Усилитель с обратной связью
Проектирование многокаскадного усилителя переменного тока с обратной связью. Расчет статических и динамических параметров усилителя, его моделирование на ЭВМ с использованием программного продукта MicroCap III. Корректировка параметров усилителя.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 31.10.2017 |
Размер файла | 922,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования РФ
Рязанская Государственная Радиотехническая Академия
Кафедра САПР Вычислительных Средств
Пояснительная записка к курсовой работе по курсу:
«Электротехника и электроника»
Усилитель с обратной связью
Выполнил: студент гр.0410
Тишкин Р.В.
Проверил: доцент кафедры САПР ВС
Перепёлкин А.И.
Рязань 2002
ВВЕДЕНИЕ
Электронные приборы - устройства принцип действия которых основан на использовании явлений связанных с движущимися потоками заряженных частиц. В зависимости от того как происходит управление, электронные приборы делят на вакуумные, газоразрядные, полупроводниковые. В настоящее время трудно назвать такую отрасль, в которой в той или иной степени не применялась бы электроника. Космические и авиационные летательный аппараты, техника, все виды транспорта, медицина, атомная физика, машиностроение используют электронику во все нарастающих масштабах. Достижения электроники используют все телевизионные передатчики и приемники, аппараты для приема радиовещания, телеграфная аппаратура и квазиэлектронные АТС, аппаратура для междугородней связи.
Одним из наиболее важных применений электронных приборов является усиление электрических сигналов, т.е. увеличение их мощности, амплитуды тока или напряжения до заданной величины. В настоящее время усилительные устройства развиваются во многих направлениях, расширяется диапазон усиливаемых частот, выходная мощность. В развитии усилительных устройств широкие перспективы открывает применение интегральных микросхем. усилитель ток связь обратный
В данной курсовой работе проводится проектирование многокаскадного усилителя переменного тока с обратной связью. При проектировании рассчитываются статические и динамические параметры усилителя, а затем проводится его моделирование на ЭВМ с использованием программного продукта MicroCap III. При моделировании усилителя производится корректировка его параметров.
1. ИСХОДНЫЕ ДАННЫЕ
Вариант № 20-30
Тип проводимости |
UвхmмВ |
Rг , Ом |
Pн, Вт |
Iн, мA |
tomax, oC |
?f |
MОСн(щ) |
MОСв(щ) |
||
fн, Гц |
fв, КГц |
|||||||||
p-n-p p-канал |
200 |
20 |
0.22 |
7 |
+ 65 |
65 |
65 |
0.76 |
0.76 |
2. РАСЧЕТНАЯ ЧАСТЬ
2.1 Расчет коэффициента усиления напряжения усилителя
Вычислим амплитудное значение напряжения на выходе:
,
По известным значениям Uнm и Uвхm рассчитываем Koc
Усилителю с отрицательной обратной связью соответствует коэффициент передачи:
. (1).
Определим число каскадов усилителя.
Пусть число каскадов равно 1 (n = 1):
, ,
где Mос() - коэффициент частоты каскадов.
Из этой формулы составим квадратное уравнение, и решим его относительно K. , тогда получим корни , выбираем отрицательный корень , и подставляем в уравнение (1),
,
т.е. одного каскада будет не достаточно.
Пусть число каскадов усилителя равно 2 (n = 2):
,
Из этой формулы составим квадратное уравнение, и решим его относительно K
тогда из полученных корней выбираем отрицательный , и подставляем в уравнении (1), т. е. двух каскадов тоже будет не достаточно.
Пусть число каскадов усилителя равно 3 (n = 3):
,
Из этой формулы составим квадратное уравнение, и решим его относительно K
тогда из полученных корней выбираем отрицательный , и подставляем в уравнение (1), т.е. усилитель может быть реализован на трех каскадах.
2.2 Расчет элементов выходного каскада
2.2.1 Выбор рабочей точки транзистора
Выбор рабочей точки А транзистора в режиме покоя, когда входной сигнал отсутствует, сводится к выбору тока коллектора IкА и напряжения UкэA в схеме рис.1, в первоначальном предположении Rэ= 0. т.е. при заземленном эмиттере.
Точку покоя выберем исходя из заданных значений амплитуды напряжения на коллекторе UНМ и тока коллектора IНМ, которые по заданным значениям UН и IН определяются как UНМ=UН = 44.4 [В] и IНМ=IН.= = 0.0098 [А].
