Расчет выпрямителей с емкостным фильтром

Исследование методики расчета одно- и трехфазных выпрямителей с емкостным фильтром при бестрансформаторном подключении выпрямителя к сети. Анализ расчетных данных для определения составляющих коэффициента мощности и гармоник сетевого тока выпрямителя.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид статья
Язык русский
Дата добавления 24.12.2017
Размер файла 79,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

РАСЧЕТ ВЫПРЯМИТЕЛЕЙ С ЕМКОСТНЫМ ФИЛЬТРОМ

Попков О.З, Чаплыгин Е.Е.

Рассмотрена инженерная методика расчета одно- и трехфазных выпрямителей с емкостным фильтром при бестрансформаторном подключении выпрямителя к сети. Получены расчетные данные для выбора конденсаторов и диодов, определения составляющих коэффициента мощности и гармоник сетевого тока выпрямителя, представленные в виде таблиц и графиков. выпрямитель фильтр сеть мощность ток

Постановка вопроса

В настоящее время питание автономных инверторов, регуляторов постоянного напряжения, статических преобразователей различного типа, способных регулировать величину выходного напряжения внутренними средствами, нередко осуществляется от неуправляемых выпрямителей с емкостным фильтром, подключенных непосредственно (без трансформатора) к одно- или трехфазной сети. При проектировании такого источника питания стоит задача выбора величины емкости фильтрового конденсатора при заданной величине эквивалентного сопротивления нагрузки (Rн) и требуемой величине коэффициента пульсации (Кп), а также определение коэффициента мощности установки и амплитуд гармоник тока, генерируемых выпрямителем в сеть. Вызывает удивление, что эта типовая задача не получила отражения ни в научной, ни в учебной литературе, а традиционная методика расчета выпрямителей с емкостным фильтром ориентирована на установки с трансформаторным подключением к сети (по существу - это анализ RC-фильтра), и непригодна для расчета выпрямителей при бестрансформаторном подключении. Единственным исключением из этого пробела является раздел в [1], где рассмотрены только однофазные выпрямители и не затронуто влияние преобразователей на питающую сеть.

Расчет однофазного выпрямителя

Анализируя процессы в двухполупериодном выпрямителе с С-фильтром (рис. 1а) пренебрегаем сопротивлением соединительных проводов, питающую сеть и диоды выпрямителя считаем идеальными. На рис.2 приведены временные диаграммы напряжений и токов в характерных участках схемы.

Коэффициент пульсации (Кп) пульсирующего напряжения часто определяется как отношение амплитуды первой гармоники переменной составляющей к среднему значению напряжения. Однако МЭК (термин 551-17-29) содержит и другое определение коэффициента пульсации: отношение половины изменения напряжения на конденсаторе UC /2 (рис.1,а) к среднему значению напряжения на нагрузке Ud, или:

(1)

Учитывая, что амплитуда напряжения на конденсаторе равна амплитуде напряжения сети UCmax = Um и принимая во внимание (1), можно определить среднее напряжение и ток на выходе выпрямителя:

откуда:

(2)

Id = Ud/Rн, (3)

при этом

(4)

Очевидно, что диод выпрямителя начинает пропускать ток в момент, когда мгновенное значение сетевого напряжения превысит величину напряжения на конденсаторе, определяемом углом отсечки 1 (рис.2,а). Поскольку

,

то

(5)

Вентиль заканчивает пропускать ток при угле отсечки 2, когда производная сетевого напряжения становится больше, чем производная от функции, определяющей разряд конденсатора. Ток конденсатора в этот момент равен по модулю току нагрузки. Начало отсчета углов отсечки соответствует максимальному значению сетевого (питающего) напряжения. Из условия равенства производных в момент 2

;

откуда

,

выражаем угол отсечки 2:

,

где = RнС. Учитывая, что для малых углов

,

получаем:

(6)

В момент запирания диода ток конденсатора становится равен по абсолютной величине току нагрузки. Для точки 2 (рис.2,а) с учетом соотношения (3) можно записать:

.

С другой стороны процесс разряда конденсатора током нагрузки имеет экспоненциальный характер:

,

где m = 2 - пульсность выпрямителя: количество пульсаций на стороне постоянного тока за период сети.

Приравниваем полученные два соотношения:

.

