Исследование мультистандартных абонентских мобильных систем связи
Функциональный состав и взаимодействия сетевых элементов современных технологий мобильной связи. Анализ достоинств и недостатков применения технологий мобильной связи. Исследование мультистандартных сетевых и абонентских устройств мобильной связи.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | диссертация |
Язык | русский |
Дата добавления | 23.05.2018 |
Размер файла | 2,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
В данной главе рассмотрены архитектура, структура и функциональный состав технологий мобильной связи и беспроводного широкополосного доступа, а также взаимодействие интерфейсов. Проведен анализ сетевых элементов, выполняемых ими функций, а также взаимодействие с внешними сетями общего пользования.
Глава III. Исследование и анализ мультистандартных абонентских устройств мобильной связи
1. Мультистандартный терминал, сканирующий запрос для выравнивания интервала сканирования WIMAX с окном поискового вызова CDMA
Процедура относится к беспроводной связи и, в частности, к осуществлению связи с мобильными устройствами, которые поддерживают несколько технологий радиодоступа (RAT) [21]. Техническим результатом является улучшение эффективности переключение между двумя сетями связи и увеличение пропускной способности в любой услуге. Технический результат достигается тем, что предоставляют способ сканирования на предмет сообщений системы поискового вызова в сети со второй RAT, например, сети коллективного доступа с кодовым разделением каналов (CDMA), при подключении к сети с первой RAT, например, сети WiMAX. Для некоторых вариантов осуществления расширенное сообщение с запросом сканирования может облегчить установление цикла сканирования в первой RAT, который совпадает с циклом поискового вызова второй RAT.
Системы беспроводной связи OFDM и OFDMA по стандарту IEEE 802.16 используют сеть базовых станций для осуществления связи с беспроводными устройствами (то есть мобильными станциями), подписанными на услуги в этих системах, на основе ортогональности частот нескольких поднесущих и могут быть реализованы для достижения некоторого количества технических преимуществ для широкополосной беспроводной связи, например, стойкости к многолучевому замиранию и помехам. Каждая базовая станция (BS) излучает и принимает радиочастотные (RF) сигналы, которые переносят данные к мобильным станциям (MS) и от них.
Чтобы расширить услуги, доступные абонентам, некоторые MS поддерживают связь с помощью нескольких технологий радиодоступа (RAT). Например, многорежимная MS может поддерживать WiMAX для услуг широкополосной передачи данных и коллективный доступ с кодовым разделением каналов (CDMA) для голосовых услуг.
К сожалению, в традиционных системах неэффективное переключение между двумя сетями может вызвать уменьшение пропускной способности в любой услуге.
Некоторые варианты осуществления настоящего раскрытия изобретения в целом предоставляют способ осуществления связи с помощью многорежимной мобильной станции (MS) с первой и второй сетями посредством первой и второй технологий радиодоступа (RAT). Способ в целом включает в себя вычисление номера начального кадра и интервала перемежения для выполнения мобильной станцией цикла сканирования с помощью первой RAT, чтобы интервал сканирования в цикле сканирования совпадал с окном поискового вызова в цикле поискового вызова второй RAT, отправку запроса сканирования в базовую станцию в первой сети, чтобы установить цикл сканирования с номером начального кадра и интервалом сканирования, причем по меньшей мере один из номера начального кадра и интервала перемежения, отправленных в запросе, превышает 8 битов, и переключение на вторую сеть для отслеживания сообщений системы поискового вызова в течение интервала сканирования в цикле сканирования без прерывания соединения с первой сетью.
Некоторые варианты осуществления настоящего раскрытия изобретения предоставляют компьютерный программный продукт для осуществления связи с помощью многорежимной мобильной станции (MS) с первой и второй сетями посредством первой и второй технологий радиодоступа (RAT), содержащий машиночитаемый носитель информации, имеющий сохраненные на нем команды, исполняемые одним или несколькими процессорами. Команды в целом включают в себя команды для вычисления номера начального кадра и интервала перемежения для выполнения мобильной станцией цикла сканирования с помощью первой RAT, чтобы интервал сканирования в цикле сканирования совпадал с окном поискового вызова в цикле поискового вызова второй RAT, команды для отправки запроса сканирования в базовую станцию в первой сети, чтобы установить цикл сканирования с номером начального кадра и интервалом сканирования, причем по меньшей мере один из номера начального кадра и интервала перемежения, отправленных в запросе, превышает 8 битов, и команды для переключения на вторую сеть для отслеживания сообщений системы поискового вызова в течение интервала сканирования в цикле сканирования без прерывания соединения с первой сетью.
Чтобы можно было обстоятельно понять способ, которым описываются вышеперечисленные признаки настоящего раскрытия изобретения, более конкретное описание, кратко обобщенное выше, может быть получено путем отсылки на варианты осуществления, некоторые из которых иллюстрируются на рисунках.
Рисунок 3.1. Иллюстрирует примерную систему беспроводной связи в соответствии с некоторыми вариантами осуществления настоящего раскрытия изобретения.
Рисунок3.2. иллюстрирует различные компоненты, которые могут использоваться в беспроводном устройстве в соответствии с некоторыми вариантами осуществления настоящего раскрытия изобретения.
Рисунок 3.3. иллюстрирует примерный передатчик и примерный приемник, которые могут использоваться в системе беспроводной связи, которая использует технологию мультиплексирования с ортогональным частотным разделением каналов и коллективного доступа с ортогональным частотным разделением каналов (OFDM/OFDMA), в соответствии с некоторыми вариантами осуществления настоящего раскрытия изобретения.
Рис.3.1. Примерная система беспроводной связи в соответствии с некоторыми вариантами его осуществления.
Рис.3.2. Различные компоненты, которые могут использоваться в беспроводном устройстве.
Рис.3.3. Иллюстрация примерного передатчика и примерного приемника, которые могут использоваться в системе беспроводной связи.
Варианты осуществления настоящего раскрытия изобретения могут позволить многорежимному мобильному устройству, поддерживающему технологии радиодоступа (RAT) WiMAX и CDMA 1x, переключаться между сетью WiMAX и сетью CDMA, чтобы наблюдать за каналом передачи поисковых вызовов CDMA в течение интервала сканирования WiMAX. В частности, варианты осуществления могут предоставить способ и устройство, позволяющие многорежимной MS определить набор параметров измененного мобильного запроса сканирования WiMAX (MOB_SCN-REQ) и отправить измененный MOB_SCN-REQ, уведомляющий обслуживающую BS WiMAX об обязательном характере параметров запроса в попытке обеспечить, чтобы интервал сканирования WiMAX совпадал с окном прослушивания поискового запроса CDMA.
Типовая система беспроводной связи
Быстрый рост беспроводных объединенных сетей и связи привел к увеличивающейся потребности в высокой скорости передачи данных в области услуг беспроводной связи. Системы OFDM/OFDMA на сегодняшний день рассматриваются в качестве одной из наиболее многообещающих областей исследований и в качестве ключевой технологии для следующего поколения беспроводной связи. Это обусловлено тем, что схемы модуляции OFDM/OFDMA могут обеспечить много преимуществ, например эффективность модуляции, спектральную эффективность, гибкость и сильную устойчивость к многолучевому распространению по сравнению с традиционными схемами модуляции на одной несущей.