Определим вид транзистора:
PК= UНМ IНМ =0.43[Вт], транзистор средней мощности.
Определим напряжение UКЭА из выражения:
=46.4[В],
(для транзисторов средней мощности UЗАП = (22.5)[В])
где KЗ-коэффициент запаса равный (0.70.95)
Рис. 1 Схема усилительного каскада
ЕП=2UКЭА=92.88[B]
Сопротивление RK находим как:
Сопротивление RЭ вычисляется:
Считаем, что на вход подается какой-либо переменный сигнал, тогда для переменного сигнала параллельно включается . Для переменного сигнала будет идти по какой-либо другой динамической линии нагрузки. Она будет обязательно проходить через А.
Поэтому строим динамическую линию нагрузки.
Через точку А проводим линию динамической нагрузки, под углом .
; ;
где KM=1000 масштабный коэффициент.
Выбирая значения EП из стандартного ряда, тем самым изменяя положение динамической линии нагрузки, проверяем условие. В нашем случае условие выполнилось при EП=100[B].
2.2.2 Расчет элементов фиксации рабочей точки
Фиксация рабочей точки A каскада на биполярном транзисторе (рис. 1) осуществляется резистивным делителем R1, R2. Выберем такой транзистор, у которого и . В нашем случае таким транзистором может быть транзистор КТ814Г.
Из положения рабочей точки и выходных характеристик транзистора, рассчитаем величину дифференциального коэффициента передачи тока базы :
где IК,IБ -окрестность рабочей точки А
Найдем ток IБА:
По входным характеристикам транзистора определим величину UБЭА =0,75[B]
Так же из входной характеристики находим входное дифференциальное сопротивление транзистора h11Э:
Рассчитаем величину по следующему эмпирическому соотношению: , где - тепловой ток коллекторного перехода, заданный в справочнике при температуре t0 ; А = 2,5 для кремниевых транзисторов. вычислим как , выберем . Рекомендуемое значение N вычисленное как
;
Вычислим R1,R2:
где
Корректность расчета оценим вычислением тока Iдел, причем необходимо соблюдение неравенства . Вычислим Iдел по формуле:
Полученное значение удовлетворяет соотношению
Найдем сопротивление резистивного делителя:
Найдем входное сопротивление данного каскада
.
2.2.3 Расчет емкостных элементов усилительных каскада
Для каскадов на биполярном транзисторе (рис.1) значение емкостей конденсаторов C1,
C2, C3 рассчитаем по следующим формулам:
;
;
;
2.2.4 Расчет коэффициента усиления напряжения каскада
Определим выходные параметры для промежуточного каскада:
2.3 Расчет элементов промежуточного каскада
2.3.1 Выбор рабочей точки транзистора
Выбор рабочей точки А транзистора в режиме покоя, когда входной сигнал отсутствует, сводится к выбору тока коллектора IкА и напряжения UкэA в первоначальном предположении Rэ= 0. т.е. при заземленном эмиттере.
Точку покоя выберем исходя из заданных значений амплитуды напряжения на коллекторе UНМ и тока коллектора IНМ, которые по заданным значениям UН и IН определяются как UНМ=UН = 1.05 [В] и IНМ=IН.== 0.0008 [А].
Определим вид транзистора:
PК= UНМ IНМ =0.84[мВт], значит транзистор малой мощности
Определим напряжение UКЭА из выражения:
=3.55[В], (для транзисторов малой мощности UЗАП = (12.5)[В])
где KЗ-коэффициент запаса равный (0.70.95)
ЕП=2UКЭА=7,1[B]
Сопротивление RK находим как:
Сопротивление RЭ вычисляется:
Считаем, что на вход подается какой-либо переменный сигнал, тогда для переменного сигнала параллельно включается . Для переменного сигнала будет идти по какой-либо другой динамической линии нагрузки. Она будет обязательно проходить через А. Поэтому строим динамическую линию нагрузки.
Через точку А проводим линию динамической нагрузки, под углом .
; ;
где KM=1000 масштабный коэффициент
Выбирая значения EП из стандартного ряда, тем самым изменяя положение динамической линии нагрузки, проверяем условие. В нашем случае условие выполнилось при EП=10[B].
2.3.2 Расчет элементов фиксации рабочей точки
Фиксация рабочей точки A каскада на биполярном транзисторе (рис. 1) осуществляется резистивным делителем R1, R2. Выберем такой транзистор, у которого и . В данном случае таким транзистором может быть транзистор КТ209A.
