів".

Вимір магнітного поля здійснюється в 48 точках (по 16 точок навколо дисплея на трьох рівнях по висоті щодо центра екрана). Вимір електричного поля здійснюється в 4-х точках навколо дисплея. Точки виміру розташовані по окружності з дотичною на відстані 0.5 м від його екрана і центром, який знаходиться в центрі дисплея

Вимір змінних електричних і магнітних полів повинні проводитися приладами, що дозволяють здійснювати контроль роздільно в двох частотних діапазонах 5 Гц....2 кГц і 2 кГц....400 кГц. Основна похибка вимірів повинна бути у межах 10%.

Під час проведення вимірів у приміщенні повинні бути виключені всі сторонні джерела електромагнітних полів, які можуть впливати на результати вимірів. Масивні металеві предмети можуть розташовуватися на відстані не ближче 1 м від випробуваного технічного засобу.

Для електричних і магнітних полів в кожному з піддіапазонів частот до протоколу заноситься значення поля перед екраном, а також максимальне значення, отримане при вимірах в інших точках із вказівкою координат цієї точки.

При вимірі електростатичного потенціалу і змінного електричного поля вимірювальні прилади і випробувані технічні засоби повинні бути заземлені на загальну клему заземлення.

3.3.2 Вимірювання електромагнітних полів від комп'ютерної техніки на робочих місцях

Сертифікаційні випробування дають однозначну і повну картину про якість ПЕОМ. Але при сертифікаційних випробуваннях не враховуються (та й не можуть враховуватися) як можливі комбінації комплектуючих пристроїв на робочих місцях залежно від необхідних задач, так і можливі впливи на створювані поля взаємного розташування цих комплектуючих пристроїв і їх взаємні кабельні з'єднання.

Крім того, в даний час в Україні знаходиться в експлуатації значна кількість обчислювальних комплексів, оснащених старими технічними засобами як вітчизняного, так і закордонного виробництва випуску до 90-х років. Дисплеї цих обчислювальних комплексів, як правило, мають параметри неіонізуючих випромінювань, що в кілька разів перевищують припустимі, і які не проходили ніяких сертифікаційних випробувань.

Прагнення убезпечити користувача старих типів ВДТ від об'єктивно існуючих високих рівнів полів привело до розробки і застосування на практиці деяких захисних засобів і методів, основним з який є захисні екранні фільтри, що знижують рівень електричних полів у бік оператора. Це дозволяє експлуатувати монітори з електричними полями, що перевищують допустимий рівень. Помітно позитивні результати дають і такі методи зниження діючих на операторів полів як раціональне планування розміщення робочих місць, місцеве екранування або застосування радіопоглинаючих матеріалів.

Таким чином, стає очевидним, що умови безпосередньо на робочих місцях можуть істотно впливати на електромагнітні поля, змінюючи їхні рівні порівняно з одержуваними за результатами сертифікаційних випробувань або рекламованих виробником.

З огляду на те, що основною задачею тестування є захист людини, при вимірах на робочих місцях не повинно бути прагнення відтворити процес сертифікаційних випробувань в умовах застосування. Випробування на робочих місцях не повинні підмінювати цей вид випробувань, але повинні давати надійну й достовірну інформацію до проблеми практичного використання людиною сучасних технічних засобів з погляду нормованих гігієнічних вимог.

Коректування, які необхідні при контролі електромагнітних полів на робочих місцях з ПЕОМ без порушення при цьому вимог однозначності і вірогідності в результатах вимірів наведені нижче.

Похибка приладів, які використовуються для виміру, може бути підвищена до 20% порівняно з 10% для приладів, які використовуються при сертифікаційних випробуваннях.

Якщо на дисплеї встановлений захисний екранний фільтр, то виміру проводять з даним фільтром. При необхідності оцінити якість фільтра, виміри змінних електричних полів і електростатичного потенціалу проводять з фільтром і без нього.

Виміри виконують перед екраном дисплея і по радіусі під кутом 45 градусів, якщо за планом робочого місця зрозуміло, що поруч з користувачем немає інших джерел полів, а також, якщо інші співробітники не розташовуються і не можуть розташовуватися з іншої сторони поблизу від даного робочого місця. Слід зауважити, що вимірювання електричного поля проводяться по трьох точках на рівні середини екрану дисплея, а виміри магнітного поля на двох рівнях: на середині екрану та на 0.3 м нижче середини екрану дисплея.