Рисунок 3.1 иллюстрирует пример системы 100 беспроводной связи, в которой могут применяться варианты осуществления настоящего раскрытия процедуры. Система 100 беспроводной связи может быть системой широкополосной беспроводной связи. Система 100 беспроводной связи может обеспечивать связь для некоторого количества сот 102, каждая из которых обслуживается базовой станцией 104. Базовая станция 104 может быть стационарной станцией, которая осуществляет связь с пользовательскими терминалами 106. Базовая станция 104 в качестве альтернативы может называться точкой доступа, Узлом Б или некоторой другой терминологией.
Рисунок 3.1 изображает различные пользовательские терминалы 106, рассредоточенные по всей системе 100. Пользовательские терминалы 106 могут быть стационарными (то есть неподвижными) или мобильными. Пользовательские терминалы 106 в качестве альтернативы могут называться удаленными станциями, терминалами доступа, терминалами, абонентскими модулями, мобильными станциями, станциями, пользовательским оборудованием и т.д. Пользовательские терминалы 106 могут быть беспроводными устройствами, например сотовыми телефонами, персональными цифровыми помощниками (PDA), карманными устройствами, беспроводными модемами, переносными компьютерами, персональными компьютерами и т.д.
Ряд алгоритмов и способов может использоваться для передач в системе 100 беспроводной связи между базовыми станциями 104 и пользовательскими терминалами 106. Например, сигналы могут отправляться и приниматься между базовыми станциями 104 и пользовательскими терминалами 106 в соответствии с методиками OFDM/OFDMA. В этом случае система 100 беспроводной связи может называться системой OFDM/OFDMA.
Линия связи, которая обеспечивает передачу от базовой станции 104 к пользовательскому терминалу 106, может называться нисходящей линией 108 связи, а линия связи, которая облегчает передачу от пользовательского терминала 106 к базовой станции 104, может называться восходящей линией 110 связи. В качестве альтернативы нисходящая линия 108 связи может называться прямой линией связи или прямым каналом, а восходящая линия 110 связи может называться обратной линией связи или обратным каналом.
Сота 102 может разделяться на несколько секторов 112. Сектор 112 является физической зоной обслуживания в соте 102. Базовые станции 104 в системе 100 беспроводной связи могут использовать антенны, которые собирают поток энергии в конкретном секторе 112 в соте 102. Такие антенны могут называться направленными антеннами.
Рисунок 3.2 иллюстрирует различные компоненты, которые могут использоваться в беспроводном устройстве 202, которое может применяться в системе 100 беспроводной связи. Беспроводное устройство 202 является примером устройства, которое может конфигурироваться для реализации различных способов, описанных в этом документе. Беспроводное устройство 202 может быть базовой станцией 104 или пользовательским терминалом 106.
Беспроводное устройство 202 может включать в себя процессор 204, который управляет работой беспроводного устройства 202. Процессор 204 также может называться центральным процессором (CPU). Запоминающее устройство 206, которое может включать в себя как постоянное запоминающее устройство (ROM), так и оперативное запоминающее устройство (RAM), предоставляет команды и данные процессору 204. Часть запоминающего устройства 206 также может включать в себя энергонезависимое оперативное запоминающее устройство (NVRAM). Процессор 204, как правило, выполняет логические и арифметические операции на основе программных команд, сохраненных в запоминающем устройстве 206. Команды в запоминающем устройстве 206 могут быть исполняемыми, чтобы реализовать описанные в этом документе способы.
Беспроводное устройство 202 также может включать в себя корпус 208, который может включать в себя передатчик 210 и приемник 212, чтобы сделать возможной передачу и прием данных между беспроводным устройством 202 и удаленным пунктом. Передатчик 210 и приемник 212 могут быть объединены в приемопередатчик 214. Антенна 216 может прикрепляться к корпусу 208 и электрически соединяться с приемопередатчиком 214. Беспроводное устройство 202 также может включать в себя (не показано) несколько передатчиков, несколько приемников, несколько приемопередатчиков и/или несколько антенн.
Беспроводное устройство 202 также может включать в себя детектор 218 сигналов, который может использоваться с целью обнаружения и измерения уровня сигналов, принятых приемопередатчиком 214. Детектор 218 сигналов может обнаруживать такие сигналы, как общая энергия, отношение энергии контрольного сигнала к псевдошумовым (PN) элементарным сигналам, спектральная плотность мощности и другие сигналы. Беспроводное устройство 202 также может включать в себя цифровой процессор 220 сигналов (DSP) для использования в обработке сигналов.
Различные компоненты беспроводного устройства 202 могут соединяться вместе с помощью магистральной системы 222, которая может включать в себя шину питания, шину управляющего сигнала и шину сигнала состояния в дополнение к шине данных.
Рисунок 3.3 иллюстрирует пример передатчика 302, который может использоваться в системе 100 беспроводной связи, которая использует OFDM/OFDMA. Части передатчика 302 могут быть реализованы в передатчике 210 беспроводного устройства 202. Передатчик 302 может быть реализован в базовой станции 104 для передачи данных 306 пользовательскому терминалу 106 по нисходящей линии 108 связи. Передатчик 302 также может быть реализован в пользовательском терминале 106 для передачи данных 306 к базовой станции 104 по восходящей линии 110 связи.
Данные 306, которые нужно передать, показаны предоставляемыми в качестве входных данных в последовательно-параллельный (S/P) преобразователь 308. Последовательно-параллельный преобразователь 308 может разделять данные передачи на N параллельных потоков 310 данных.
N параллельных потоков 310 данных затем могут предоставляться в качестве входных данных в преобразователь 312. Преобразователь 312 может преобразовать N параллельных потоков 310 данных в N точек созвездия. Преобразование может выполняться с использованием некоторого созвездия модуляции, например двухпозиционной фазовой манипуляции (BPSK), квадратурной фазовой манипуляции (QPSK), восьмипозиционной фазовой манипуляции (8PSK), квадратурной амплитудной модуляции (QAM) и т.д. Таким образом, преобразователь 312 может выводить N параллельных потоков 316 символов, причем каждый поток 316 символов соответствует одной из N ортогональных поднесущих в обратном быстром преобразовании 320 Фурье (IFFT). Эти N параллельных потоков 316 символов представляются в частотной области и могут быть преобразованы в N параллельных потоков 318 выборок временной области с помощью компонента 320 IFFT.
Будет предоставлено короткое замечание касательно терминологии. N параллельных модуляций в частотной области идентичны N символам модуляции в частотной области, которые идентичны N преобразованиям и N-точечному IFFT в частотной области, которое идентично одному (полезному) символу OFDM во временной области, который идентичен N выборкам во временной области. Один символ OFDM во временной области, Ns , равен Ncp (количество защитных выборок на символ OFDM) + N (количество полезных выборок на символ OFDM).
