Разработка и исследование системы связи для ведомственных служб на основе Атмосферной Оптической Линии Связи
Исследование характеристик и особенностей применения атмосферных оптических линий связи. Современные приемники излучения, применяемые в АОЛС, их характеристики и принцип действия. Структура сети на основе АОЛС для связи сегментов ЛВС ведомственной службы.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | диссертация |
Язык | русский |
Дата добавления | 24.05.2018 |
Размер файла | 1,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru//
Размещено на http://www.allbest.ru//
ГОСУДАРСТВЕННЫЙ КОМИТЕТ СВЯЗИ, ИНФОРМАТИЗАЦИИ И ТЕЛЕКОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ РЕСПУБЛИКИ УЗБЕКИСТАН
ТАШКЕНТСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ
5А311103- Радиотехнические устройства и средства связи
Диссертация на соискание академической степени магистра
Разработка и исследование системы связи для ведомственных служб на основе Атмосферной Оптической Линии Связи
Мавлянов Карел-Иероним Мирославович
Научный руководитель:
Д.ф.-М.н., проф.,академик АН РУз.
Раджабов Т.Д.
Ташкент2013
Введение
Обоснование темы диссертации и актуальность.В Республике Узбекистан создана современная и мощная законодательная база в сфере инфокоммуникационных технологий [1-4]. В республике предусмотрены проведение модернизации, технического и технологического перевооружения предприятий, широкое внедрение современных гибких технологий. Ставится задача ускорения реализации принятых отраслевых программ модернизации, технического и технологического перевооружения производства [7]. Одной из важнейших задач, которая стоит перед нашим обществом, является обеспечение поступательного и устойчивого развития страны [8].ВПостановлении Президента Республики Узбекистан «О мерах по дальнейшему внедрению и развитию современных информационных технологий» принята «Программа дальнейшего внедрения и развития информационно-коммуникационных технологий в Республики Узбекистан на 2013-2014 годы», в которой большое внимание уделяется развитию инфраструктуры информационно-коммуникационных технологий, в частности, разработке и реализации технических проектов, направленных на обеспечение предоставления населению услуг широкополосного доступа [5,6]. В процессы модернизации и технического перевооружения входят и разработка и внедрение новых технологий, которые позволяли бы расширить их функциональные и сервисные возможности, уменьшить массогабаритные показатели, увеличить надежность их работы и повысить экономический эффект. Поэтому задача исследования применения атмосферных оптических линий связи в ведомственных службах Республики Узбекистан является актуальной. Объект и предмет исследований.Объектом исследований является атмосферная оптическая линия связи. Предмет исследований - разработка научно обоснованных рекомендаций по эффективному применению атмосферных оптических линий связи в Республики Узбекистан. Цель и задача исследований. Целью диссертационной работы является проведение комплексных исследований характеристик и особенностей применения атмосферных оптических линий связи. Для достижения данной цели необходимо было решать следующие задачи: - провести систематизированный анализ беспроводных технологий широкополосного доступа; - рассмотреть развитие широкополосного доступа, применительно к Республике Узбекистан. Гипотеза исследований. При проведении исследований в данной диссертации предполагается, что результаты исследований могут быть использованы практически для развития атмосферных оптических линий связи. Краткий литературный обзор по теме диссертации. В настоящее время во всемирной научной литературе большое внимание уделяется развитию широкополосного доступа. Вопросами исследования и развития атмосферных оптических линий связи занимались ведущие специалисты и ученые в области информационно-коммуникационных технологий всего мира. Результаты исследований широко освещены в мировой научной литературе, интернете. Методы исследований. В работе были использованы методы анализа, синтеза, индукции, дедукции полученных результатов исследования атмосферных оптических линий связи.
Теоретическая и практическая значимость полученных результатовзаключается в том, что полученные результаты могут быть использованы практически для установки аппаратуры АОЛС на местных широкополосных сетях доступа с учетом требований к коэффициенту готовности атмосферного канала. Научная новизна исследований.На основе проведенных исследований получены следующие научные результаты: - выполнен обзор и анализ беспроводных технологий широкополосного доступа; - внедрение АОЛС - есть принципиально новый подход к построению беспроводных сетей связи с высокими скоростями и в оптическом (наиболее свободном) диапазоне. Структура диссертации. Диссертация состоит из введения, трех глав, заключения и списка литературы. Основной текст диссертации занимает 70 страниц. Работа содержит 8 рисунков, включая графики, 7 таблиц, а также список литературы из 35 наименований.
Глава I. Обзор беспроводных технологий широкополосного доступа
Бурное развитие телекоммуникационного рынка требует высокоскоростных линий передачи данных. Однако внедрение проводных технологий (например, прокладка оптического волокна) подразумевает солидные инвестиции, которые не всегда возможны. Естественной альтернативой в этом случае являются беспроводные линии связи.
На сегодняшний день существует несколько основных беспроводных решений - это использование широкополосных радиоканалов WiFi / WiMax, радиорелейных линий (РРЛС) или атмосферных оптических линий связи (АОЛС).