Виміру виконують на відстані 50 см від екрана. Однак якщо користувач відповідно до плану робочого місця знаходиться на більшій відстані від дисплея і не може фізично наблизитися до екрана, то виміри проводяться на фактичній відстані розташування користувача.

Якщо поруч знаходяться інші комп'ютерні місця, то вимірюється поле і від них, з орієнтацією антени приладу для виміру електричного поля з боку цих робочих місць.

Ряд практичних рекомендацій, що можуть бути корисними у практиці виконання вимірів електричних і магнітних полів робочих місць з комп'ютерною технікою такі:

Раніше допускалася можливість виміру полів з довільним зображенням на екрані наприклад, зображенням панелі програми Norton Commander. Однак останні дослідження показують [11], що виведене на екран дисплея екранне меню деяких програм (наприклад, меню програми Microsoft Word) призводить до різкого (до трьох і більш раз) збільшенню змінного електричного поля. Дослідження цього питання тривають, але вже зараз однозначно можна сказати невірний вибір тестової картинки може призвести до забруковування дисплея, який відповідає усім встановленим вимогам та існуючим гігієнічним сертифікатам. Щоб уникнути подібних конфліктів при вимірі перемінних електричних полів на екрані дисплея в обов'язковому порядку повинна бути виведено тестове уніфіковане тестове зображення.

3.3.3 Апаратура контролю електромагнітних полів на робочих місцях з ПЕОМ

При встановленні допустимих норм на електромагнітні поля від комп'ютерної техніки (точніше, від дисплеїв ПЕОМ) шведські учені, як провідні в галузі встановлення норм щодо відеомоніторів, взяли як параметр, що характеризує поле, його напруженість, що має місце поблизу ПЕОМ за умови присутності оператора. Даний підхід є принципово відмінним від застосовуваного для оцінки якості по рівням електромагнітних полів інших технічних засобів, коли вимірюється напруженість поля технічного засобу у вільному просторі.

Іншими словами - критерієм якості ПЕОМ в даному випадку є значення напруженості електричного і магнітного поля, що впливає на оператора, коли він знаходиться на своєму робочому місці перед технічним засобом.

Фізична сутність описаного вище підходу полягає в наступному: оператор, знаходячись у безпосередній близькості від ПЕОМ, концентрує на собі силові лінії електричного поля; відповідно, реальне поле, що впливає на оператора в місці його розташування, буде іншим, ніж поле в тій же крапці, але при відсутності оператора. Саме для таких умов визначені регламентовані Російськими стандартами і "шведськими стандартами" MPR II або ТСО '99 норми на рівні електричних полів комп'ютерної техніки.

Апаратура для вимірювання електромагнітних полів імітувати присутність поблизу ПЕОМ оператора, вона повинна працювати як фантома людини і вимірювати саме ту величину електричного поля, що має місце в його присутності на робочому місці перед дисплеєм ПЕОМ.

"Шведський стандарт" MPRII та держстандарт Російської Федерації ГОСТ Р 50949-96 чітко визначають вимоги до конструкції антени приладу для виміру напруженості електричної складової електромагнітного поля ПЕОМ, що повинна бути відмінної по конструкції від антен інших вимірювальних приладів, використовуваних для контролю полів інших технічних засобів. Відповідно до стандартів приймальня антена даного приладу повинна являти собою металізований з обох сторін діелектричний диск діаметром 300 мм. На зверненій до вимірюваного об'єкта стороні диска повинна бути виділена активна вимірювальна поверхня коло діаметром 100 мм, яке знаходиться в центрі диска. Інша провідна поверхня лицьової і зворотної сторони диска повинна бути заземлена.

В цьому полягає перша принципова відмінність приладів для контролю електричних полів ПЕОМ від приладів, які використовуються установами сертифікації для контролю полів інших технічних засобів. При використанні іншою, відмінної від описаної стандартом, антени при проведенні випробувань, результати будуть мати лише якісний характер і не можуть використовуватися для порівняння з нормами вищезазначених стандартів.