N параллельных потоков 318 выборок временной области могут быть преобразованы в поток 322 символов OFDM/OFDMA с помощью параллельно-последовательного (P/S) преобразователя 324. Компонент 326 вставки защитного интервала может вставить защитный интервал между последовательными символами OFDM/OFDMA в потоке 322 символов OFDM/OFDMA. Результат компонента 326 вставки защитного интервала затем может быть преобразован с повышением частоты к нужной полосе частот передачи с помощью входного радиочастотного (RF) каскада 328. Затем антенна 330 может передать результирующий сигнал 332.
Рисунок 3.3 также иллюстрирует пример приемника 304, который может использоваться в беспроводном устройстве 202, которое использует OFDM/OFDMA. Части приемника 304 могут быть реализованы в приемнике 212 беспроводного устройства 202. Приемник 304 может быть реализован в пользовательском терминале 106 для приема данных 306 от базовой станции 104 по нисходящей линии 108 связи. Приемник 304 также может быть реализован в базовой станции 104 для приема данных 306 от пользовательского терминала 106 по восходящей линии 110 связи.
Переданный сигнал 332 показан идущим по беспроводному каналу 334. Когда сигнал 332' принимается антенной 330', принятый сигнал 332' может быть понижающе преобразован к основополосному сигналу с помощью входного радиочастотного каскада 328'. Компонент 326' удаления защитного интервала может затем удалить защитный интервал, который вставлялся между символами OFDM/OFDMA с помощью компонента 326 вставки защитного интервала.
Результат компонента 326' удаления защитного интервала может предоставляться последовательно-параллельному преобразователю 324'. Последовательно-параллельный преобразователь 324' может разделить поток 322' символов OFDM/OFDMA на N параллельных потоков 318' символов временной области, каждый из которых соответствует одной из N ортогональных поднесущих. Компонент 320' быстрого преобразования Фурье (FFT) может преобразовать N параллельных потоков 318' символов временной области в частотную область и вывести N параллельных потоков 316' символов частотной области.
Обратный преобразователь 312' может выполнить обратное действие к операции преобразования символов, которая выполнялась преобразователем 312, посредством этого выводя N параллельных потоков 310' данных. Параллельно-последовательный преобразователь 308' может объединить N параллельных потоков 310' данных в один поток 306' данных. В идеале этот поток 306' данных соответствует данным 306, которые предоставлялись в качестве входных данных в передатчик 302. Отметим, что все элементы 308', 310', 312', 316', 320', 318' и 324' можно встретить в процессоре прямой передачи.
2. Типовая работа мультистандартного терминала в сетях CDMA 1x с коммутацией каналов и наложением WiMAX
При развертывании беспроводных услуг разные технологии радиодоступа (RAT) могут объединяться для предоставления нескольких услуг. Например, рисунок 3.4 иллюстрирует систему 400, в которой сеть 410 мобильной WiMAX может объединяться (или "накладываться") с сетью 420 коллективного доступа с кодовым разделением каналов (CDMA) 1x, чтобы предоставить услугу широкополосной передачи данных и речи. В системе абоненты могут использовать одну двухрежимную (CDMA и WiMAX) мобильную станцию 430 (MS) для настройки на сеть CDMA, чтобы использовать коммутируемую телефонную сеть 432 общего пользования (PSTN), и настройки на сеть WiMAX, чтобы использовать услугу широкополосной передачи данных при доступе к Интернету 434 [21].
В традиционных системах неэффективное переключение между двумя сетями может вызвать уменьшение пропускной способности в любой услуге. Например, в традиционных системах двухрежимная MS 430, подключенная к сети WiMAX для широкополосных услуг, может периодически останавливать обмен потоком данных и сканировать соседние BS WiMAX для оценки доступного качества сигнала и, при необходимости, выполнять передачу обслуживания (HO) в соответствии со стандартом IEEE 802.16. Кроме того, двухрежимная MS 430 может быть вынуждена периодически переключаться на сеть CDMA для проверки сообщения поискового вызова CDMA и выполнения регистрации CDMA в BS 424 CDMA 1x. Частое переключение с услуги широкополосной передачи данных на сканирование BS WiMAX и контроль поискового вызова CDMA может нарушить существующую услугу широкополосной передачи данных и ухудшить восприятие пользователем.
Рис. 3.4. иллюстрирует сеть WiMAX, наложенную на сеть коллективного доступа с кодовым разделением каналов (CDMA) 1х, в соответствии с вариантами осуществления настоящего раскрытия изобретения.
Как проиллюстрировано на рисунке 3.4, сеть 420 CDMA может накладываться на сеть 410 WiMAX. Услуга CDMA может предоставляться некоторой географической области с помощью множества аппаратных и программных компонентов. Эта географическая область может разделяться на зоны, называемые сотами 102, центрированными вокруг башни 440 обслуживания. В попытке увеличить пространственную эффективность одна башня обслуживания 440 может поддерживать несколько RAT. Например, башня обслуживания 440 может поддерживать как базовую станцию 414 (BS) WiMAX, так и BS 424 CDMA.
BS CDMA 424 может содержать оборудование для шифрования и дешифрования связи с контроллером 426 базовой станции (BSC), который может обеспечивать интеллектуальное управление для нескольких BS CDMA. BSC 426 может иметь десятки или даже сотни управляемых BS. BSC 426 может управлять выделением радиоканалов, принимать измерения от двухрежимных MS 430 или управлять передачами обслуживания от одной BS к другой BS. Дополнительно BSC 426 может действовать в качестве концентратора, где множество соединений с BS с низкой пропускной способностью становится сокращенным до меньшего количества соединений к центру 428 коммутации мобильной связи (MSC).
MSC 428 может служить в качестве основного узла оказания услуг для сети CDMA. Он может отвечать за обработку речевых вызовов и текстовых сообщений (SMS), а именно за установку и разъединение сквозных соединений, обработку мобильности и требований к передаче обслуживания во время вызова, слежение за зарядкой и контроль предоплаченного счета в реальном масштабе времени. Более того, MSC 428 может определять местоположение MS, которая вызывается, и может осуществлять связь с наземной линией связи, например Коммутируемой телефонной сетью общего пользования (PSTN).
Аналогично BSC 426, шлюз 416 сети доступа к услугам (ASN-GW) может управлять несколькими BS в сети 410 WiMAX. ASN-GW 416 может выделять каналы, принимать измерения от двухрежимных MS 430 и управлять передачами обслуживания от одной BS к другой BS. ASN-GW 416 может предоставить двухрежимной MS 430 доступ к Интернету 434 посредством сети 418 с возможностью подключения к услугам (CSN) поставщика услуг Интернета. CSN 418, в том числе может предоставлять Аутентификацию, Авторизацию и Учет (AAA), систему доменных имен (DNS), Протокол динамической конфигурации хоста (DHCP) и услуги межсетевого экрана для поставщика услуг Интернета.