1.1Технология Wi-Fi
Стандарт IEEE 802.11, является базовым стандартом и определяет протоколы, необходимые для организации беспроводных локальных сетей (WLAN), его разработка была завершена в 1997 г. Основные из них - протокол управления доступом к среде MAC (MediumAccsessControl - нижний подуровень канального уровня) и протокол PHY передачи сигналов в физической среде. В качестве последней допускается использование радиоволн и инфракрасного излучения. Стандартом 802.11 определен единственный подуровень MAC, взаимодействующий с тремя типами протоколов физического уровня, соответствующих различным технологиям передачи сигналов - по радиоканалам в диапазоне 2,4 ГГц с широкополосной модуляцией с прямым расширением спектра (DirectSequenceSpreadSpectrum, DSSS) и частотных скачков (FrequencyHoppingSpreadSpectrum, FHSS) , а также с помощью инфракрасного излучения. Обе эти широкополосные технологии предлагаются в двух частотных диапазонах: один в районе частоты 915 МГц, другой в диапазоне от 2400 МГц до 2483,5 МГц. Но именно диапазон 2,4 ГГц является наиболее интересным для использования его в беспроводных сетях, так как он наименее "зашумлен" посторонними сигналами и позволяет расширить полосу передачи. В режиме FHSS весь диапазон 2,4 ГГц используется как одна широкая полоса (с 79 подканалами). В режиме DSSS этот же диапазон разбит на несколько широких DSSS-каналов, которых одновременно может быть использовано не более трех[9]. Метод FHSS предусматривает изменение несущей частоты сигнала при передаче информации. При использовании FHSS конструкция приемопередатчика получается очень простой. Но этот метод применим, только если пропускная способность не превышает 2 Мбит/сек.. Спецификациями стандарта предусмотрены два значения скорости передачи данных - 1 и 2 Мбит/с. По сравнению с проводными ЛС Ethernet возможности подуровня MAC расширены за счет включения в него ряда функций, обычно выполняемых протоколами более высокого уровня, в частности, процедур фрагментации ретрансляции пакетов. Это вызвано стремлением повысить эффективную пропускную способность системы благодаря снижению накладных расходов на повторную передачу пакетов. В качестве основного метода доступа к среде стандартом 802.11 определен механизм CSMA/CA (CarrierSenseMultipleAccesswithCollisionAvoidance- множественный доступ с обнаружением несущей и предотвращением коллизий). В основу стандарта 802.11 положена сотовая архитектура, причем сеть может состоять как из одной, так и нескольких ячеек. Каждая сота управляется базовой станцией, называемой точкой доступа (AccessPoint, AP). Вместе с находящимися в пределах радиуса ее действия рабочими станциями пользователей она образует базовую зону обслуживания (BasicServiceSet, BSS). Точки доступа многосотовой сети взаимодействуют между собой через распределительную систему (DistributionSystem, DS), представляющую собой эквивалент магистрального сегмента кабельныхЛС. Вся инфраструктура, включающая точки доступа и распределительную систему образует расширенную зону обслуживания (ExtendedServiceSet). Стандартом предусмотрен также односотовый вариант беспроводной сети, который может быть реализован и без точки доступа, при этом часть ее функций выполняются непосредственно рабочими станциями. IEEE 802.11aСпецификация, являющаяся наиболее "широкополосным" из семейства стандартов 802.11, предусматривая скорость передачи данных до 54 Мбит/с (редакцией стандарта, утвержденной в 1999 г., определены три обязательных скорости - 6, 12 и 24 Мбит/с и пять необязательных - 9, 18, 36, 48 и 54 Мбит/с). В отличие от базового стандарта, ориентированного на область частот 2,4 ГГц, спецификациями 802.11а предусмотрена работа в диапазоне 5 ГГц. В качестве метода модуляции сигнала выбрано ортогональное частотное мультиплексирование (OFDM) [9]. Наиболее существенное различие между этим методом и радио технологиями DSSS и FHSS заключается в том, что OFDM предполагает параллельную передачу полезного сигнала одновременно по нескольким частотам диапазона, в то время как технологии расширения спектра передают сигналы последовательно. В результате повышается пропускная способность канала и качество сигнала. К недостаткам 802.11а относятся более высокая потребляемая мощность радиопередатчиков для частот 5 ГГц, а так же меньший радиус действия (оборудование для 2,4 ГГц может работать на расстоянии до 300м, а для 5ГГц - около 100м). Подводя краткий итог отметим, что данная версия является как бы "боковой ветвью" основного стандарта 802.11. Для увеличения пропускной способности канала здесь используется диапазон частот передачи 5,5 ГГц. Для передачи в 802.11a используется метод множества несущих, когда диапазон частот разбивается на подканалы с разными несущими частотами (OrthogonalFrequencyDivisionMultiplexing), по которым поток передается параллельно, разбитым на части. Использование метода квадратурной фазовой модуляции позволяет достичь пропускной способности канала 54 Мбит/сек [10]. IEEE 802.11bОбладает высокой скоростью передачи данных (до 11 Мбит/с), практически эквивалентной пропускной способности обычных проводных ЛС Ethernet, а также ориентации на "освоенный" диапазон 2,4 ГГц, этот стандарт завоевал наибольшую популярность у производителей оборудования для беспроводных сетей. В окончательной редакции стандарт 802.11b, известный также как Wi-Fi (wirelessfidelity), был принят в 1999г. В качестве базовой радио технологии в нем используется метод DSSS с 8-разрядными последовательностями Уолша. Поскольку оборудование, работающее на максимальной скорости 11 Мбит/с имеет меньший радиус действия, чем на более низких скоростях, то стандартом 802.11b предусмотрено автоматическое понижение скорости при ухудшении качества сигнала. Как и в случае базового стандарта 802.11, четкие механизмы роуминга спецификациями 802.11b не определены. Этот стандарт является наиболее популярным на сегодняшний день и, собственно, он носит торговую марку Wi-Fi [10]. Как и в первоначальном стандарте IEEE 802.11, для передачи в данной версии используется диапазон 2,4 ГГц. Он не затрагивает канальный уровень и вносит изменения в IEEE 802.11 только на физическом уровне. Для передачи сигнала используется метод прямой последовательности (DirectSequenceSpreadSpectrum), при котором весь диапазон делится на 5 перекрывающих друг друга поддиапазонов, по каждому из которых передается информация. Значения каждого бита кодируются последовательностью дополнительных кодов (ComplementaryCodeKeying). Пропускная способность канала при этом составляет 11 Мбит/сек.
1.2 ТехнологияWiMAX
В основе технологии WiMAX (WorldwideInteroperabilityforMicrowaveAccess) лежит протокол IEEE 802.16, который в отличие от других технологий радиодоступа, обеспечивает высокоскоростные соединения на больших расстояниях даже при отсутствии прямой видимости объекта, на отраженном сигнале. Она также позволяет работать в любых условиях, в том числе в условиях плотной городской застройки, обеспечивая высокое качество связи и скорость передачи данных. В общем виде WiMAX сети состоят из следующих основных частей: базовых и абонентских станций, а также оборудования, связывающего базовые станции между собой, с поставщиком сервисов и с Интернетом [11]. Для соединения базовой станции с абонентской используется высокочастотный диапазон радиоволн от 1,5 до 11 ГГц. В идеальных условиях скорость обмена данными может достигать 70 Мбит/с, при этом не требуется обеспечения прямой видимости между базовой станцией и приёмником. Между базовыми станциями устанавливаются соединения (прямой видимости), использующие диапазон частот от 10 до 66 ГГц, скорость обмена данными может достигать 140 Мбит/c. При этом, по крайней мере одна базовая станция подключается к сети провайдера с использованием классических проводных соединений. Однако, чем большее число БС подключено к сетям провайдера, тем выше скорость передачи данных и надёжность сети в целом. Структура сетей