После несложных преобразований имеем:

Прологарифмировав выражение с учетом того, что угол 2 мал и cos2 1, окончательно получаем:

. (7)

На интервале проводящего состояния вентиля к конденсатору прикладывается напряжение источника питания, поэтому ток конденсатора:

Форма тока iC приведена на рис.2,в.

Ток диода на интервале проводимости равен сумме токов нагрузки и конденсатора (рис.1,б):

(8)

Тогда максимальное значение анодного тока, достигаемое в момент 1, равно

(9)

Среднее значение тока вентиля:

(10)

Действующее значение анодного тока:

. (11)

При расчетах можем пренебречь пульсациями тока нагрузки: iн =Id .

Действующее значение тока, протекающего через конденсатор, определяется

. . (12)

Несмотря на наличие ряда допущений точность расчета достаточно высока, как правило, она выше точности исходных данных и стабильности параметров компонентов.

Пример: расчет параметров однофазного мостового выпрямителя с С-фильтром. Исходные данные: U = = 220 В, f = 50 Гц, Кп = 0,12, Rн=117 Ом.

1. Определим угол 1, используя расчетное соотношение(5): 1=38,2.

2. По формуле (7) рассчитываем величину емкости, обеспечивающую заданный коэффициент пульсации на нагрузке: С=280 мкФ.

3. Среднее значение напряжения на нагрузке определяем по (2): Ud = 278 В. Среднее значение тока нагрузки: 2,37 А.

4. Угол 2 находим из соотношения (6): 2 = 5,6.

5. Максимальное значение анодного тока находим по соотношению (9): Ia.max = 19,23 A

5. Среднее значение анодного тока находим по (10) Ia = 1,19A.

7. Действующее значение тока диода определяем по (11) Ia = 3,97 А.

8. Действующее значение тока через конденсатор в соответствии с (12): IC = 5,08 A

Рассматриваемое устройство является цепью первого порядка, и в соответствии с [2] подобными ему будут все устройства с одинаковыми относительными постоянными времени: CR = const, т.е. подобие устройств определяется всего одним параметром. В свою очередь все подобные устройства имеют одинаковый коэффициент пульсации КП, поэтому можно осуществить выбор основных параметров выпрямителя с С-фильтром по таблице 1, воспользовавшись результатами проделанных расчетов.

Табл. 1

КП

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,10

0,11

0,12

RC

147

71,5

46,6

32,8

27,0

22,1

18,7

16,2

14,2

12,6

11,3

10,3

Ud/U

1,4

1,39

1,37

1,36

1,35

1,33

1,32

1,31

1,30

1,29

1,27

1,26

Iamax/Id

30,4

21,2

17,1

14,7

13,1

11,9

10,9

10,1

9,5

9,0

8,5

8,1

Ia/Id

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

Ia.д/Id

3,2

2,7

2,4

2,2

2,1

2,0

1,92

1,96

1,8

1,75

1,71

1,67

IС.д/Id

4,4

3,64

3,2

2,99

2,8

2,65

2,53

2,43

2,34

2,27

2,2

2,14

Cos

0,99

0,98

0,97

0,97

0,96

0,95

0,95

0,94

0,93

0,93

0,92

0,92

0,33

0,39

0,43

0,46

0,48

0,51

0,53

0,54

0,56

0,58

0,59

0,62

0,33

0,38

0,42

0,44

0,46

0,48

0,5

0,51

0,52

0,53

0,54

0,55

Легко убедиться, что расчет параметров выпрямителя по табл. 1 приводит к тем же результатам, что и проведенные выше вычисления. Данные таблицы показывают, что повышение требований к качеству выходного напряжения выпрямителя связано с существенным ростом амплитуды анодного тока (при рассмотренных значениях коэффициента пульсаций амплитуда анодного тока превышает его среднее значение в 16 ч 60 раз).