Рисунок 2.5. иллюстрирует примерные операции 500, которые могут выполняться, например, двухрежимной MS 430 для наблюдения за каналом передачи поисковых вызовов CDMA в течение интервалов сканирования WiMAX, в соответствии с некоторыми вариантами осуществления настоящего раскрытия изобретения. Операции 500 могут выполняться, например, посредством MS в попытке позволить MS принимать речевой вызов, направленный через сеть CDMA 1x, при подключении к сети WiMAX.
Рис.3.5. Примерные операции, выполняемые мобильной станцией при переключении с сети WiMAX на сеть CDMA 1x.
Операции начинаются на этапе 502 с двухрежимной MS 430, измеряющей временной сдвиг между началом кадра WiMAX и началом кадра CDMA. Такой сдвиг показан на рисунке 3.6 в виде T offset 600 между началом произвольного кадра WiMAX с номером кадра N1 610 и началом соответствующего кадра CDMA с системным временем CDMA (номером кадра) N2 612. Чтобы измерить хронометраж кадров CDMA, MS 430 может потребовать интервал сканирования, в котором нужно переключаться с сети WiMAX на сеть CDMA. При измерении временного сдвига двухрежимная MS 430 также может определить номер кадра WiMAX и системное время CDMA в кадрах CDMA. Следует отметить, что кадр WiMAX (T_wm_frame) может иметь меньшую длительность, чем кадр CDMA. Например, традиционный кадр CDMA может иметь длительность в 20 миллисекунд, тогда как сопоставимый кадр WiMAX может составлять 5 миллисекунд.
Рис. 3.6. Пример временного сдвига между началом кадра в передаче WiMAX и началом кадра в передаче CDMA 1x.
На этапе 504 двухрежимная MS 430 может определить набор параметров WiMAX на основе ранее вычисленного временного сдвига. Определенные MS 430 параметры WiMAX могут включать в себя, но не ограничиваются, начальный кадр WiMAX, длительность интервала сканирования WiMAX (длительность сканирования) и длительность интервала перемежения.
В некоторых случаях (например, случаях, в которых MS наблюдает только за каналом передачи поисковых вызовов (PCH)) длительность сканирования (в единицах кадров WiMAX) может определяться, как описано уравнением (3.1):
где T_tune - время, которое требуется MS, чтобы настроиться с сети WiMAX на сеть CDMA, и где T_wm_frame может составлять 5 миллисекунд. Функция наименьшего целого определяет наименьшее целое число, которое больше либо равно ее аргументу (то есть Ceiling[x] вернет наименьшее целое число >= x). Однако в некоторых случаях (например, случаях, в которых MS наблюдает только за PCH и каналом быстрого поискового вызова (QPCH)) длительность сканирования (в единицах кадров WiMAX) может определяться, как описано уравнением (3.2).
Поскольку MS 430 должна слушать как канал передачи поисковых вызовов CDMA, так и канал быстрого поискового вызова CDMA, необходимое время прослушивания может быть больше, чем в ранее описанных вариантах осуществления.
Однако важно отметить, что текущие версии стандарта IEEE 802.16 ограничивают максимальную длительность интервала перемежения WiMAX. В частности, интервал перемежения WiMAX может определяться путем взятия максимального значения из множества чисел, k, которые удовлетворяют следующим двум условиям: k<256; и
Вышеприведенный Slot_Cycle_Index является параметром, используемым для определения длительности цикла поискового вызова CDMA 1x по стандартам CDMA. Например, там, где длительность кадра WiMAX (T_wm_frame) равна пяти миллисекундам, Slot_Cycle_index равен 1, а длительность сканирования равна 20 кадрам, числитель условия ii) равен 512. Соответственно, множество k чисел, которое удовлетворяет обоим условиями, включает в себя {236, 108, 44, 12}, и максимальное значение упомянутого множества чисел равно 236 (то есть цикл сканирования, N, в единицах кадров WiMAX).
Более того, при определении набора параметров WiMAX начальный кадр может относиться к самым младшим 8 битам абсолютного номера кадра WiMAX. Следовательно, варианты осуществления настоящего раскрытия изобретения могут позволить определять начальный кадр WiMAX, как описано в уравнении (3.4), когда MS наблюдает только за PCH:
где ѓСможет выражаться как
,
а M может выражаться как (4*PGSLOT-N2) mod 64*2Slot_Cycle_Index . PGSLOT является параметром, используемым для определения сдвига на цикл поискового вызова CDMA 1x по стандартам CDMA, и он зависит от IMSI (Международный идентификатор мобильной станции) у MS 430. Однако варианты осуществления настоящего раскрытия изобретения могут позволить определять начальный кадр WiMAX, как описано в уравнении (3.5), когда MS наблюдает одновременно за PCH и QPCH:
На этапе 506 мобильный запрос сканирования (MOB_SCN-REQ), включающий набор параметров WiMAX, может отправляться к обслуживающей BS 414 WiMAX. Как указано раньше, набор параметров WiMAX может включать в себя начальный кадр WiMAX, длительность сканирования, интервал перемежения и количество циклов сканирования, которое запрашивает MS (или количество итераций сканирования, которое нужно выполнить).
Количество итераций может устанавливаться в любое число между 1 и 255 и указывает количество циклов сканирования, запрошенных двухрежимной MS 430. Перед завершением всех итераций MS 430 может отправить другой запрос сканирования, чтобы обновить интервалы периодических переключений. В некоторых вариантах осуществления значение итерации по умолчанию может составлять 255 для уменьшения количества запросов сигнала сканирования, отправленных MS 430.
BS 414 WiMAX может использовать один или несколько предоставленных параметров при установлении цикла сканирования WiMAX из условия, чтобы длительность сканирования WiMAX совпадала большей частью с каждым из окон поискового вызова CDMA. На этапе 508 двухрежимная MS 430 может переключиться на сеть CDMA в соответствии с циклом сканирования, установленным BS 414 WiMAX.
На этапе 510 двухрежимная MS 430 может определить, имеется ли поисковый запрос CDMA, предназначенный для MS 430, присутствующий в канале передачи поисковых вызовов. Если канал передачи поисковых вызовов CDMA не имеет поискового запроса, предназначенного для MS 430, то MS может вернуться в сеть WiMAX и возобновить обычные операции WiMAX на этапе 514. Однако если MS 430 принимает поисковый запрос CDMA, то MS 430 может прервать соединение WiMAX и заняться обычными операциями с сетью CDMA, как проиллюстрировано на этапе 512.