семейства стандартов IEEE 802.16 схожа с традиционными GSM сетями (базовые станции действуют на расстояниях до десятков километров, для их установки не обязательно строить вышки -- допускается установка на крышах домов при соблюдении условия прямой видимости между станциями) [11]. Технологию WiMAX можно использовать для создания широкополосных соединений "последней мили", развертывания точек беспроводного доступа, организации сети между филиалами компаний и решения других задач, которые ранее были ограничены традиционными технологиями. Набор преимуществ присущ всему семейству WiMAX, однако его версии существенно отличаются друг от друга. Разработчики стандарта искали оптимальные решения как для фиксированного, так и для мобильного применения, но совместить все требования в рамках одного стандарта не удалось. Хотя ряд базовых требований совпадает, нацеленность технологий на разные рыночные ниши привела к созданию двух отдельных версий стандарта (вернее, их можно считать двумя разными стандартами). Каждая из спецификаций WiMAX определяет свои рабочие диапазоны частот, ширину полосы пропускания, мощность излучения, методы передачи и доступа, способы кодирования и модуляции сигнала, принципы повторного использования радиочастот и прочие показатели. А потому WiMAX-системы, основанные на версиях стандарта IEEE 802.16 e и d, практически несовместимы. Краткие характеристики каждой из версий приведены ниже. 802.16-2004 (известен также как 802.16d и фиксированный WiMAX). Спецификация утверждена в 2004 году. Используется ортогональное частотное мультиплексирование (OFDM), поддерживается фиксированный доступ в зонах с наличием либо отсутствием прямой видимости. Пользовательские устройства представляют собой стационарные модемы для установки вне и внутри помещений, а также PCMCIA-карты для ноутбуков. В большинстве стран под эту технологию отведены диапазоны 3,5 и 5 ГГц. По сведениям WiMAXForum, насчитывается уже порядка 175 внедрений фиксированной версии. Многие аналитики видят в ней конкурирующую или взаимодополняющую технологию проводного широкополосного доступа DSL. 802.16-2005 (известен также как 802.16e и мобильный WiMAX). Спецификация утверждена в 2005 году. Это -- новый виток развития технологии фиксированного доступа (802.16d). Оптимизированная для поддержки мобильных пользователей версия поддерживает ряд специфических функций, таких как хэндовер, idlemode и роуминг. Применяется масштабируемый OFDM-доступ (SOFDMA), возможна работа при наличии либо отсутствии прямой видимости. Планируемые частотные диапазоны для сетей MobileWiMAX таковы: 2,3-2,5; 2,5-2,7; 3,4-3,8 ГГц [12]. WiMAX технология позволяет обеспечить доступ в Интернет со скоростями и зоной покрытия, существенно большими, чем у современных сетей WiFi. Wi-Fi - это технология беспроводной связи для небольших расстояний: в офисном здании, кафе... Расстояние от хот-спотаWi-Fi до компьютера не превышает десятков метров. Технология WiMax - это сеть широкополосного беспроводного доступа, которая создается на территории целого города, а расстояние от приемника до базовой станции измеряется уже километрами.
1.3 Предпосылки создания АОЛС
Оптическая связь осуществляется путем передачи информации с помощью электромагнитных волн оптического диапазона. В качестве примера оптической связи можно привести применяемую в прошлом передачу сообщений с помощью костров или семафорной азбуки. В 60-е годы XX века были созданы лазеры и появилась возможность построения широкополосных систем оптической связи, передающих не только телефонные, но и телевизионные и компьютерные сигналы [13]. Оптические системы связи делятся на открытые, где сигнал передается в атмосфере или космосе, и закрытые, то есть использующие световоды. В настоящем обзоре рассматриваются только открытые атмосферные линии связи. Оптическая атмосферная система связи между двумя пунктами состоит из двух спаренных приемопередающих устройств, расположенных в пределах прямой видимости на обоих концах линии и направленных друг на друга. В передатчике находится генератор-лазер и модулятор его оптического излучения передаваемым сигналом. Модулированный лазерный луч коллимируется оптической системой и направляется в сторону приемника. В приемнике излучение фокусируется на фотоприемник, где производится его детектирование и выделение передаваемой информации. Так как лазерный луч передается между пунктами связи в атмосфере, то его распространение сильно зависит от метеоусловий, от наличия дыма, пыли и других загрязнений воздуха. Кроме того, в атмосфере наблюдаются турбулентные явления, которые приводят к флуктуации показателя преломления среды, колебаниям луча и искажениям принимаемого сигнала. Однако, несмотря на указанные проблемы, атмосферная лазерная связь оказалась вполне надежной на расстояниях нескольких километров и особенно перспективной для решения проблемы "последней мили". В СССР первые атмосферные линии связи (АЛС) были созданы в 60-х годах XX века. В Москве была пущена телефонная линия между зданием МГУ на Ленинских горах и Зубовской площадью протяженностью более 5 км, а в Тбилиси - телевизионная АЛС от студийного комплекса до передатчика длиной в 3,5 км. Качество передаваемого сигнала полностью соответствовало нормам МККР. В те же годы успешные опыты с АЛС проводились в Ленинграде, Горьком и в Ереване. В первых АЛС использовался гелий - неоновый лазер типа ЛГ-36 с длиной волны излучения 0,63 мкм и мощностью 40 мВт. Амплитудная модуляция осуществлялась модулятором типа ОПМШ-100 на базе эффекта Поккельса, а фотоприемником служил фотоумножитель ФЭУ-51. В те годы считалось, что плохие погодные условия (снег, дождь, туман) делают лазерную связь ненадежной, и она была признана неперспективной [14]. Современное широкое распространение АЛС во многих странах мира началось в 1998 году, когда были созданы недорогие полупроводниковые лазеры мощностью в 100 мВт и более. В это же время возникла потребность в лазерной связи, так как стали стремительно развиваться информационные технологии. Резко увеличивается число абонентов, требующих предоставления таких телекоммуникационных услуг, как Интернет, IP-телефония, кабельное телевидение с большим числом каналов, компьютерные сети и т. д. В результате возникла проблема "последней мили", то есть подключение широкополосного канала связи к конечному пользователю. Прокладка новых кабельных сетей требует крупных капиталовложений, а в ряде случаев, особенно в условиях плотной городской застройки, очень трудна или даже невозможна. Оптимальным решением проблемы последнего участка является использование беспроводных линий передачи. Стандарт IEEE 802.11 предусматривает для этих целей СВЧ или оптический (ИК) диапазоны излучений. Преимущества беспроводных линий связи очевидны: это экономичность (так как не требуется рыть траншеи для укладки кабеля и арендовать землю); низкие эксплуатационные расходы; высокая пропускная способность и качество цифровой связи; быстрое развертывание и изменение конфигурации сети; легкое преодоление препятствий - железных дорог, рек, гор и т. д. В то же время беспроводная связь в СВЧ-диапазоне ограничена перегруженностью и дефицитом частотного диапазона, недостаточной скрытностью, подверженностью помехам, в том числе и преднамеренным, и с соседних каналов, повышенным энергопотреблением [15]. В отличие от СВЧ оптический диапазон совершенно свободен, и его использование не требует согласования частотного канала. Он позволяет обеспечить высокую скорость передачи информации, ее защиту от несанкционированного доступа, помехоустойчивость, низкое энергопотребление. Поэтому наиболее полным решением проблемы "последней мили" является передача информации лазерным лучом. Опасения потенциальных пользователей АЛС относительно ее зависимости от погодных условий (дождь, снег, туман, смог и т. д.) были сняты экспериментальными измерениями вероятности ошибок BER (biterrorrate) на заданной дальности [28].