Из положения рабочей точки и выходных характеристик транзистора, рассчитаем величину дифференциального коэффициента передачи тока базы :
где IК,IБ -окрестность рабочей точки А
Найдем ток IБА:
По входным характеристикам транзистора определим величину UБЭА =0,71[B]
Так же из входной характеристики находим входное дифференциальное сопротивление транзистора h11Э:
Рассчитаем величину по следующему эмпирическому соотношению: , где - тепловой ток коллекторного перехода, заданный в справочнике при температуре t0 ; А = 2,5 для кремниевых транзисторов. вычислим как , выберем .
Рекомендуемое значение N вычисленное как
;
Вычислим R1,R2:
где
Корректность расчета оценим вычислением тока Iдел, причем необходимо соблюдение неравенства . Вычислим Iдел по формуле:
Полученное значение удовлетворяет соотношению
Найдем сопротивление резистивного делителя:
Найдем входное сопротивление данного каскада
.
2.3.3 Расчет емкостных элементов усилительных каскада
Для каскадов на биполярном транзисторе (рис.1) значение емкостей конденсаторов C1,
C2, C3 рассчитаем по следующим формулам:
;
;
;
2.3.4 Расчет коэффициента усиления напряжения каскада
Определим выходные параметры для входного каскада:
2.4 Расчет элементов входного каскада
2.4.1 Выбор рабочей точки транзистора
Выбор рабочей точки А транзистора в режиме покоя, когда входной сигнал отсутствует, сводится к выбору тока коллектора IкА и напряжения UкэA в первоначальном предположении Rэ= 0. т.е. при заземленном эмиттере.
Точку покоя выберем исходя из заданных значений амплитуды напряжения на коллекторе UНМ и тока коллектора IНМ, которые по заданным значениям UН и IН определяются как UНМ=UН = 0.11 [В] и IНМ=IН.= 0.00012 [А].
Определим вид транзистора:
PК= UНМ IНМ =0.013[мВт], транзистор малой мощности
Определим напряжение UКЭА из выражения:
=2.61[В], (для транзисторов малой мощности UЗАП = (12.5)[В])
где KЗ-коэффициент запаса равный (0.70.95)
ЕП=2UКЭА=5.22[B]
Сопротивление RK находим как:
Сопротивление RЭ вычисляется:
Считаем, что на вход подается какой-либо переменный сигнал, тогда для переменного сигнала параллельно включается . Для переменного сигнала будет идти по какой-либо другой динамической линии нагрузки. Она будет обязательно проходить через А. Поэтому строим динамическую линию нагрузки.
Через точку А проводим линию динамической нагрузки, под углом .
; ;
где KM=10000 масштабный коэффициент
Выбирая значения EП из стандартного ряда, тем самым изменяя положение динамической линии нагрузки, проверяем условие. В нашем случае условие выполнилось при EП=6.3[B].
2.4.2 Расчет элементов фиксации рабочей точки
Фиксация рабочей точки A каскада на биполярном транзисторе (рис. 1) осуществляется резистивным делителем R1, R2. Выберем такой транзистор, у которого и . В данном случае таким транзистором может быть транзистор КТ209A.
Из положения рабочей точки и выходных характеристик транзистора, рассчитаем величину дифференциального коэффициента передачи тока базы :
где IК,IБ -окрестность рабочей точки А
Найдем ток IБА:
По входным характеристикам транзистора определим величину UБЭА =0,55[B]
Так же из входной характеристики находим входное дифференциальное сопротивление транзистора h11Э:
Рассчитаем величину по следующему эмпирическому соотношению: , где - тепловой ток коллекторного перехода, заданный в справочнике при температуре t0 ; А = 2,5 для кремниевых транзисторов. вычислим как , выберем .
Рекомендуемое значение N вычисленное как
;
Вычислим R1, R2:
где
Корректность расчета оценим вычислением тока Iдел, причем необходимо соблюдение неравенства . Вычислим Iдел по формуле:
Полученное значение удовлетворяет соотношению
Найдем сопротивление резистивного делителя:
Найдем входное сопротивление данного каскада
.