Влияние однофазного выпрямителя на питающую сеть

При синусоидальной сети составляющие полной мощности на стороне переменного тока определяются исключительно формой сетевого тока выпрямителя. На первой половине периода сети потребляемый из сети ток совпадает с током диода (см. рис. 2,б) и на интервале проводимости диода определяется выражением (8), на второй половине периода ток сети меняет свой знак. В силу симметрии спектр тока содержит только нечетные гармоники (k = 1,3,5…) и при разложении в ряд Фурье достаточно провести интегрирование только на первой половине периода:

Амплитуда k-й гармоники равна

На рис. 3,а представлен спектр сетевого тока при КП = 0,12. На рис. 3,б показана зависимость действующих значений гармоник сетевого тока, отнесенных к току нагрузки Id, от коэффициента пульсации. Зависимость показывает, что интенсивная эмиссия гармоник характерна для работы преобразователя при всех рассмотренных значениях коэффициента пульсации.

Эмиссия гармоник тока в сеть может привести к невыполнению требований ГОСТ Р 51317.3.2-99, нормирующего уровень высших гармоник в потребляемом сетевом токе. В этом случае выпрямитель должен быть снабжен внешним компенсатором мощности искажений (например, активным сетевым фильтром) либо схема электропитания должна быть дополнена корректором коэффициента мощности.

Коэффициент мощности при питании от синусоидальной сети определяется известной формулой

= cos,

где - угол сдвига между основной гармоникой сетевого тока и напряжением сети, который имеет емкостной характер и равен

н - коэффициент искажений тока равен

.

где I - действующее значение потребляемого тока, определяемое по формуле

Коэффициент мощности и его составляющие при различных коэффициентах пульсации приведены в табл. 1. Крайне низкое значение коэффициента мощности, обусловленное потреблением тока от сети в виде коротких импульсов, является серьезным недостатком выпрямителей с С-фильтром.

Расчет трехфазного выпрямителя с С-фильтром

Трехфазный мостовой выпрямитель с емкостным фильтром приведен на рис. 1б. Устройство может функционировать в режиме непрерывного тока на выходе вентильного комплекта id (РНТ), который наблюдается при большой мощности нагрузки, либо в режиме прерывистого тока (РПТ), который проявляется при снижении мощности.

Электромагнитные процессы в режиме прерывистого тока не имеют принципиальных отличий от работы однофазного выпрямителя и для расчета можно использовать выражения (1 - 9) при подстановке в них пульсности трехфазного мостового преобразователя m=6, при расчете в качестве сетевого берется линейное напряжение: U=Uл. Максимальное напряжение на конденсаторе равно

Принятые при расчете допущения в трехфазном выпрямителе оказываются достаточно грубыми, в частности, нельзя принять малым значение угла 2. Поэтому результаты расчета следует уточнить, проведя последовательные итерации при определении емкости фильтра. Уточненные данные для расчета трехфазного выпрямителя приведены в табл. 2.

Табл. 2

КП

0,01

0,02

0,03

0,04

0,05

0,06

0,067

0,067

0,067

Режим

РПТ

РНТ

RC

41,8

18,48

10,98

7,3

5,11

3,62

1,89

0,94

0,01

Ud/U

2,42

2,4

2,38

2,36

2,34

2,34

2,34

2,34

2,34

Iamax/Id

9,4

6,2

4,8

3,9

3,3

2,8

2,0

1,5

1,0

Ia/Id

0,33

0,33

0,33

0,33

0,33

0,33

0,33

0,33

0,33

Ia.д/Id

1,44

1,18

1,04

0,94

0,86

0,79

0,67

0,6

0,58

IС.д/Id

2,1

1,8

1,5

1,3

1,1

0,9

0,6

0,3

0,01

cos

0,99

0,99

0,98

0,98

0,97

0,97

0,98

1

1

0,42

0,50

0,57

0,62

0,67

0,73

0,85

0,92

0,96

0,41

0,49

0,55

0,61

0,66

0,71

0,83

0,92

0,96

На рис. 4а приведена кривая сетевого тока при RC = 11. Ток от сети потребляется в виде коротких импульсов, в течение которых осуществляется заряд конденсатора фильтра.

В режиме непрерывного тока Ud = 2.34U, 1 = 2 = 30. Выпрямитель функционирует в РНТ при любом значении RC < 1,9. На рис. 4б приведена кривая тока сети при RC = 1. Амплитуда тока сильно модулирована, поскольку ток диода является суммой тока нагрузки и тока заряда конденсатора.

Анализ полученных данных позволяет заключить следующее:

1. Коэффициент мощности трехфазного выпрямителя с С-фильтром выше, чем у однофазного, однако его значения достаточно низки, в том числе и в режиме непрерывного тока (например, на границе РНТ = 0,833). При улучшении сглаживания выходного напряжения коэффициент мощности резко снижается.