1.4 Технология АОЛС
Сама технология АОЛС (в разных источниках также встречаются аббревиатуры FSO - FreeSpaceOptics, АОСП - Атмосферные Оптические Системы Передачи данных, БОКС - Беспроводные Оптические Каналы Связи, ЛАЛ - Лазерные Атмосферные Линии) основывается на передаче данных модулированным излучением в инфракрасной (или видимой) части спектра через атмосферу и их последующим детектированием оптическим фотоприёмным устройством. Лазерная связь двух объектов осуществляется только посредством соединения типа «точка-точка».Передатчиком служит мощный полупроводниковый лазерный диод. Информация поступает в приемопередающий модуль, в котором кодируется различными помехоустойчивыми кодами, модулируются оптическим лазерным излучателем и фокусируется оптической системой передатчика в узкий коллимированный лазерный луч и передается в атмосферу. При этом в качестве излучателя обычно используются инфракрасные лазеры класса 1 или 1M (к лазерам 1-го класса относят полностью безопасные лазеры, выходное коллимированное излучение которых не представляет опасности при облучении глаз и кожи), для низкоскоростных коммуникаций на небольшие расстояния могут использоваться светодиоды. В качестве приёмника используются лавинные или кремниевые фотодиоды. На принимающей стороне оптическая система фокусирует оптический сигнал на высокочувствительный фотодиод(или лавинный фотодиод), который преобразует оптический пучок в электрический сигнал. При этом, чем выше частота (до 1,5ГГц), тем больше объём передаваемой информации. Далее, сигнал демодулируется и преобразуется в сигналы выходного интерфейса [22]. Длина волны в большинстве реализованных систем варьируется в пределах 700--950 нм или 1550 нм, в зависимости от применяемого лазерного диода. 780-850 нм. Эти длины волн подходят для работы FSO -систем и целый ряд производителей предлагает мощные лазеры, работающие в этом диапазоне длин волн. На длине волны 780 нм работают лазеры, использующиеся в CD -приводах, однако при проектировании систем необходимо учитывать срок службы данных лазеров (к примеру, работа лазеров на мощности, значительно меньшей максимально допустимой позволяет существенно увеличить срок их службы). В районе 850 нм широко распространены высокоскоростные приемные и передающие компоненты, обычно используемые в сетях и передающем оборудовании. В этом диапазоне могут быть использованы высокочувствительные кремниевые лавинные фотодиоды ( APD ) и лазеры с вертикальной излучающей поверхностью ( VCSEL ). Возможным недостатком является возможность перехвата излучения с помощью приборов ночного видения, однако демодуляция сигнала с помощью этой техники невозможна. 1520-1600 нм. Эти длины волн хорошо подходят для FSO -применений и к настоящему времени доступны высококачественные компоненты для приема и передачи излучения. Сочетание малого затухания и высокого качества электронных компонентов для данного диапазона позволяет создавать FSO системы с волновым мультиплексированием WDM (WavelengthDivisionMultiplexing, Спектральное уплотнение каналов). Однако указанные компоненты стоят дороже, приемники обладают меньшей чувствительностью малыми размерами приемной площадки по сравнению с кремниевыми ЛФД-приемниками, работающими на 850 нм. Как уже было сказано, этот диапазон длин волн применяется в волоконно-оптических системах при работе на большие расстояния и много компаний работает над снижением стоимости и увеличением скорости компонент в области 1200-1600 нм. Кроме того, на этих длинах волн работают эрбиевые усилители ( EDFA ), что очень важно для создания мощных (>500 мВт) и высокоскоростных (> 2.5 Гбит/с) систем. В заключение отметим, что в диапазоне 1520-1600 нм по сравнению с диапазоном 780-850 нм, может быть передано в 50-65 раз больше мощности для того же класса лазерной безопасности, ввиду меньшего поглощения человеческим глазом излучения для этих длин волн.
10000 нм (10 мкм). Этот диапазон длин волн относительно нов для коммерческих FSO -систем и планируется к применению вследствие меньшего поглощения данного излучения дымными средами. Сейчас широко обсуждается эффективность данного явления поскольку оно очень сильно зависит от вида дыма и его протяженности. На рынке присутствуют компоненты для построения систем на 10 мкм, но они обычно не используются в телекоммуникационном оборудовании. Кроме того излучение 10 мкм не проходит через стекло и поэтому невозможна установка данного оборудования внутри помещений. С другой стороны, слабое пропускание стеклом означает невозможность его концентрации оптическими приборами (например биноклями), что позволяет работать с большими мощностями без ограничений по безопасности. Далее, следует рассмотреть скорость работы FSO -систем с точки зрения атмосферного распространения излучения разных длин волн в условиях сильного задымления. До недавнего времени считалось, что чем больше длина волны, тем больше возможная дистанция связи. Однако, недавние исследования показали, что свыше 780-1600 нм поглощение за счет сильного задымления практически постоянно и, фактически, нет никаких преимуществ вплоть до миллиметрового диапазона. В то же время, огромное количество исследований показывает, что излучение 10 мкм распространяется лучше в условиях тумана и сильного дыма. Однако данные условия обычно не составляют проблем для качественно спроектированных передатчиков FSO -систем на дистанциях, типичных для их коммерческого применения. Следовательно, реальное улучшение сильно зависит от типа дыма и его протяженности. Стандартные модели атмосферного рассеяния, использующие теорию Ми или различные расчетные средства, такие как MODTRAN не показывают улучшения работы на 10 мкм. Даже когда центр распределения радиусов частиц дыма меньше 5 мкм, вклад верхней части распределения (когда рассеяние пропорционально квадрату радиуса частиц) не показывает какого либо преимущества на данной длине волны.
Физические ограничения АОЛС по скорости передачи определяются только собственной частотой несущей электромагнитной волны(?10?^15…?10?^16 Гц), поскольку в отличие от ВОЛС, среда передачи (атмосфера) не вносит временной дисперсии сигналов. Этот фактор является во многих случаях определяющим при выборе средства передачи. Во многих случаях потребителей привлекает отсутствие необходимости согласования частотного диапазона, поскольку оптический диапазон не регламентирован. И существенно важно, что причин для введения частотных ограничений фактически нет, что связано с чрезвычайно узкой диаграммой направленности излучения лазерных передатчиков и отсутствием боковых лепестков диаграммы направленности оптических антенн. Достаточным условием отсутствия влияния двух близко расположенных линий является угловое или линейное расстояние между диаграммами направленности излучения передатчиков этих линий, при котором излучение одной линии не попадает на приемники другой. Это, как правило, 1…20 или 5…10 метров.