Друга принципова відмінність полягає в тім, що вимір електромагнітних полів від ПЕОМ повинно створюватись в чітко регламентованих смугах частот: перша смуга 5 Гц....2 кГц, друга смуга 2 кГц...400 кГц. Вибір зазначених частот виміру визначається особливістю частотного спектра полів, які створюються дисплеями ПЕОМ. Норми на рівні електромагнітних полів, регламентовані діючими стандартами, в зазначених двох частотних піддіапазонах розрізняються на порядок (див. таблицю 3.1).

Таблиця 3.1 Допустимі рівні електромагнітного поля в різних піддіапазонах [10,17]

Діапазон частот

MPR II

TCO 95

СанПиН 2.2.2.542-96

Електростатичний потенціал

500 В

500 В

500 В

Електричне поле

5 Гц…2 кГц (смуга 1)

25 В/м

10 В/м

25 В/м

2 кГц…400 кГц (смуга 2)

2.5 В/м

1 В/м

2.5 В/м

Вище 400 кГц

Магнітне поле

5 Гц…2 кГц (смуга 1)

250 нТл

200 нТл

250 нТл

2 кГц…400 кГц (смуга 2)

25 нТл

25 нТл

25 нТл

Вище 400 кГц

Тож для вимірювань електромагнітних полів не може використовуватись широкосмугові вимірювальні прилади, оскільки при їхньому використанні неможливо чітко ідентифікувати рівень полів в кожному з названих вище піддіапазонів частот. Неефективне також використання для таких вимірювань вузькосмугових (селективних) вимірювальних приймачів, оскільки при цьому процес виміру перетворюється в дуже трудомістку задачу визначення сумарної енергії поля в заданому діапазоні частот за результатами виміру його спектральних складових.

При розгляді питань можливості застосування тих чи інших приладів для контролю електромагнітних полів комп'ютерної техніки варто чітко розрізняти два рівні (дві рівнобіжні галузі) виконання вимірів:

сертифікаційні випробування ПЕОМ;

оперативний контроль робочих місць з ПЕОМ.

При проведенні вимірювань користуються трьома приладами по одному на кожен параметр: для вимірювання електростатичного потенціалу на поверхні дисплею, для вимірювання напруженості електричного поля і для вимірювання індукції магнітного поля. прикладом таких приладів можуть слугувати російські розробки ИЕСП-01, ИЕП-05 та ИМП-05 відповідно [11]. Названі прилади можуть поставлятись в одному комплекті, створюючи комплекс для контролю електричних та магнітних полів ПЕОМ та відеодисплейних терміналів. Слід зазначити, що прилад ИЕП-05 комплектуються окрім дискової також і дипольною антеною, яка не вносить спотворень у поле. Приймачі електричного поля (диполі) в такій антені розташовані на діелектричній штанзі на відстані близько 50 см від точки, яка знаходиться в контакті з рукою оператора. За такого виконання повністю виключається вплив на вимірювальне поле як вимірювального засобу, так і оператора, який проводить вимірювання. Вірогідність отримуваних результатів вимірювань та їхня точність при цьому суттєво збільшуються.

Окрім того, якщо в приміщенні розташовані будь-які інші технічні засоби (крім комп'ютерів), то їх низькочастотні електричні поля потрібно вимірювати також з дипольною антеною, що не вносить спотворень у вимірюване поле.

ВИСНОВКИ

За проведеним дослідженням можна зробити такі висновки:

1) найбільші завади в електромережі виникають через неякісне енергопостачання, відсутність або невірність виконання контуру заземлення будівлі, відсутність або невірність виконання захисту від ударів блискавок та грозових розрядів;

2) найсуттєвішим просторовими ЕМЗ можна вважати завади від електротехнічного устаткування будівлі, в якій знаходиться офісне приміщення: магнітне поле, що створюється кабельними лініями, розподільчими щитками та силовими трансформаторами негативно впливає як на електронне устаткування (зокрема відеомонітори ПЕОМ і телекомунікаційні пристрої), так і на людей, які працюють у приміщенні;