Рис.3.7. иллюстрирует, что в некоторых вариантах осуществления длительности 720 сканирования WiMAX могут быть спланированы так, что у MS 430 есть достаточно времени для настройки с сети WiMAX на сеть CDMA и прослушивания канала передачи поисковых вызовов CDMA для всего окна поискового вызова в течение одной длительности 720 сканирования. Однако в некоторых вариантах осуществления длительность 720 сканирования WiMAX может быть недостаточной по длине, чтобы позволить MS слушать все окно поискового вызова CDMA. В таких вариантах осуществления MS может настроиться на сеть CDMA настолько долго, чтобы слушать интервал канала передачи поисковых вызовов CDMA, соответствующий интервалу канала передачи поисковых вызовов, выделенному MS 430 в течение окна 730 поискового вызова CDMA. Однако двухрежимной MS 430 может выделяться интервал канала передачи поисковых вызовов. Соответственно, двухрежимная MS 430 может переключиться обратно на сеть WiMAX после прослушивания интервала канала передачи поисковых вызовов, но до окончания окна 730 поискового вызова CDMA.
Рис. 3.7. Выравнивание интервалов сканирования WiMAX с окнами поискового вызова CDMA 1x на основе параметров, определенных из измерения временного сдвига.
Более того, следует отметить, что из-за ограниченного размера интервала 722 перемежения по стандартам WiMAX может произойти более одного цикла сканирования WiMAX между последующими окнами 730 поискового вызова CDMA. Соответственно, двухрежимная MS 430 может не настраиваться на сеть CDMA в течение каждой длительности 720 сканирования WiMAX. В течение длительностей 720 сканирования, которые не совпадаю с окнами поискового вызова CDMA, двухрежимная MS 430 может сканировать соседние BS WiMAX, чтобы оценивать соответствующее качество сигнала.
Рисунок 3.8. иллюстрирует примерные обмены между двухрежимной MS 430, BS 414 WiMAX и BS 424 CDMA в соответствии с вариантами осуществления настоящего раскрытия изобретения. В настоящем примере MS 430 может иметь исходное активное соединение с BS 414 WiMAX, но также находиться в соте CDMA.
При подготовке к прослушиванию канала передачи поисковых вызовов CDMA MS 430 может измерить временной сдвиг между кадром WiMAX и кадром CDMA, как проиллюстрировано ссылкой 802. В течение этого периода измерения MS 430 также может определить набор параметров WiMAX, например начальный кадр WiMAX, значение длительности сканирования (измеренное в единицах кадров WiMAX), значение интервала перемежения (измеренное в единицах кадров WiMAX) и количество итераций, как описано выше.
Рис.3.8. Примерные обмены между многорежимной мобильной станцией и базовой станцией WiMAX и CDMA.
После измерения и определения параметров WiMAX MS 430 затем может отправить мобильный запрос 804 сканирования (MOB_SCN-REQ) к BS 414 WiMAX, включающий упомянутые параметры. В ответ на прием MOB_SCN-REQ 804 BS 414 WiMAX может сформировать мобильный ответ 806 сканирования (MOB_SCN-RSP). Предполагая, что BS 414 удовлетворяет запрос, BS 414 WiMAX может отправить MOB_SCN-RSP 806, который устанавливает начальный кадр 710 и длительность 720 сканирования, которая выравнивает длительность 720 сканирования WiMAX с каждым из окон 730 поискового вызова CDMA.
Предполагая, что BS 414 отправила ответ 806, удовлетворяющий запрос 804, MS 430 может переключиться с сети WiMAX на сеть CDMA, как проиллюстрировано по ссылке 808, в соответствии с информацией в MOB_SCN-RSP 806. Поскольку BS 414 подтвердила MOB_SCN-REQ и предоставила длительность 720 сканирования, BS 414 может не отправлять поток данных к MS 430 в течение длительности 720 сканирования, гарантируя, что MS 430 не пропустит никакой поток данных.
MS 430 может продолжить слушать сеть CDMA, пока она не услышит поисковый запрос, предназначенный для MS 430, или пока не закончится окно поискового вызова CDMA. Если MS 430 не обнаруживает поисковый запрос CDMA, то MS 430 может вернуться в сеть WiMAX и продолжить обычные операции WiMAX, как проиллюстрировано по ссылке 814.
MS может работать циклами между длительностями 720 сканирования и обычными операциями WiMAX, выполняемыми в течение интервалов 722 перемежения для количества итераций, указанного в MOB_SCN-REQ, либо пока MS 430 не примет поисковый запрос CDMA, предназначенный для упомянутой MS, как проиллюстрировано по ссылке 818. При приеме поискового запроса, предназначенного для MS 430, MS может вернуться в сеть WiMAX, как проиллюстрировано по ссылке 824, и отправить MOB_DREG-REQ 826 к BS 414 WiMAX.
После отмены регистрации в сети WiMAX MS 430 может ответить BS 424 CDMA поисковым ответом CDMA и приступить к обычным операциям с сетью CDMA (например, установлению входящего вызова), как проиллюстрировано по ссылке 828.
Типовое измененное сообщение MOB_SCN-REQ.
Как описано выше, использование интервала сканирования WiMAX для наблюдения за каналом передачи поисковых вызовов CDMA с помощью многорежимной MS 430, которая описана выше, может повысить непрерывность обслуживания в сетях CDMA и WiMAX. Однако ограничения по длине традиционного интервала сканирования WiMAX могут потребовать неэффективного включения во время "фиктивных" интервалов сканирования, которые не соответствуют циклам поискового вызова CDMA. Однако для некоторых вариантов осуществления настоящего раскрытия изобретения измененная версия мобильного запроса сканирования (MOB_SCN-REQ) может позволить мобильной станции запрашивать более длинный интервал сканирования, который может помочь устранить бесполезные интервалы сканирования.
По текущей версии стандарта IEEE 802.16 MS может определять и предлагать определенные значения для различных параметров сканирования, включающих интервал сканирования, интервал перемежения, итерацию сканирования и рекомендованный начальный кадр. Как описано выше, MS может вычислять и выбирать эти значения параметров при попытке обеспечить, чтобы интервал сканирования WiMAX совпадал с окном поискового вызова CDMA. Однако BS 414 может отклонить запрос или предоставить альтернативные значения параметров.
Более того, по текущей версии стандарта IEEE 802.16 BS WiMAX может ожидать ответ от MS, сообщающий результаты сканирования соседних BS WiMAX (которые не были бы доступны, если MS прослушала сеть 420 CDMA). Кроме того, 8-битовое значение поля интервала перемежения в стандартном сообщении MOB_SCN-REQ может привести к длительности интервала перемежения, недостаточной для охвата интервала поискового вызова между разными RAT. 8-битовое значение поля итерации сканирования также может потребовать от MS слишком частого повторного запроса времени сканирования.
Однако варианты осуществления настоящего раскрытия изобретения могут предоставить измененную версию мобильного запроса сканирования, которая предоставляет многорежимной MS, поддерживающей RAT WiMAX и CDMA 1x, больший контроль при запросе интервала сканирования, чтобы сканировать сеть CDMA на предмет сообщений системы поискового вызова. Например, измененное сообщение может позволить MS определять набор измененных параметров WiMAX для запроса интервала сканирования с длиной, которая соответствует циклу поискового вызова в сети CDMA, а также для уведомления обслуживающей BS WiMAX об обязательном характере запрошенных параметров в попытке преодолеть ранее описанные недостатки.