Существенным достоинством АОЛС является нечувствительность к помехам радиодиапазона. Это позволяет использовать оптические линии в местах с большой насыщенностью радиосистем [26]. С узкой диаграммой оптических антенн связано также другое значительное преимущество АОЛС - защищенность канала связи от несанкционированного доступа. По этому критерию данная технология является уникальной. Во всех остальных случаях (волоконные и медные кабели, радиолинии) для защиты информации требуется использование специальных кодов. В открытой оптической линии защита обеспечивается за счет узкой диаграммы направленности излучения. С помощью внешних ИК-приборов можно обнаружить наличие канала связи, но для перехвата информации необходимо установить приемник непосредственно в канал связи, что практически неосуществимо. Многие производители отмечают в качестве достоинства АОЛС быстроту организации линии связи. Действительно, кроме общих временных затрат, связанных с оформлением аренды мест установки аппаратуры, время на инсталляцию канала при отработанной технологии исчисляется часами.
Основным недостатком АОЛС является зависимость пропускания атмосферой оптического излучения от состояния погоды. Эта специфика устройств АОЛС является основной причиной, сдерживающей их широкомасштабное внедрение. Распространение лазерного излучения в атмосфере сопровождается тремя существенными для лазерной связи процессами:
флуктуациями принимаемого сигнала вследствие рефракции излучения на турбулентных неоднородностях показателя преломления воздуха;
рассеянием излучения на аэрозолях,
экранирование излучения механическими предметами
Остальными процессами, такими как резонансное поглощение,молекулярное рассеяние и аэрозольное поглощение, при правильном выборе длины волны можно пренебречь. Рассмотрим основные процессы, которые влияют на помехоустойчивости АОЛС. Влияние флуктуаций обусловлено следующими факторами. После прохождения через турбулентную атмосферу лазерное излучение, изначально имеющее плавный профиль распределения интенсивности в поперечном сечении пучка, приобретает пятнистую структуру. В плоскости приемной антенны это проявляется в хаотическом чередовании темных и ярких пятен. Поперечный размер и частота "мерцания" пятен зависит от расстояния между источником излучения и экраном и характера атмосферной турбулентности, т.е. состояния погоды. В каждой точке мишени при этом могут наблюдаться флуктуации сигнала с частотой от десятков герц до нескольких килогерц. На практике это выражается в том, что возникают т.н. замирания оптического сигнала на входе в фотоприёмник. Связь становится неустойчивой, появляются ошибки ?10?^(-6)…?10?^(-3). Этот эффект проявляет себя наиболее сильно в ясную погоду при слабом ветре в любое время года, но особенно - в жаркие летние месяцы. Самым простым способом уменьшения влияния турбулентной рефракции на качество канала связи, которым пользуются разработчики, является увеличение размера приемной оптической антенны [25]. При этом происходит осреднение флуктуаций излучения, пришедшего на отдельные участки этой апертуры в фокальной плоскости антенны, где установлен фотоприемник. Вторым методом является некогерентное сложение в одном информационном канале излучения нескольких лазеров. Также к основным факторам влияния на качество сигнала относятся аэрозоли. К аэрозолям относятся дисперсные системы, состоящие из твердых частиц и капель жидкости, находящихся во взвешенном состоянии. В данном случае это туманы, смог, дождь, снег. Как известно, при распространении в рассеивающей среде согласно закону Бугера мощность излучения уменьшается экспоненциально по длине трассы. Поэтому увеличение расстояния для лазерной связи является серьезной проблемой, требующей значительного наращивания энергетического потенциала. Вследствие сложной структуры аэрозолей в реальной атмосфере расчет потерь излучения с приемлемой точностью чрезвычайно затруднен, и на практике используют интегральную характеристику пропускания атмосферы - видимость или метеорологическую дальность видимости - МДВ (Sm) [23]. По определению МДВ представляет собой наибольшее расстояние, на котором днем видны крупные темные предметы. Однако метеослужбы определяют МДВ путем измерения пропускания эталонного излучения на калиброванной трассе. Поэтому она однозначно связана с характеристикой оптической прозрачности атмосферы и представляет собой её условное выражение. Для каждой конкретной аппаратуры АОЛС и дальности связи можно рассчитать минимальное, или критическое, значение МДВ - Smin, прикотором при ухудшении погодных условий происходит нарушение работоспособности канала АОЛС. Тогда, зная метеорологическую статистику конкретной местности, например, используя данные метеослужб [23], можно с определенной точностью предсказать доступность канала связи. Другим способом теоретически рассчитать параметр доступности невозможно. Именно поэтому прогноз погоды до сих пор не удается обеспечить с приемлемой точностью. Здесь необходимо отметить еще одну особенность работы лазерной линии связи. Как известно, количество ошибок на бит информации определяется уровнем превышения сигнала над всеми шумами на приемнике. При увеличении уровня сигнала на фотоприемнике в два раза уровень ошибок снижается с ?10?^(-6) до ?10?^(-10), а весь располагаемый динамический диапазон изменения сигнала - ?10?^3…?10?^6. Это свойство АОЛС проявляется в том, что при нормальной погоде качество передачи очень хорошее (если решена проблема флуктуаций сигнала) до момента, когда за счет ухудшения погодных условий сигнал на приемнике уменьшается до порогового значения. Линия может работать длительное время идеально в снег или дождь, туман средней интенсивности, а затем, если туман сгущается до критической МДВ, за несколько минут канал полностью прерывается. В это время число ошибок возрастает от ?10?^(-10)…?10?^(-12)до 1. Так же быстро нормальная работа линии восстанавливается при улучшении погодных условий. Надежность канала связи определяется отношением времени бесперебойной работы линии к общему времени эксплуатации. Это основной параметр, характеризующий потребительские свойства системы. Поэтому большинство производителей в своих рекламных материалах приводят параметр доступности в первую очередь. Опыт эксплуатации АОЛС показал, что дожди, дымки и снег средней интенсивности мало влияют на работоспособность линий связи, обладающих достаточным динамическим потенциалом [23]. Основной причиной нарушения работоспособности последних являются туманы. Кроме того, ухудшение видимости менее 1000 метров при метелях, снегопадах, дождях и моросях имеет повторяемость не более 5-10%, остальные 90-95% приходятся на туманы. Вероятность образования тумана, его характер, интенсивность и продолжительность существенно зависят от широты места, географических особенностей, сезона года, характера атмосферных процессов. Из практики известно, что в одних случаях туман сплошь застилает значительную территорию, в других - возникает местами, то есть имеет большую пространственно-временную изменчивость. Наличие в непосредственной близости от АОЛС водоема также может повлиять на количество возникающих туманов, а значит, и на доступность линии. Для обеспечения работоспособности линии связи на требуемой дистанции с определенным уровнем надежности связи (или доступности канала) необходимо иметь достаточный динамический запас энергетического потенциала линии или диапазон допустимого затухания мощности сигнала на приемнике, при котором линия сохраняет работоспособность. Верхняя граница динамического диапазона определяется геометрическими потерями и флуктуациями, т.е. это максимальная величина сигнала на приемной антенне, которая реализуется при отсутствии потерь на пропускание атмосферы. Нижняя граница обусловлена чувствительностью приемника и определяет уровень работоспособности системы при плохих погодных условиях [24].