3) складна негативна електромагнітна обстановка створюється також на робочих місцях з комп'ютерною технікою, основним джерелом завад на яких є відеомонітор ПЕОМ та блоки електроживлення пристроїв комп'ютерної техніки;

4) найчастіше негативна ЕМО в приміщенні створюється через невірне розташування електротехнічного устаткування будівлі та робочих місць з комп'ютерною технікою, порушення стандартів і норм прокладання кабельних систем електроживлення і встановлення електротехнічного обладнання;

5) недосконалість національної нормативної бази щодо забезпечення ЕМС та убезпечення ЕМО;

6) окремо слід наголосити, що невиконання стандартів та норм ЕМС, а також електромагнітної безпеки, або відсутність національних стандартів є найчастішою причиною негативної ЕМО в офісних приміщеннях;

7) відсутність офіційних методик визначення та контролю електромагнітної безпеки місць з ПЕОМ, а також установ сертифікації ВДТ ПЕОМ, значно ускладнюють вирішення проблеми забезпечення безпечної ЕМО;

8) використання ВДТ, що має сертифікат відповідності стандартам MPR II, TCO 92 або TCO 95, значно покращить ЕМО на робочому місці, а використання ВДТ, що має сертифікат відповідності стандарту ТСО 99 повністю зніме питання про негативний вплив ЕМП ВДТ;

9) також є небезпечною неувага до розташування та конфігурації будь-яких робочих місць, оскільки поряд можуть знаходитись потужні джерела ЕМЗ або провідникові конструкції.

Надалі необхідно також досліджувати проблеми ЕМС та захисту інформації в локальних обчислювальних мережах, інтегрованих телекомунікаційних мережах та комп'ютерних радіомережах.

Рекомендації: При дослідженні проблеми ЕМО офісного приміщення були розроблені такі рекомендації:

1) система електроживлення приміщення має бути виконана з витримкою відповідних стандартів і норм, зокрема до всіх розеток має бути підведений кабель заземлення, електрична мережа живлення комп'ютерної техніки повинна бути виконана окремо від побутової електромережі, щоб виключити взаємний вплив електричних навантажень;

2) проектування потужних систем електроживлення та прокладання кабелів високовольтних електромереж, встановлення іншого високовольтного електротехнічного устаткування має здійснюватись виходячи з умови забезпечення найкращої ЕМО у прилеглих приміщеннях;

3) слід продовжити розробку нормативних документів щодо безпечної ЕМО та забезпечення ЕМС, а також дослідженню факторів впливу, методів визначення ЕМО;

4) необхідно продовжити розробку методів та засобів захисту від ЕМЗ, які створюються в офісному приміщенні;

5) необхідно впровадити національну систему сертифікації інформаційної та комп'ютерної техніки на ЕМС та електромагнітну безпеку, або офіційно використовувати міжнародні стандарти або нормативні документи;

6) із застарілими відеомоніторами потрібно застосовувати захисні фільтри для зменшення електростатичного потенціалу екрану та напруженості електричного поля;

7) за можливістю використовувати замість відеомоніторів на основі ЕПТ рідиннокристалічні відеомонітори або плазмові панелі, які є цілком безпечними за рівнем ЕМВ, а окрім того, через мале енергоспоживання, обладнані кращим за ЕМС блоком електроживлення;

8) для зменшення завад електромережі потрібно застосовувати мережні фільтри, але такі, що відповідають вимогам електромагнітної безпеки;

9) слід дотримуватись умов безпечної експлуатації обігрівальних приладів та мікрохвильових печей.

ПЕРЕЛІК ПОСИЛАНЬ

1. Council Directive №89/336 of May 1989 on the Approximation of the Laws of the Member States relating to EMC

2. Электроэнергетика, Защита От Помех: www.ezop.ru.

3. Д. Уайт. Электронная совместимость радиоэлектронных средств и непреднамеренные помехи. Справочник. М,: Советское радио, 1977. 348 с. (1 том: общие вопросы, межисточниковые помехи), 1978 272 м (2 том: внутрисистемные помехи 1979 (3 том: измерения).

4. Петровский В. И., Седельников Ю. Е. Электромагнитная совместимость радиоэлектронных средств: Учеб. пособие для вузов. М.: Радио и связь, 1986. 216 с.