Рисунок 3.9. иллюстрирует примерный формат измененного мобильного запроса сканирования с примерным набором полей мобильного запроса сканирования в соответствии с некоторыми вариантами осуществления настоящего раскрытия изобретения.
В проиллюстрированном примере поле 910 интервала перемежения имеет длину 16 битов вместо 8-битового значения по текущей версии стандарта IEEE 802.16. Текущее 8-битовое значение обеспечивает диапазон значений между 0 и 255. Соответственно, MOB_SCN-REQ со стандартным 8-битовым полем 910 интервала перемежения может быть ограничено запросом 255-кадрового, или 1,275-секундного, интервала перемежения.
Однако 1,275 секунды может быть недостаточной длительностью для охвата интервала поискового вызова между разными RAT (то есть цикла поискового вызова CDMA), как проиллюстрировано на рис.2.7. Более длинное поле интервала перемежения, например проиллюстрированное 16-битовое поле, может позволить достаточной длительности охватить интервал поискового вызова между разными RAT, посредством этого избегая по возможности бесполезных "фиктивных" интервалов прослушивания.
Таким образом, использование более длинного поля 910 интервала перемежения может привести к увеличенной пропускной способности в сети 410 WiMAX. Например, если сеть 420 CDMA имеет цикл поискового вызова длиннее наибольшего возможного цикла сканирования WiMAX, то MS 430 может быть вынуждена планировать два или более субоптимальных цикла сканирования WiMAX, чтобы сохранить выравнивание между интервалом сканирования WiMAX и окном прослушивания CDMA. Планирование двух или более субоптимальных циклов сканирования WiMAX может привести к тому, что MS 430 излишне переключается на сеть 420 CDMA. Время, в которое MS 430 излишне настраивается на сеть 420 CDMA, является потерянным временем для пропускной способности WiMAX. Однако путем изменения поля 910 интервала перемежения варианты осуществления настоящего раскрытия изобретения могут предложить MS 430 гибкость в сохранении выравнивания между интервалами сканирования WiMAX и циклами поискового вызова других RAT наряду с увеличением пропускной способности WiMAX.
Как проиллюстрировано, для некоторых вариантов осуществления настоящего раскрытия изобретения также может увеличиваться битовая длина поля 920 рекомендованного начального кадра относительно традиционного 8-битового поля по текущей версии стандарта IEEE 802.16. Традиционное 8-битовое поле ограничивается предложением одного из последующих 255 кадров, что может оказаться ограничивающим при попытке выровнять интервалы сканирования с циклами поискового вызова CDMA.
Путем увеличения допустимого значения поля 920 начального кадра, как и в случае с изменением поля 910 интервала перемежения, MS 430 может добиться гибкости в сохранении выравнивания между интервалами сканирования WiMAX и окнами прослушивания CDMA. Значение поля начального кадра по-прежнему может вычисляться способом, аналогичным описанному выше со ссылкой на уравнения (4) и (5), но без операции MOD 256. Предполагая, что используется 24-битовый абсолютный номер кадра, функция MOD в уравнениях (4) и (5) может быть изменена для формирования 16-битового значения рекомендованного начального кадра.
Рис.3.9. Примерный формат измененного мобильного запроса сканирования с примерным набором полей мобильного запроса сканирования.
В качестве альтернативы для некоторых вариантов осуществления мобильный запрос сканирования может быть изменен для включения в себя 24-битового поля рекомендованного начального кадра, так что никакой функции MOD не требуется.
Для некоторых вариантов осуществления также может использоваться отдельное поле 930 условий запроса сканирования. Это поле условий запроса сканирования может помочь MS сообщать BS WiMAX дополнительную информацию.
В качестве примера поле 930 условий запроса сканирования может иметь один или несколько битов 932, указывающих, являются ли один или несколько параметров WiMAX, включенных в сообщение MOB_SCN-REQ, необязательными или обязательными. По текущим версиям стандарта IEEE 802.16 MS 430 может включать параметры WiMAX, например длительность интервала сканирования, длительность интервала перемежения, начальный кадр и итерацию сканирования, в MOB_SCN-REQ, отправленное к BS 414, но BS 414 может отклонить запрос сканирования или реализовать альтернативный параметр, игнорируя значения параметров, отправленные MS 430.
Однако, как отмечалось выше, значения параметров, определенные MS 430, могут быть необходимы для сохранения выравнивания между циклом поискового вызова CDMA и циклом сканирования WiMAX. Соответственно, один или несколько битов, указывающих, являются ли параметры WiMAX в сообщении MOB_SCN-REQ необязательными или обязательными, могут помочь в обеспечении выравнивания между циклом поискового вызова CDMA и циклом сканирования WiMAX.
Дополнительно MS 430 может потребоваться контролировать окна поискового вызова других сетей, и соответственно может быть неэффективно часто запрашивать повторно время сканирования для контроля окон поискового вызова других сетей. Поэтому некоторые варианты осуществления настоящего раскрытия изобретения могут предоставлять один или несколько битов 934 для указания, будет ли MS 430 выполнять ограниченное количество итераций цикла сканирования в соответствии со значениями поля итерации сканирования в сообщении MOB_SCN-REQ или выполнять неопределенное количество итераций цикла сканирования.
Например, бит 934 со значением "0" может использоваться для указания, что MS 430 завершит сканирование после количества итераций, предусмотренного полем итерации сканирования, тогда как бит 934 со значением "1" может использоваться для указания, что MS 430 выполнит неопределенное количество итераций. Если поле 930 условий запроса сканирования указывает, что MS 430 выполнит неопределенное количество итераций цикла сканирования, то MS может автоматически прекратить циклы сканирования путем, например, отправки последующего MOB_SCN-REQ с полем итерации сканирования со значением нуля.
Текущая версия стандарта IEEE 802.16 также содержит поле, чтобы MS 430 указывала, какие соседние BS 414 WiMAX MS планирует сканировать. Однако, если MS 430 покидает сеть 410 WiMAX для прослушивания поискового запроса CDMA, то MS 430 может не иметь соседней BS 414 для указания.
Соответственно, варианты осуществления настоящего раскрытия изобретения могут включать в себя один или несколько битов 936 для указания, планирует ли MS 430 оставаться в сети 410 WiMAX и сканировать соседние BS 414 или переключиться с сети 410 WiMAX и слушать поисковый запрос других сетей. Например, одиночный бит 936 со значением "0" может использоваться для указания, что MS 430 останется в сети 410 WiMAX и будет сканировать соседние BS 414 WiMAX, тогда как бит со значением "1" может использоваться для указания, что MS 430 не будет сканировать соседние BS 414 WiMAX.
Если поле 930 условий запроса сканирования указывает, что MS 430 останется в сети 410 WiMAX и будет сканировать соседние BS 414, то MS может указать, какие BS 414 нужно сканировать, в соответствии с текущей версией стандарта IEEE 802.16. С другой стороны, если поле 930 условий запроса сканирования указывает, что MS 430 не будет сканировать соседние BS 414, то соответствующие поля могут не включаться в сообщение MOB_SCN-REQ, например соседние BS.