Выводы к главе I
1.Рассмотрены особенности технологии Wi-Fi и установлено, что основными отличительными свойствами технологии Wi-Fi являются: обеспечение связи на небольшой территории и внутри помещений; обеспечение высокоскоростной (до 74 Мбит/с) передачи данных и простота принципов построения и функционирования сети. Приведены характеристики и режимы работы Wi-Fi.
2. Рассмотрены особенности технологии WiMAXи установлено, что основными отличительными свойствами технологии WiMAX являются: обеспечение доступа в Интернет со скоростями и зоной покрытия, существенно большими, чем у современных сетей WiFi.Приведены характеристики и режимы работыWiMAX.
3. Рассмотрены предпосылки создания АОЛС, которые обусловлены стремительным развитием информационных технологии. Резкое увеличение числа абонентов, требующих предоставления таких телекоммуникационных услуг, как Интернет, IP-телефония, кабельное телевидение с большим числом каналов, компьютерные сети и т. д. В результате возникла проблема "последней мили", то есть подключение широкополосного канала связи к конечному пользователю. Оптимальным решением проблемы последнего участка является использование беспроводных линий передачи.
4.Рассмотрены особенности технологии АОЛСи установлено, что основными отличительными свойствами технологии АОЛС являются:физическое ограничение АОЛС по скорости передачи определяютсятолько собственной частотой несущей электромагнитной волны(?10?^15…?10?^16 Гц); нечувствительность к помехам радиодиапазона, что позволяет использовать оптические линии в местах с большой насыщенностью радиосистем.Приведены характеристики и диапазоны длин волн используемых АОЛС.
ГлаваII. Классификация и основные составляющие АОЛС
2.1 Классификация АОЛС
Активная схема построения АОЛС
В активной схеме источник и приемник излучения находятся внутри приемопередающего оптического блока. Как правило, в фокусе или вблизи объектива. Схема активного исполнения АОЛС показана на рис. 2.1. К плюсам данной схемы следует отнести большую площадь фотоприемника, что в свою очередь, увеличивает угол поля зрения, а это благоприятно сказывается на уменьшении энергетических потерь и требований к угловым перемещениям приемопередающих оптических блоков друг относительно друга. К недостаткам данной схемы следует отнести необходимость подведения питания непосредственно к оптическим блокам, что не всегда возможно.
Рис. 2.1. Схема активного исполнения АОЛС (И - источник, П -приемник, ОВ - оптическое волокно, ОС - оптическая система)
Пассивная схема построения АОЛС
Пассивная схема построения АОЛС осуществляется следующим образом. Источник и приемник излучения располагаются непосредственно в корпусе медиаконвертеров, которые осуществляют преобразования интерфейсов «витая пара - одномодовый (многомодовый) оптическийкабель». Схема пассивного исполнения АОЛС показана на рис. 2.2.
Соединение медиаконвертера с оптическим блоком осуществляется с помощью одномодового или многомодового оптического кабеля оконцованного коннектором. В данной схеме источником и приемником оптического излучения является торец оптического волокна, расположенного в непосредственной близости к фокусу приемопередающей оптической системы. Недостатком пассивной схемы следует отнести достаточно жесткие требования к юстировке оптических блоков по углу из-за малых размеров приемной площадки, которая является торцом оптического волокна: диаметр одномодового волокна 5…9 мкм, многомодового 50…62.5 мкм. Для увеличения поля зрения необходимо увеличивать в несколько раз диаметр падающего пучка на торец волокна приемника, что приводит к геометрическим потерям из-за разности площадей оптического волокна приемника и пятна излучения [25].
К достоинствам можно отнести отсутствие необходимости подвода питания к оптическим блокам.
Рис. 2.2. Схема пассивного исполнения АОЛС (И - источник, П - приемник, ОВ - оптическое волокно ОС - оптическая система)
Смешанная схема построения АОЛС
В том случае, когда невозможно реализовать активную или пассивную схему, используется смешанная схема, которая изображена на рис. 2.3. Существует несколько вариантов реализации данной схемы, например, когда в одном приемопередающем оптическом блоке источник и приемник излучения находятся внутри оптического блока, а в другом источник и приемник излучения располагаются непосредственно в медиаконвертере,которые соединяются с приемопередающим оптическим блоком с помощью оптического волокна.
Рис.2.3. Схема смешанного исполнения АОЛС (И - источник, П - приемник, О.В. - оптическое волокно ОС - оптическая система)
2.3 Источники излучения
В оптических системах связи и обработки информации могут применяться различные источники света: газоразрядные, полупроводниковые, твердотельные лазеры, светодиоды, суперлюминесцентные диоды и др.
Полупроводниковые лазеры.
Принцип действия полупроводниковых лазеров (ППЛ) основан на вынужденной излучательной рекомбинации электронно-дырочных пар, в активных полупроводниковых структурах, получаемых при прохождении через такие структуры электрического тока накачки. Наибольшее распространение получили лазеры на гетероструктурах (гетеролазеры), лазеры с распределенной обратной связью (РОС-лазеры) и лазеры на квантоворазмерных структурах (КРС-лазеры) [20].
Современные ППЛ, применяемые в системах оптической связи, обычно работают в спектральных диапазонах высокой прозрачности кварцевого оптоволокна - 0.82…0.90 мкм, 1.30…1.33 мкм и около 1.55 мкм. Типичная мощность излучения таких ППЛ от 1 до 5 мВт; увеличение выходной мощности ППЛ для магистральных волоконно-оптический систем передачи информации(ВОСПИ) сверх 5-10 мВт нецелесообразно, так как срок действия мощных лазеров сравнительно невелик. Кроме этого, при больших плотностях мощности в одномодовом волокне заметную роль начинают играть нелинейно-оптические явления, приводящие к искажениям передаваемых сигналов. Ширина спектра излучения лучших образцов промышленных полупроводниковых лазеров около 0.1 нм при уровне боковых частот ниже 20 дБ. В одночастотных ППЛ, используемых в системах когерентной оптической связи, полуширина спектра генерации менее 500 МГц. Величина порогового тока накачки РОС-лазеров составляет несколько десятков мА, у ППЛ на основе квантоворазмерных структур пороговый ток накачки существенно меньше - от 3 до 15 мА. Как правило, ППЛ для ВОЛС выпускаются в виде компактных оптоэлектронных модулей, содержащих сервисную электронику (усилитель подводимого сигнала, систему авторегулировки мощности, температуры и др.), фотоприемник для контроля мощности выходного излучения, терморезистор и полупроводниковый термоэлемент (элемент Пельтье) - «холодильник», управляемый специальным электронным устройством и поддерживающий стабильную рабочую температуру внутри модуля. В таком модуле излучение из активной области ППЛ с использованием микролинз вводится в выходное одномодовое или многомодовое оптоволокно. В последние годы выпуск отдельных излучательных полупроводниковых модулей для ВОСПИстановится ограниченным, и гораздо большее распространение в технике оптической связи находят приемо-передающие оптоэлектронные модули, содержащие в едином компактном блоке полупроводниковые излучатель и фотоприемник. Частота модуляции современных коммерческих высокоскоростных ППЛ составляет от нескольких десятков - сотен МГц до примерно 1.5…2.5 ГГц. В уникальных образцах ППЛ достигнута скорость передачи сигналов свыше 25 Гбит/с. В последние годы повышенный интерес разработчиков ВОСПИ вызывают «викселы» - полупроводниковые лазеры с вертикальным резонатором (VCSEL - vertical-cavitysurface-emittinglasers). В таких лазерах резонатор образован двумя объемными дифракционными решетками Брэгга и излучение генерируется в направлении, перпендикулярном плоскости подложки, являющейся основанием гетеро- и квантоворазмерных слоев полупроводников.Благодаря сверхкороткой длине L резонатора Фабри- Перо, викселы генерируют на одной продольной моде, при этом диаметр выходного пучка лазера достигает 20…30 мкм, что позволяет осуществлять его эффективную фокусировку в одномодовое волокно. Пороговый ток викселов крайне мал - до 2…5 мА, мощность излучения около 1 мВт. Приложением лектрического поля в направлении оси резонатора в некоторых (консольных) вариантах VCSEL удается осуществлять плавную перестройку длины волны генерации в полосе длин волн 1530… 1560 нм. Это создает возможность эффективного применения викселов в перспективных ВОСПИ со спектральным уплотнением (WDM -WavelengthDivisionMultiplexing и DWDM -DenseWavelengthDivisionMultiplexing) [18,19].