2. Велико отношение амплитуды тока к его среднему значению, особенно этот факт проявляется при высоком качестве выходного напряжения (при КП = 0,01 это отношение равно 28,2).

На рис. 3,в показана зависимость действующих значений гармоник сетевого тока, отнесенных к току нагрузки Id, от коэффициента пульсации, рассчитанная для трехфазного выпрямителя. Интенсивность эмиссии гармоник в сеть высока, но, в отличие от однофазного выпрямителя, в спектре потребляемого тока отсутствуют гармоники, кратные трем. При переходе в режим непрерывного тока интенсивность высших гармоник тока снижается, в пределе при CR0 отношение действующих значений гармоник сетевого тока к току нагрузки для 5-й гармоники равно 0,16, для 7-й - 0,11, для 11-й - 0,07, для 13 - 0,06. Эмиссия гармоник тока в сеть может привести к невыполнению требований ГОСТ Р 51317.3.2-99 и необходимости применения компенсатора мощности искажения или корректора коэффициента мощности.

Литература

1. Мелешин В.И. Транзисторная преобразовательная техника.- М.: Техносфера. 2006. - 632 с.

2. Веников В.А. Теория подобия и моделирование применительно к задачам электроэнергетики - М.:Высш. Школа, 1966.

Попков Олег Захарович - кандидат технических наук, доцент, заместитель заведующего кафедрой Промышленной электроники МЭИ (ТУ)

Чаплыгин Евгений Евгеньевич - кандидат технических наук, доцент кафедры Промышленной электроники МЭИ (ТУ).

E-mail: ChaplyginYY@mpei.ru.

Приложение

Размещено на http://www.allbest.ru

a)

Размещено на http://www.allbest.ru

б)

Рис. 1

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

а)

Размещено на http://www.allbest.ru

б)

Размещено на http://www.allbest.ru

в)

Рис. 3

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

а) б)

Рис. 4

Размещено на Allbest.ru

...

Подобные документы

  • Типичные мостовые схемы однофазных полупериодных выпрямителей, их характеристики и принцип работы. Стабилизаторы напряжения и выпрямительные устройства с простым емкостным фильтром на выходе. Расчёт однополупериодного выпрямителя с активной нагрузкой.

    курсовая работа [320,3 K], добавлен 07.10.2011

  • Расчет неуправляемого выпрямителя с активной нагрузкой и с емкостным фильтром. Расчет выпрямителя с фильтром и ответвляющим диодом. Подбор трансформатора для двухфазной однотактовой схемы выпрямления. Разработка электрической схемы и печатной платы.

    курсовая работа [420,9 K], добавлен 05.12.2010

  • Понятие и сфера применения выпрямителя электрического однофазного. Экспериментальное исследование характеристик мостового выпрямителя переменного тока с различными видами сглаживающих фильтров. Освоение методики исследования и расчета выпрямителя.

    лабораторная работа [141,3 K], добавлен 18.06.2015

  • Характеристика свойств и параметров полупроводниковых приборов: диодов, транзисторов и стабилитронов. Расчет стабилизаторов напряжения, выпрямителей с емкостным фильтром. Выбор стандартного трансформатора. Определение коэффициента полезного действия.

    курсовая работа [2,3 M], добавлен 19.02.2013

  • Работа источника питания радиоэлектронной аппаратуры. Расчет стабилизаторов напряжения, однофазного мостового выпрямителя с емкостным фильтром, параметров трансформатора, коэффициента полезного действия. Выбор микросхемы, стабилитрона и транзистора.

    курсовая работа [271,9 K], добавлен 20.03.2014

  • Расчет однофазного двухполупериодного мостового выпрямителя с емкостным фильтром. Определение коэффициента трансформации и величины индуктивности. Выбор сердечника и вычисление числа витков дросселя. Емкость алюминиевого электролитического конденсатора.

    курсовая работа [317,9 K], добавлен 07.08.2013

  • Изучение работы выпрямителей. Схема однополупериодного и двухполупериодного выпрямителей. Осциллограмма однополупериодного и двухполупериодного выпрямителей. Схема выпрямителей с Г-образным сглаживающим и П-образным L-C фильтром и их осциллограммы.