2.4.3 Расчет емкостных элементов усилительных каскада
Для каскадов на биполярном транзисторе (рис.1) значение емкостей конденсаторов C1,
C2, C3 рассчитаем по следующим формулам:
;
;
;
2.4.4 Расчет коэффициента усиления напряжения каскада
2.5 Расчет элементов цепи ООС
По вычисленным в п. 2.1. значениям и рассчитаем величину
.
Найдем величину сопротивления обратной связи из следующего соотношения:
;
;
RОС = 77160 [Ом].
2.6 Расчет коэффициента усиления напряжения усилителя
Рассчитываемый коэффициент усиления всего усилителя равен произведению коэффициентов. усиления всех трех каскадов:
Что превышает необходимое 222.
3. Моделирование
Моделирование будем выполнять с помощью пакета схемотехнического моделирования Micro-Cap 3. В результате моделирования получим переходные и частотные характеристики как отдельных каскадов усилителя, так и всей структуры в целом. Целью моделирования является установление корректности расчета и степени соответствия расчетных параметров требованиям технического задания.
3.1 Корректировка схемы и определение ее параметров
Для получения результатов, определяемых исходными данными, произведем корректировку значений сопротивлений резисторов и емкостей конденсаторов усилителя. Полученные после корректировки значения приведены в спецификации (см. Приложения).
По графикам АЧХ и ФЧХ, полученным в результате моделирования определим значения K.
Реально достигнутый коэффициент K найдем из графика переходной характеристики:
а) для усилителя без обратной связи
K=307.6
б) для усилителя с обратной связью
K=300
Заключение
В результате выполнения данной курсовой работы были изучены методы проектирования и разработки электронных устройств в соответствии с данными технического задания. Был произведён расчёт статических и динамических параметров электронных устройств. А также было изучено практическое применение ЭВМ для схемотехнического проектирования электронных устройств. Для моделирования был использован пакет схемотехнического моделирования Micro-Cap 3. В ходе курсового проектирования было проведено моделирование усилителя в частотной и временной областях.
Библиографический список
1. Баскакова И.В., Перепёлкин А.И. Усилительные устройства: Методические указания к курсовой работе. Рязань, РГРТА, 1997. 36 с.
2. Транзисторы для аппаратуры широкого применения: Справочник. К.М. Брежнева, Е.И. Гантман, Т.И Давыдова и др. Под ред. Б.Л. Перельмана. .: Радио и связь,1982. 656 с.
3. Транзисторы.Справочник.Издание 3-е. Под редакцией И.Ф. Николаевского. М.: Связь, 1969. 624 с.
4. Анализ электронных схем. Методические указания к лабораторным и практическим занятиям. Баскакова И.В., Перепёлкин А.И. Р.: 2000, 32 с.
Приложения
Моделирование выходного каскада
Kuреальный ?25
Моделирование промежуточного каскада
Kuреальный ?7.6
Моделирование входного каскада
Kuреальный ?2.5
Моделирование усилителя без ООС
Kuреальный ?307.6
Моделирование усилителя с ООС
Kuреальный ?300
Размещено на Allbest.ru
...Подобные документы
Методика проектирования многокаскадного усилителя переменного тока с обратной связью. Расчет статических и динамических параметров усилителя, его моделирование на ЭВМ с использованием программного продукта MicroCap III, корректировка параметров.
курсовая работа [1,7 M], добавлен 13.06.2010Проектирование многокаскадного усилителя переменного тока с отрицательной обратной связью. Расчет статических и динамических параметров электронного устройства, его схематическое моделирование на ЭВМ с использованием программного продукта Microcap 3.
курсовая работа [664,4 K], добавлен 05.03.2011Применение усилителей в сфере вычислительной техники и связи. Проектирование многокаскадного усилителя с обратной отрицательной связью. Статические и динамические параметры, моделирование на ЭВМ с использованием программного продукта MicroCap 9.
курсовая работа [3,2 M], добавлен 21.12.2012Расчет параметров усилителя, на вход которого подается напряжение сигнала с заданной амплитудой от источника с известным внутренним сопротивлением. Определение КПД усилителя с общей параллельной отрицательной обратной связью по току и полного тока.
задача [236,7 K], добавлен 04.01.2011Структурная схема усилителя с одноканальной обратной связью. Выбор и расчет режима работы выходного каскада. Расчет необходимого значения глубины обратной связи. Определение числа каскадов усилителя. Выбор транзисторов предварительных каскадов.