Полупроводниковые светодиоды
В ВОСП небольшой (0.1…1.0 км) протяженности, а также в низкоскоростных (не боле 10 Мбит/с) ВОСП в качестве источников света нередко используются полупроводниковые светодиоды, отличающиеся сравнительно малой мощностью излучения (до 0.5 мВт) и большой (около 20…30 нм) шириной спектра излучения. В основе действия светоизлучающих полупроводниковых диодов (СИД) лежит спонтанная рекомбинация электронно-дырочных пар в активной области гетеро- либо квантоворазмерной полупроводниковой структуры. Диапазон рабочих длин волн современных СИД весьма широк - от 0.4 до 1.6 мкм. СИД активно используются и в технике систем индикации, в осветительной и сигнальной технике; разработаны СИД с мощностью излучения до 30 мВт в диапазонах длин волн около 690, 590, 470 нм, а также различные типы СИД белого свечения. Степень поляризации выходного излучения СИД близка к нулю. СИД обычно используются в линиях передачи сигналов на основе многомодовых волоконных световодов с большим (десятки-сотни мкм) диаметром сердцевины, в том числе изготовленных из недорогих полимерных материалов. Удобно применение СИД и в открытых системах связи с дальностью действия в пределах 100 м, используемых на промышленных объектах и строительных площадках. Характерная особенность СИД, применяемых в системах связи, - линейная ватт- амперная характеристика в широком диапазоне токов накачки, что делает их весьма удобными в аналоговых оптоэлектронных системах передачи и обработки сигналов. Основные достоинства СИД - малая потребляемая электрическая мощность, дешевизна и значительная долговечность (около ?10?^5 часов).
Суперлюминесцентные диоды
В суперлюминесцентных диодах (СЛД) последовательно действуют два процесса генерации света: первичное излучение возникает в результате спонтанной рекомбинации электронно-дырочных пар и вторичное - вынужденное излучение - является основой механизма усиления спонтанного излучения в активной среде. Активная среда в СЛД обладает высоким оптическим коэффициентом усиления, оптический резонатор в СЛД отсутствует и такой излучатель, в целом, можно рассматривать как однопроходный усилитель света. В конструкции СЛД достигнута высокая степень подавления лазерных (резонансных) эффектов, в результате чего широкая, с полушириной около 20…40 нм, спектральная кривая распределения мощности выходного излучения примерно соответствует распределению Гаусса. Мощность излучения СЛД обычно находится в пределах 3…10 мВт (имеются промышленные образцы СЛД мощностью в несколько сотен мВт) при токах накачки величиной от 50 до 150 мА [17].
Спектральныйрипл (относительная величина резонансных максимумов на спектральной зависимости мощности излучения) в лучших образцах СЛД менее 0.5 %. Излучение СЛД частично поляризовано (степень поляризации 30-40%), а ватт-амперная характеристика таких излучателей существенно нелинейная. В ВОСПИСЛД применяются сравнительно редко и основной областью их практического использования являются различные оптические измерительные устройства (например, волоконные гироскопы), датчики, системы индикации.
2.4 Приемники излучения
Фотоприемники - устройства для преобразования сигналов электромагнитного излучения. Существуют различные типы фотоприемников, в которых используются вещества в разных агрегатных состояниях. Наряду с одноэлементными приемниками существуют многоэлементные приемники, с отдельными приемными элементами, дискретно или непрерывно распределенными по поверхности.
p-I-n-фотодиоды
P-I-N фотодиод представляет собой трехслойную структуру из p- и n-полупроводников, разделенную сравнительно протяженной I - областью слаболегированного полупроводника. Поглощение квантов света происходит в обедненной I- области, при этом в результате внутреннего фотоэффекта в объеме этого слоя образуются электроны и дырки, время жизни которых намного превышает их время жизни в p- и n- слоях (где они быстро рекомбинируют). Во внешнем электрическом поле носители заряда дрейфуют, обусловливая электрический ток в замкнутой электрической цепи фотоприемного устройства [22]. Спектральная чувствительность p-I-n фотодиодов определяется типом полупроводниковой структуры, при этом красная граница фотоэффекта составляет около 0.9 мкм для арсенида галлия, 1.1 мкм для кремния и 1.7 мкм для германия; сегодня разработаны и практически используются более сложные фотоприемные полупроводниковые структуры, в том числе квантоворазмерные, обладающие высокой квантовой эффективностью как в узкой, так и в широкой полосах спектра длин волн. В лучших образцах p-I-n фотодиодов чувствительность фотодиода (отношение величины фототока к мощности падающего излучения) достигает уровня свыше 0.9 А/Вт. Временные характеристики p-I-n фотодиодов определяются толщиной обедненного I- слоя, скоростью дрейфа носителей заряда и собственной емкостью фотодиода и подводимых электродов. Высокоскоростные p-I-n фотодиоды характеризуются временем нарастания-спада регистрируемого оптического сигнала величиной 10 - 100 пикосекунд. Величина обратного напряжения смещения в p-I-n- фотодиодах обычно от 10 до 20 В [21].