Аналогичным образом обслуживающая BS 414 WiMAX, которая удовлетворяет запрос MOB_SCN-REQ, может предполагать ответ от MS 430 после интервала сканирования, сообщающий результаты сканирования WiMAX соседних BS. Например, BS 414 WiMAX при отправке MOB_SCN-RSP может указать, что MS 430 должна формировать периодический или инициированный событием отчет. Однако MS 430, которая переключала сети в течение интервала сканирования, чтобы слушать межсетевой поисковый запрос, может не иметь результатов сканирования WiMAX для сообщения.
Соответственно, варианты осуществления настоящего раскрытия изобретения могут включать в себя один или несколько битов 938 для указания, планирует ли MS 430 предоставить BS WiMAX отчет о сканировании, или является ли отчет о сканировании WiMAX ненужным и не будет предоставлен. Например, одиночный бит со значением "0" может использоваться для указания, что MS 430 предоставит BS 414 WiMAX отчет о сканировании в соответствии с текущей версией стандарта IEEE 802.16, тогда как бит со значением "1" может использоваться для указания, что отчет о сканировании WiMAX является ненужным и не будет предоставлен.
Как проиллюстрировано, для некоторых вариантов осуществления дополнительные биты 940 в поле 930 Условий запроса сканирования могут быть зарезервированы для будущего использования.
Рисунок 3.10 иллюстрирует, как многорежимная MS 430 может поддерживать выравнивание между циклом сканирования WiMAX и циклом поискового вызова CDMA путем использования измененного мобильного запроса сканирования, в соответствии с вариантами осуществления настоящего раскрытия изобретения. Например, в перспективе MS 430 дополнительно может использовать TLV с большим полем рекомендованного начального кадра для предложения начального кадра 710. Это может позволить MS 430 преодолеть более крупные возможные сдвиги между началом кадра CDMA и началом кадра WiMAX, по сравнению с TLV поля рекомендованного начального кадра в MOB_SCN-REQ по текущей версии стандарта IEEE 802.16.
Дополнительно MS 430 может использовать более длинное поле интервала перемежения, чтобы обеспечить интервалы перемежения с большей длительностью. Как описано выше, использование более длинного поля интервала перемежения может устранить ненужные интервалы сканирования (например, рис.2.7, интервалы 7202 и 7204 сканирования), предотвратить ненужное переключение на сеть 420 CDMA и привести к увеличенной пропускной способности в сети 410 WiMAX.
Рис.3.10. Выравнивание интервалов сканирования WiMAX с окнами поискового вызова CDMA 1x на основе параметров WiMAX, сообщенных в измененном мобильном запросе сканирования.
Рисунок 3.11. иллюстрирует примерные операции 1100, которые могут выполняться, например многорежимной MS 430, использующей измененное сообщение MOB_SCN-REQ, например, показанное на рисунке 3.9, чтобы осуществлять связь с BS 414 WiMAX одновременно с наблюдением за каналом передачи поисковых вызовов CDMA в течение интервала сканирования WiMAX. Операции 1100 могут выполняться, например, чтобы повысить эффективность MS 430 в выравнивании цикла сканирования WiMAX с циклом поискового вызова CDMA и увеличить пропускную способность WiMAX на многорежимной MS 430.
Операции начинаются на этапе 1102 с многорежимной MS 430, определяющей начальный кадр 710 WiMAX, который может использоваться для выравнивания начала цикла сканирования WiMAX с началом цикла сканирования CDMA. Например, MS может сформировать 16-битовое значение начального кадра для включения в сообщение мобильного сканирования, как описано выше. В некоторых вариантах осуществления определение начального кадра WiMAX может включать в себя короткое переключение на сеть 420 CDMA и измерение временного сдвига 600 между началом кадра WiMAX и началом кадра CDMA.
Рис.3.11. Блок-схема средств, соответствующих примерным операциям рис.3.9. для переключения с сети WiMAX на сеть CDMA 1x, используя измененный мобильный запрос сканирования.
При измерении временного сдвига 600 многорежимная MS 430 также может определить номер кадра WiMAX и системное время CDMA в кадрах CDMA. Следует отметить, что кадр WiMAX (T_wm_frame) может иметь меньшую длительность, чем кадр CDMA. Например, традиционный кадр CDMA может иметь длительность в 20 миллисекунд, тогда как сопоставимый кадр WiMAX может составлять 5 миллисекунд.
На этапе 1102 многорежимная MS 430 может определить 16-битовый рекомендованный начальный кадр на основе ранее вычисленного временного сдвига 600 с измененными параметрами. Рекомендованный начальный кадр Start_Frame может вычисляться с помощью измененных уравнений (3.4) и (3.5), используемых для отражения 16-битовых полей. Учитывая 16-битовые значения, функции деления по модулю в этих уравнениях становятся "mod 65536", приводя к новым уравнениям (4) и (5) следующим образом. При наблюдении за PCH:
При наблюдении за QPCH и PCH:
На этапе 1104 многорежимная MS 430 может определить 16-битовый интервал перемежения и 8-битовую длительность сканирования на основе ранее вычисленного временного сдвига 600 с измененными параметрами. 16-битовая длительность перемежения k может вычисляться на основе измененной версии уравнения (3.3):
В некоторых вариантах осуществления длительность интервала перемежения WiMAX (в единицах кадров WiMAX) может определяться путем получения разности между циклом сканирования и ранее вычисленным интервалом сканирования.
На этапе 1106 измененный мобильный запрос сканирования (MOB_SCN-REQ), включающий набор параметров WiMAX, может отправляться к обслуживающей BS 414 WiMAX. Как описано выше, набор параметров WiMAX может включать в себя 16-битовый начальный кадр WiMAX, 8-битовую длительность интервала сканирования и 16-битовую длительность интервала перемежения. Как описано выше, большие разрешенные значения параметров могут помочь избежать бесполезных интервалов сканирования.
Более того, измененное MOB_SCN-REQ может включать в себя поле 930 условий запроса сканирования, которое может иметь один или несколько битов, сообщающих дополнительную информацию, значимую для MS 430, настраивающейся на сеть 420 CDMA. Как описывалось ранее, поле условий запроса сканирования может иметь один или несколько битов, указывающих, являются ли параметры WiMAX в сообщении MOB_SCN-REQ необязательными или обязательными, будет ли MS 430 выполнять ограниченное количество итераций цикла сканирования, и планирует ли MS 430 оставаться в сети WiMAX 410 и сканировать соседние BS 414 или переключиться с сети WiMAX 410 и слушать поисковый запрос других сетей.
BS 414 WiMAX может использовать один или несколько предоставленных параметров при установлении цикла сканирования WiMAX из условия, чтобы интервал сканирования WiMAX совпадал с каждым из окон поискового вызова CDMA. На этапе 1108 многорежимная MS 430 может переключиться на сеть 420 CDMA в соответствии с циклом сканирования, установленным BS 414 WiMAX.