курсовая работа [531,0 K], добавлен 23.04.2015Выбор принципиальных схем узлов устройства. Компьютерное моделирование предварительного усилителя и усилителя мощности с общей обратной связью. Расчёт стабилизатора напряжения, усилителя, сглаживающего фильтра, трансформатора, диодной схемы выпрямления.
курсовая работа [1,3 M], добавлен 20.12.2014Структурная схема усилителя с одноканальной обратной связью. Выбор транзистора, расчет режима работы выходного каскада. Расчёт необходимого значения глубины обратной связи. Определение числа каскадов усилителя, выбор транзисторов предварительных каскадов.
курсовая работа [696,7 K], добавлен 24.09.2015Физические параметры комплексного коэффициента усилителя с обратной связью. Характеристика отрицательной и положительной обратной связи её влияние на частотные и переходные параметры усилителя. Резистивно-емкостный каскад дифференциального усилителя.
контрольная работа [1,1 M], добавлен 13.02.2015Составление эквивалентной схемы усилителя для области средних частот, расчет его параметров. Определение сопротивления резистора, мощности, рассеиваемой им для выбора транзистора. Вычисление полного тока, потребляемого усилителем и к.п.д. усилителя.
контрольная работа [133,5 K], добавлен 04.01.2011Анализ схемы многокаскадного усилителя переменного сигнала; расчет параметров активных и пассивных функциональных элементов. Исследование их свойств в среде виртуальной электронной лаборатории Electronics WorkBench, сравнение с расчетными параметрами.
курсовая работа [669,5 K], добавлен 22.11.2011Определение параметров работы двухкаскадного усилителя тока с непосредственной связью, выполненного на германиевых (Ge) транзисторах структуры n-p-n по заданным показателям. Основные расчеты показателей преобразования напряжения, коэффициентов усиления.
практическая работа [70,3 K], добавлен 04.01.2011Выбор операционного усилителя, расчет его основных параметров для входного и выходного каскада. Вычисление каскадов усилителя, смещения нуля, коэффициента гармоник и частотных искажений. Моделирование усилителя с помощью Electronics Workbench 5.12.
курсовая работа [1,4 M], добавлен 04.10.2014Расчет входного каскада широкополосного усилителя. Расчет нижней и верхней граничной частоты. Распределение частотных искажений. Схема регулировки усиления. Расчет параметров обратной связи. Топология элементов широкополосного усилителя мощности.
курсовая работа [77,0 K], добавлен 20.10.2009Назначение и описание выводов инвертирующего усилителя постоянного тока К140УД8. Рассмотрение справочных параметров и основной схемы включения операционного усилителя. Расчет погрешностей дрейфа напряжения смещения от температуры и входного тока.
реферат [157,8 K], добавлен 28.05.2012Методы моделирования характеристик КМОП транзисторов с учетом высокочастотных эффектов. Проектирование высокочастотного усилителя на МОП транзисторе с использованием S-параметров. Сравнение измеренных и рассчитанных характеристик усилителя на транзисторе.
дипломная работа [4,3 M], добавлен 30.09.2016Общие сведения об усилительных устройствах, их практические схемы, функциональные особенности и сферы применения в промышленности. Методика проведения расчета усилителя: входной и выходной каскад, порядок определения параметров цепей обратной связи.
курсовая работа [2,6 M], добавлен 22.11.2013Основные методы проектирования и разработки электронных устройств. Расчет их статических и динамических параметров. Практическое применение пакета схемотехнического моделирования MicroCap 8 для моделирования усилителя в частотной и временной областях.
курсовая работа [2,8 M], добавлен 23.07.2013Разработка усилителя тока с помощью средств систем автоматизированного проектирования. Моделирование усилителя тока в Multisim. Расчет размеров, размещение радиоэлектронных компонентов на печатной плате, ее трассировка с помощью волнового алгоритма.
курсовая работа [3,0 M], добавлен 21.10.2015Проектирование многокаскадного усилителя. Выбор режима работы выходного каскада по постоянному и переменному току. Разработка и расчет электрической схемы усилителя импульсных сигналов. Расчёт входного сопротивления и входной ёмкости входного каскада.
курсовая работа [4,7 M], добавлен 25.03.2012Разработка усилителя электрических сигналов, состоящего из каскадов предварительного усилителя. Расчет двухтактного бестрансформаторного усилителя мощности. Определение каскада с ОЭ графоаналитическим методом. Балансные (дифференциальные) усилители.
курсовая работа [672,4 K], добавлен 09.03.2013