5. Буга Н.Н. и др. Электромагнитная совместимость радиоэлектронных средств: Учеб. пособие для вузов/Н. Н. Буга, В. Я. Конторович, В. Н. Носов; Под ред. Н. Н. Буги. М.: Радио и связь, 1993. 240 с.

6. Центр Электромагнитной безопасности: www.tesla.ru.

7. Державні санітарні норми і правила при виконанні робіт в невимкнених електроустановках напругою до 750 кВ включно, Київ 1997.

8. Державні санітарні норми і правила захисту населення від впливу електромагнітних випромінювань, Київ 1996.

9. Электромагнитные поля и здоровье человека: www.pole.com.ru.

10. Санитарные правила и нормы 2.2.2.542-96 "Гигиенические требования к видеодисплейным терминалам, персональным электронно-вычислительным машинам и организации работы", утв. постановлением Госкомсанэпиднадзора РФ от 14 июля 1996 г. N 14.

11. Государственное научно-производственное предприятие "Циклон-Тест": www.ciklon.ru.

12. Электропитающие устройства электроакустической и кинотехнической аппаратуры / Векслер Г. С., Пилинский В. В. К.: Вища шк. Головное изд-во, 1986. 383 с.

13. Подавление электромагнитных помех в цепях электропитания / Г. С. Векслер, В. С. Недочетов, В. В. Пилинский и др. К.: Тэхника, 1990. 167 с.

14. IEC 1000-2-3 (1992) Radiated phenomena and conducted phenomena at frequencies other than mains frequencies.

15. Иванов В. А., и др. Электромагнитная совместимость радиоэлектронных средств/В. А. Иванов, Л. Я. Ильницкий, М. И. Фузик. К. Техніка, 1983. 120 с.

16. Челышев В. Д. Приёмные радиоцентры: Основы теории и расчёта высокочастотных трактов. М.: Связь, 1975. 264 с.

17. The Swedish confederation of professional employees: MPR II standard, TCO 9x standards.

Размещено на Allbest.ru

...

Подобные документы

  • Розробка блоку контролю та управління пристрою безперервного живлення, із заданою вихідною напругою, електричною схемою принциповою, діапазоном робочих температур та тиском. Конструкція та технологія виготовлення виробу на підставі електричної схеми.

    дипломная работа [2,9 M], добавлен 12.07.2010

  • Сфера застосування мікроконтролерів. Розробка джерела високостабільної напруги з мікропроцесорним керуванням. Написання програми на мові ASSEMBLER. Огляд досвіду розробки подібних приладів на мікропроцесорах, написання програм системного характеру.

    курсовая работа [220,6 K], добавлен 31.07.2011

  • Схема блоку живлення темброблоку. Розрахунок регулюючого транзистора, пристрою порівняння та ППС. Величина постійної напруги. Вимоги техніки безпеки до радіоелектронного обладнання, та при роботі ручними інструментами при збірних та монтажних роботах.

    курсовая работа [1,6 M], добавлен 24.06.2009

  • Розробка структурної схеми мікропроцесора. Узгодження максимальної вхідної напруги від датчиків з напругою, що може обробити МПСза допомогою дільника напруги та аналогового буферного повторювача. Система тактування та живлення. Організація виводу даних.

    курсовая работа [354,3 K], добавлен 14.12.2010

  • Визначення температури в приміщенні, аналіз на задимленість та своєчасна подача сигналів. Структурна схема пристрою, обґрунтування достатності апаратних засобів та програмних ресурсів. Принципова схема пристрою та схема підключення цифрового датчика.

    курсовая работа [1,8 M], добавлен 18.09.2010

  • Цифрові методи синтезу синусоїдальної напруги. Програмна реалізація цифрової частини. Функції управління генератором. Загальні питання охорони праці. Характеристика виробничого середовища. Небезпечні й шкідливі виробничі фактори. Метеорологічні умови.

    аттестационная работа [551,8 K], добавлен 08.07.2016

  • Визначення класичним, оперативним і спектральним методами реакції лінійного електричного кола на підключення джерела живлення. Використання цих методів при проектуванні нових телекомунікаційних пристроїв. Моделювання перехідного процесу за допомогою ЕОМ.