На этапе 1110 MS 430 может затем определить, имеется ли поисковый запрос CDMA, предназначенный для MS 430, присутствующий в канале передачи поисковых вызовов CDMA. Если канал передачи поисковых вызовов CDMA не имеет поискового запроса, предназначенного для MS 430, то MS может вернуться в сеть 410 WiMAX и возобновить обычные операции WiMAX на этапе 1114. Однако варианты осуществления настоящего раскрытия изобретения могут позволить MS 430 оставаться в сети 410 WiMAX дольше перед возвращением в сеть 420 CDMA, чтобы слушать поисковый запрос CDMA, потенциально увеличивая пропускную способность в сети 410 WiMAX. Однако если MS 430 принимает поисковый запрос CDMA, то MS 430 может автоматически прервать соединение WiMAX и заняться обычными операциями с сетью 420 CDMA, как проиллюстрировано на этапе 1112.
...Подобные документы
Сотовая связь как вид мобильной радиосвязи. Составляющие сотовой сети. Стандарты систем мобильной связи третьего поколения. Проблема совмещения разных технологий мобильного доступа. Схема работы WAP. Mobile IP-перспективный протокол мобильной связи.
реферат [32,5 K], добавлен 22.10.2011Рассмотрение систем мобильной связи второго, третьего и четвертого поколений. Физический уровень, частотный диапазон и способы кодировки сетей мобильной связи. Подсистема базовых станций, ее составляющие. Требования к BTS: прочность, портативность.
курсовая работа [718,6 K], добавлен 17.06.2017Понятие мобильной связи. Система персонального радиовызова. Интенсивное внедрение сотовых сетей связи общего пользования. Интернет как современное средство общения. Электронная почта и доски объявлений. Варианты использования интернет-телефонии.
курсовая работа [183,9 K], добавлен 12.12.2013Разработка системы усиления сотовой связи. Выбор усилителя сигнала мобильной связи. Основные технические характеристики усилителя связи GSM. Выбор качественных внешней и внутренней антенн, кабеля и разъемов для системы, делителей мощности сотовой сети.
реферат [442,0 K], добавлен 30.05.2016Краткая история развития мобильной связи, возникновение и развитие деятельности российских сотовых операторов. Характеристика технологических поколений мобильной связи. Общие конструктивные принципы работы технологии 3G, её распространение в России.
курсовая работа [2,1 M], добавлен 25.06.2014Особенности распространения радиоволн в системах мобильной связи. Разработка и моделирование программного обеспечения для изучения моделей распространения радиоволн в радиотелефонных сетях для городских условий. Потери передачи в удаленных линиях.
дипломная работа [5,1 M], добавлен 20.10.2013Принципы построения систем сотовой связи, структура многосотовой системы. Элементы сети подвижной связи и блок-схема базовой станции. Принцип работы центра коммутации. Классификация интерфейсов в системах стандарта GSM. Методы множественного доступа.
реферат [182,3 K], добавлен 16.10.2011Преимущества цифрового поколения мобильной связи: защита от прослушивания, совершение голосовых звонков, обмен текстовыми и мультимедийными сообщениям, доступ к сети Интернет. Стандарты операторов CDMA, GSM и UMTS. Перспективы развития 4G технологий.
реферат [23,3 K], добавлен 14.01.2011Краткая история развития телефонной связи. Определение назначения и описание принципа действия сотовой связи как вида мобильной радиосвязи. Типы автоматических телефонных станций и общие функциональные возможности мини-АТС: радиотелефоны, громкая связь.
реферат [27,0 K], добавлен 14.12.2013Принципы построения сетей третьего поколения, их архитектура. Расчет оборудования мобильной связи. Анализ основных параметров стандарта. Расчет числа радиоканалов. Определение размерности кластеров. Допустимая телефонная нагрузка, число абонентов.
курсовая работа [945,4 K], добавлен 06.04.2015Первое использование подвижной телефонной радиосвязи. Принцип действия сотовой связи. Стандарты мобильной связи, использование для идентификации абонента SIM-карты. Основные типы сотовых телефонов. Основные и дополнительные функции сотовых телефонов.
курсовая работа [402,7 K], добавлен 10.05.2014История создания технологий беспроводного доступа. Описания набора стандартов связи для коммуникации в беспроводной локальной сетевой зоне. Исследование принципа работы беспроводной связи Wi-Fi. Анализ рынка инфраструктуры Wi-Fi операторского класса.
презентация [854,9 K], добавлен 28.10.2014Требование к сети связи со стороны потенциальных потребителей. Пользователи системы связи. Эволюция стандартов IEEE 802.16. Обзор современных систем беспроводного абонентского доступа. Сравнение ключевых технологий WiMAX, LTE, спектральной эффективности.
дипломная работа [2,7 M], добавлен 13.02.2014Угрозы передаваемой информации в сетях сотовой связи. Анализ методов обеспечения безопасности речевой информации, передаваемой в сетях сотовой связи стандарта GSM. Классификация методов генерации псевдослучайных последовательностей, их характеристики.
дипломная работа [2,0 M], добавлен 28.07.2013Осуществление беспроводной передачи данных по технологиям ближней связи, применяемые в мобильных устройствах. IrDA: преимущества и недостатки. Bluetooth для мобильной связи, потребность в устройствах, частотный конфликт. Системные и технические аспекты.
реферат [29,3 K], добавлен 23.04.2009Структура стандарта GSM-800: организация покрытия современной мобильной станции, способ модуляции, организация приема и передачи информации. Выбор, создание и расчет структурных схем РПУ и РПрУ мобильной станции. Принцип работы микросхем ИС-синтезаторов.
курсовая работа [4,7 M], добавлен 06.02.2012Использование для построения модели сети сухопутной подвижной связи технологии IMT Advanced, которая относится к четвертому поколению мобильной связи. Расчет частотно-территориального планирования, построение модели блока системы подвижной связи.
курсовая работа [871,7 K], добавлен 16.02.2013Поколения беспроводной связи, их эволюция, преимущества и недостатки. Скорость передачи данных, стоимость минуты разговора и другие возможности. Использование протоколов аутентификации, временной метод разделения каналов. Сотовая связь в России.
презентация [812,0 K], добавлен 18.06.2013Изучение схемы развертывания сети. Проработка точки, поиск позиции. Физическое устройство сети GSM. Функциональная схема системы мобильной радиосвязи. Центр коммутации мобильной связи. Опорный регистр местоположения. Визитный регистр. Центр аутентификации
отчет по практике [166,4 K], добавлен 07.08.2013Общие сведения о радиорелейных и атмосферных оптических линиях связи, их сравнительная характеристика, оценка достоинств и недостатков практического использования. Методика расчета атмосферной оптической линии связи между двумя заданными точками.
курсовая работа [829,0 K], добавлен 09.12.2014