    лабораторная работа [253,9 K], добавлен 12.01.2010

  • Схема управляемого выпрямителя. Основные параметры выпрямителя в управляемом режиме. Выбор защиты тиристоров от перегрузок по току и напряжению. Расчет стабилизатора напряжения, выпрямителей. Моделирование выпрямителя, расчет источника питания.

    курсовая работа [367,6 K], добавлен 02.02.2011

  • Исследование различных схем выпрямителей и их работа на различные типы нагрузок. Снятие диаграмм напряжений и токов, выполнение необходимых расчетов. Схема выпрямителя однофазного однополупериодного с активной или индуктивной–емкостной нагрузкой.

    лабораторная работа [1,3 M], добавлен 01.06.2015

  • Устройство и назначение выпрямителей электрического тока, их классификация по ряду признаков, назначение и применение. Обзор характеристик устройства, сфера использования высокочастотных выпрямителей. Пример управления высокочастотным выпрямителем.

    реферат [356,1 K], добавлен 16.12.2010

  • Схемы трехфазных выпрямителей, анализ их достоинств и недостатков. Выбор оптимальной конструкции трехфазного выпрямителя, работающего на активно-индуктивную нагрузку, расчет его основных параметров, выбор элементной базы, конструкторская сборка прибора.

    курсовая работа [907,0 K], добавлен 04.12.2013

  • Производство надежных и эффективных преобразователей переменного тока в постоянный. Расчет понижающего мостового выпрямителя с удвоением напряжения при автотрансформаторном питании от сетки. Расчет бестрансформаторного выпрямителя с умножением напряжения.

    курсовая работа [640,6 K], добавлен 04.05.2015

  • Структурная схема и параметры выпрямителей, вентильная группа, сглаживающие фильтры и стабилизатор напряжения. Схемы, принцип действия, параметры и характеристики однофазных выпрямителей, сравнение двухполупериодных выпрямителей с однополупериодными.

    реферат [138,4 K], добавлен 25.10.2010

  • Понятие и основные характеристики выпрямителя, его функциональные особенности, разновидности и схемы. Механизм и этапы процесса выпрямления электрического тока. Параметры выпрямителя и порядок их определения, необходимые для этого коэффициенты и данные.

    курсовая работа [79,5 K], добавлен 12.07.2011

  • Расчет силовой части выпрямителя по мостовой несимметричной схеме с тремя тиристорами и нулевым вентилем. Расчетная мощность первичной и вторичных обмоток трансформатора. Система управления выпрямителя, расчет выходного усилителя и устройства запуска.

    курсовая работа [836,4 K], добавлен 24.07.2010

  • Расчет основных параметров элементов схемы управляемого выпрямителя: трансформатора (при трансформаторном варианте), вентилей (тиристоров), сглаживающего реактора. Статические характеристики двигателя. Расчет ЭДС и средней мощности преобразователя.

    контрольная работа [88,1 K], добавлен 27.06.2014

  • Характеристика и особенности принципа работы однополупериодного выпрямителя с активной и емкостной нагрузкой. Порядок подключения выпрямителя к осциллографу, установка показателей синусоидального сигнала и частоты, зарисовка осциллограммы сигнала.

    лабораторная работа [1,8 M], добавлен 17.01.2011

  • Общие сведения и классификация выпрямителей, их характеристики. Выпрямители для безтрансформаторного питания аппаратуры. Микросхема К155ЛА3 и сборка RS-триггера. Повышение качества стабилизации в компенсационных стабилизаторах непрерывного действия.

    курсовая работа [1,3 M], добавлен 13.04.2015

  • Основные параметры выпрямителя в управляемом режиме. Выбор защиты тиристоров от перегрузок по току и напряжению. Расчет параметров пусковых импульсов, схем подавления помех, однофазного мостового выпрямителя и трансформатора. Моделирование силовой части.

    курсовая работа [472,7 K], добавлен 02.02.2011

  • Выбор схемы выпрямления. Основные параметры схем при работе на индуктивную нагрузку. Расчет силового трансформатора: потери мощности на сопротивлениях обмоток, сопротивление провода первичной обмотки. Проверка теплового режима трансформатора выпрямителя.

    контрольная работа [372,7 K], добавлен 06.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.