    контрольная работа [419,6 K], добавлен 23.02.2012

  • Методи розробки структурної схеми пристрою. Вибір схеми підсилювача потужності та типу транзисторів. Розрахунок співвідношення сигнал-шум та частотних спотворень каскадів. Розробка блоку живлення та структурної схеми пристрою на інтегральних мікросхемах.

    курсовая работа [603,3 K], добавлен 14.10.2010

  • Розрахунок інвертуючого суматора. Розробка структурної схеми. Вибір операційного підсилювача. Розрахунок однофазного випрямляча малої потужності з інтегральним стабілізатором напруги. Моделювання пристрою в середовищі програми Electronics Workbench.

    курсовая работа [570,8 K], добавлен 09.04.2013

  • Мікросхемні та інтегральні стабілізатори напруги широкого використання. Розробка принципової електричної схеми. Розрахунок схеми захисту компенсаційного стабілізатора напруги від перевантаження. Вибір і аналіз структурної схеми та джерел живлення.

    курсовая работа [294,4 K], добавлен 06.03.2010

  • Найдоцільніший тип мікропроцесорного пристрою для керування обладнанням - однокристальний мікроконтролер (ОМК). Розробка принципової схеми пристрою контролю температури процесу. Складання програми мікроконтролера та її симуляція в Algorithm Builder.

    реферат [2,1 M], добавлен 11.08.2012

  • Принцип дії лічильника імпульсів, пропорційно-інтегральних регуляторів на операційних підсилювачах замкнутої системи автоматичного управління, аналого-цифрового перетворювача, стабілізатора напруги. Розрахунок силового трансформатора джерела живлення.

    курсовая работа [1,3 M], добавлен 01.04.2014

  • Розробка схеми підсилювача змінного струму, який має п'ять каскадів підсилення. Визначення типів транзисторів. Вибір і розрахунок інтегрального стабілізатору напруги для живлення підсилювача низької частоти та однофазного випрямляча малої потужності.

    курсовая работа [478,8 K], добавлен 20.09.2011

  • Реалізація функції логічного множення та складання з наступною інверсією результату. Проведення замірів напруги і сили струму. Визначення потужності, знаходження максимального та мінімального часу проходження сигналу. Визначення часу проходження сигналу.

    контрольная работа [1,7 M], добавлен 01.04.2016

  • Розробка загальної структури перетворювача ємність - тривалість імпульсу. Визначення залишкової напруги на колекторі. Визначення метрологічних характеристик. Моделювання одного з вузлів. Розрахунок підсилювача напруги. Розробка детальної структури схеми.

    курсовая работа [588,8 K], добавлен 29.11.2009

  • Аналіз різних видів блоків живлення, їх переваги і недоліки. Імпульсна природа пристроїв. Конструкція БЖ форм-фактору АТХ без корекції коефіцієнта потужності. Моделювання блока живлення в програмі Micro-Cap. Розробка блоку живлення для заданого девайсу.

    контрольная работа [326,4 K], добавлен 16.03.2016

  • Загальна характеристика принципу роботи електронного замка. Написання коду програми, який забезпечить працездатність пристрою й подальшу його експлуатацію. Розробка принципової схеми і друкованої плати, системи керування створеним електронним замком.

    дипломная работа [1,1 M], добавлен 03.05.2015

  • Аналіз та забезпечення виробничо-технологічних вимог до виробництва блока живлення. Опис конструкції, оцінка елементної бази та розробка схеми складання. Визначення необхідного технологічного устаткування, оснащення, засобів механізації та автоматизації.

    курсовая работа [80,3 K], добавлен 10.01.2011

  • Принципи організації мереж і систем поштового зв’язку. Задача побудови найкоротшої мережі та найкоротших маршрутів перевезень пошти. Визначення числа робочих місць з оброблення поштових відправлень. Організація перевезень пошти, обробки поштових відправ.

    методичка [166,5 K], добавлен 05.02.2015

  • Опис роботи та принципової схеми мікропотужного стабілізатора з малим споживанням, імпульсного стабілізатора зі струмом навантаження до 5А, низького рівня складності. Загальна характеристика джерел живлення в залежності від конструктивних особливостей.

    реферат [2,9 M], добавлен 10.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.