Лавинные фотодиоды
Лавинные фотодиоды (ЛФД) относятся к полупроводниковым фотоприемникам с внутренним усилением фототока. Конструктивно в лавинных фотодиодах между областью поглощения света (р - областью) и n- областью полупроводниковой p-р -n- структуры расположен дополнительный слой p- полупроводника, тот есть структура ЛФД имеет вид p-р -p-n. При высоком напряжении обратного смещения носители, дрейфующие в р-области, приобретают кинетическую энергию, достаточную для ударной ионизации атомов кристаллической решетки полупроводника. Благодаря большой, около 105 В/см, напряженности электрического поля вблизи границы p- и n- полупроводников, первичная, образовавшаяся при поглощении одного кванта электронно-дырочная пара может создать десятки-сотни вторичных пар. В результате лавинного умножения числа носителей величина фототока в ЛФД, по сравнению с фототоком в p-I-n- фотодиоде, возрастает в 100 000 раз, что способствует увеличению чувствительности такого фотоприемника более чем на порядок. Основным недостатком ЛФД являются сравнительно большие шумы, вызванные температурными флуктуациями величины коэффициента лавинного умножения. Величина обратного напряжения смещения в современных ЛФД лежит в пределах 30 - 200 В и устанавливается с высокой точностью, например, около 0.1 В. Полоса рабочих частот ЛФД достигает 80 ГГц.и длины регенерационного участка линии передачи [19,20].
...Подобные документы
Особенности систем передачи информации лазерной связи. История создания и развития лазерной технологии. Структура локальной вычислительной сети с применением атмосферных оптических линий связи. Рассмотрение имитационного моделирования системы.
дипломная работа [2,6 M], добавлен 28.10.2014Общие сведения о радиорелейных и атмосферных оптических линиях связи, их сравнительная характеристика, оценка достоинств и недостатков практического использования. Методика расчета атмосферной оптической линии связи между двумя заданными точками.
курсовая работа [829,0 K], добавлен 09.12.2014Принцип работы атмосферных оптических линий связи, область применения и потенциальные потребители. Преимущество атмосферных оптических линий связи. Системы активного оптического наведения. Поглощение светового потока видимого и инфракрасного диапазонов.
курсовая работа [27,7 K], добавлен 28.05.2014Свойства лазерных систем. Разработка приемопередающего модуля (ППМ) АОЛС, обеспечивающего передачу информации со скоростью 1 Гбит/c при доступности связи не менее 99%. Передача сигналов ИК диапазона через атмосферу. Криптографическая защита информации.
дипломная работа [5,9 M], добавлен 04.04.2014Система атмосферной оптической связи, ее внутренняя структура и элементы, принцип работы и направления использования. Высокочастотное возбуждение активной среды. Выбор конструкции излучателя. Атмосферный канал связи, расчет данной оптической линии.
дипломная работа [1,7 M], добавлен 25.01.2014Принцип действия, помехоустойчивость, преимущества и недостатки атмосферно-оптических линий связи, анализ схем их построения. Влияние колебаний на качество связи и пьезоэлектрический эффект. Источник (полупроводниковый лазер) и приёмники излучения.
дипломная работа [1,8 M], добавлен 03.08.2014Разработка локальной сети передачи данных с выходом в Интернет для небольшого района города. Определение топологии сети связи. Проверка возможности реализации линий связи на медном проводнике трех категорий. Расчет поляризационной модовой дисперсии.
курсовая работа [733,1 K], добавлен 19.10.2014Преимущества оптических систем передачи перед системами передачи, работающими по металлическому кабелю. Конструкция оптических кабелей связи. Технические характеристики ОКМС-А-6/2(2,0)Сп-12(2)/4(2). Строительство волоконно-оптической линии связи.
курсовая работа [602,7 K], добавлен 21.10.2014Общее описание и назначение, функциональные особенности и структура пассивных компонентов волоконно-оптических линий связи: соединители и разветвители. Мультиплексоры и демультиплексоры. Делители оптической мощности, принцип их действия и значение.
реферат [24,9 K], добавлен 10.06.2011Первичная сеть, включающая линии передачи и соответствующие узлы связи, образующие магистральную, дорожную и отделенческую сеть связи как основа железнодорожной связи. Конструкция и характеристика оптических кабелей связи, особенности ее строительства.
курсовая работа [428,0 K], добавлен 21.10.2014Общая характеристика цифровых сетей связи с применением волоконно-оптических кабелей. Возможности их применения. Разработка проекта для строительства волоконно-оптических линий связи на опорах существующей ВЛ 220 кВ. на участке ПС Восточная-ПС Заря.
курсовая работа [86,0 K], добавлен 25.04.2013Разработка схемы организации инфокоммуникационной сети связи железной дороги. Расчет параметров волоконно-оптических линий связи. Выбор типа волоконно-оптического кабеля и аппаратуры. Мероприятия по повышению надежности функционирования линий передачи.
курсовая работа [2,6 M], добавлен 28.05.2012Этапы развития различных средств связи: радио, телефонной, телевизионной, сотовой, космической, видеотелефонной связи, интернета, фототелеграфа (факса). Виды линии передачи сигналов. Устройства волоконно-оптических линий связи. Лазерная система связи.
презентация [301,0 K], добавлен 10.02.2014Анализ оснащенности участка проектирования. Современные волоконно-оптические системы передачи. Системы удаленного мониторинга оптических волокон. Разработка схемы организации магистрального сегмента сети связи. Расчет показателей эффективности проекта.
дипломная работа [2,5 M], добавлен 24.06.2011История развития линий связи. Разновидности оптических кабелей связи. Оптические волокна и особенности их изготовления. Конструкции оптических кабелей. Основные требования к линиям связи. Направления развития и особенности применения волоконной оптики.
контрольная работа [29,1 K], добавлен 18.02.2012Общая характеристика волоконно-оптической связи, ее свойства и области применения. Проектирование кабельной волоконно-оптической линии передач (ВОЛП) способом подвески на опорах высоковольтной линии передачи. Организация управления данной сетью связи.
курсовая работа [3,8 M], добавлен 23.01.2011Схема строительства волоконно-оптической линии связи (ВОЛС) с использованием подвески оптического кабеля на осветительных опорах. Особенности организации по ВОЛС каналов коммерческой связи. Расчет длины регенерационных участков по трассе линии связи.
курсовая работа [778,1 K], добавлен 29.12.2014Основные способы организации служебной связи в процессе строительства. Сравнительный анализ методов организации служебной связи при строительстве ВОЛС. Расчёт максимальной дальности связи с использованием волоконно-оптических телефонов разного типа.
дипломная работа [866,2 K], добавлен 09.10.2013Радио и сотовые средства связи. Современные информационные технологии, сети их классификация, структура и параметры. Линии связи и их характеристики. Классификация систем связи с подвижными объектами. Радиальные системы, их достоинства и недостатки.
реферат [353,2 K], добавлен 11.05.2009Разработка схемы построения ГТС на основе коммутации каналов. Учет нагрузки от абонентов сотовой подвижной связи. Расчет числа соединительных линий на межстанционной сети связи. Проектирование распределенного транзитного коммутатора пакетной сети.
курсовая работа [2,4 M], добавлен 08.01.2016