Research of dynamic characteristics in radio system with optimal spatial structure

Improving the immunity of the radio system from spatial-concentrated interference by optimizing the spatial processing. The effectiveness of spatial processing in static, dynamic modes. The convergence rate of the adaptive weight vector setting.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид статья
Язык английский
Дата добавления 30.10.2018
Размер файла 159,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Research of dynamic characteristics in radio system with optimal spatial structure

The coordination of spatial structures of an observable field with spatial structures of radio system allows to increase interference immunity essentially [1,2]. At the same time high sensitivity of optimal spatial structures to deviations of field characteristics from the supposed ones does not allow to reach maximum interference immunity in case of non-stationary interferences, and accepted algorithms of optimization of spatial structure have low computing efficiency [3].

Grating lobes of antenna array pattern cause multiextremal criterion function with commensurable peaks [3,12], and refer a problem of synthesis optimal spatial structure to class of ill-conditioned problems as well. Strong dependence of optimal antenna element position on inaccuracy in initial data does not allow to apply directly interpolation methods for determination of antenna coordinates and leads to computing complexity increase. In previous paper regularized algorithms of spatial structure optimization for elimination of these disadvantages are offered [4]. This algorithm allows to synthesize robust spatial structures [5,6] with the size of the obtained spatial structure defined according to accepted metrics as the stabilizer is used [5]. As a result the effect of stabilization of optimal structure is found out in a static mode. It gives a possibility to raise computing efficiency by mean of interpolation methods in the case of calculation of antenna array coordinate.

Efficiency of spatial interference rejection considerably depends on properties of interference correlation matrix, particularly on its eigenvalues. For large difference of eigenvalues the convergence speed for gradient algorithms of adaptation decreases, and the sensitivity of matrix inversion result to errors of its estimation increases. This condition occurs if signal environment includes strong source of interference together with other weaker but nevertheless potent interference sources. This condition also obtains if two or more very strong interference sources arrive at the array from closely spaced directions [7].

Known methods of elimination of these drawbacks use various types of preprocessing: an accelerated gradient procedure [7], scaled conjugate gradient descent [8], cascade preprocessors with resolving the input signals into their eigenvector components. In this paper it is offered to implement preprocessing by variation of spatial structure of the receiving antenna array. Previously optimization of antenna array spatial structure was used for increase of signal-to-interference ratio [3], faster reorganization of spatial structure [9], optimization of non-linear signal processing in the presence of non-gaussian interferences [1,2].

Objective of the paper is the enhancement of adaptation speed for spatial interference compensation by means of preprocessing on the base of spatial structure optimization in antenna array.

Dynamic Properties of Radiosystem with Spatial Structure Optimization in Presence of Interferences

The research objective is to improve interference immunity of radiosystems with optimization of spatial structure in static and dynamic operating modes under the assumption of mechanical inertance of spatial structure tuning.

The discussed radiosystem consists of an antenna array with amplitude-phase control. The sum of the determined desired signal and several point-source broadband gaussian interferences is observed on an output of each antenna array element. Interference immunity is defined as a signal-to-interference ratio on an output of spatial processing system. The spatial structure is specified by a vector of coordinates of antenna array elements . Criterion function of spatial structure optimization is accepted as a likelihood ratio . The stabilizer is a size of spatial structure  [5], which is defined as a distance of given spatial structure from some mid-point of this structure. A measure of difference of one spatial structure  from another Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

 is a metric  in space of coordinates  of antenna elements on some surface . The distance between two subsets from this set is defined on set as follows [5]:

immunity radio vector setting

where  - distance between elements of coordinate subsets , , and minimization is made on all permutations from  elements of subset ;  characterize a position of -th spatial sample in rectangular coordinate system. Hence a presence of distance  on set  transforms it into metric space. The metrics  allows to solve a problem of discrimination of spatial structures .

Let an averaged likelihood ratio  is a convex continuous function in some neighbourhood, which has nonempty subset of points of minimum . The stabilizer  is a strongly convex continuous function which characterize degree of difference from a mid-point of spatial structure  and take on form .

The regularized algorithm of spatial structure optimization looks as follows [5]:

(1.1)

The function  is multiextremal in typical situations, therefore in a range of definition  there can be some points , , and each ones has such neighbourhood  that there is , where  - coordinates of the local minima, and one of which  is coordinate of a global minimum:

(1.2)

A search of the solution of multidimensional problem (1.2) is reduced to one-dimensional multistage problem solved by means of local extremum search methods [5,10,11]:

, (1.3)

where

,

 is a antenna element number  is a step number,  is convergence factor of gradient algorithm. Thus, solving of a multiextreme problem is reduced to sequential solving  local extremum problems (1.1) for all n antenna elements. Iterative procedure (1.3) repeats while value of an error  not above a preset value. After that reduction twice of subarea  is made, and calculations repeat while the same requirement is met.

The analysis of optimization algorithm (1.1) - (1.3) is carried out by means of computing experiment for a case of the linear antenna array at number of interferences  which are distributed uniformly in angular sector size =0,5 radian and located at an angle to a normal line of antenna plane. The three-element antenna array is chosen, the distance between first and last elements is fixed and is equals to 10, and the medium element is moveable.

Estimation of synthesized topology is carried out by means of analysis of occurrence frequency  of distance  when random initial values , , with uniform probability density function on . In the absence of regularization there are some spatial structures  with commensurable frequencies of occurrence for one position of signal and interferences. The regularization factor increase to some critical value  gives stability of solutions. Optimal structures slightly differ one from another when changes of interference parameters is small and thereby this structure become robust. Dependence  allows to define a critical value of regularization parameter, providing stability of solution and uniqueness of optimal spatial structure for various . The size of angular sector essentially influences on distance  at : increase of  reduces influence of interferences on spatial structure, and reduction of  increases distance  and size of the antenna aperture. The reason for that is a necessity to increase angular resolution as signal source is spaced nearer to interferences sources. Thus, application of regularization provides uniqueness of solution for optimization procedure and provides its poor sensitivity to initial conditions and to parameters of interferences as well.

Figure 1

Regularization influence on solution sensitivity to small deviations of interference spatial position is presented on Figure 1. Dependence of a metric dispersion  for accepted optimal structures on root-mean-square deviation of interferences angular position  with uniform distribution shows that application of the stabilizer  decreases metric dispersion in 20 … 50 times and more.

Calculation of dependence of normalized signal-to-interference ratio  on regularization parameter  at various positions of interference angular sector is carried out, where

are relations of signal power coming from direction , to power of uncompensated interferences with and without taking into account the directivity of the antenna array respectively,  is signal power, ,  are power and angular coordinate of interference,  - antenna array pattern. The analysis shows that  grows as  increase. This fact can be explained by increase of signal and interferences spatial diversity. Efficiency gain from use of spatial structure optimization is 9,8 dB in comparison with equidistant array at the preset number of interferences and antenna elements.

Continuous dependence of optimal element coordinates after synthesis of robust spatial structures, on spatial position of a signal and interferences allows to use interpolation methods for calculation intermediate values of coordinates at rather small number of interpolation points. The optimal structure is defined at interpolation points in advance for all combinations of power values and angular coordinates of the preset number of interferences. So the definition of optimum spatial structure in real time is possible as interpolation procedures possess high computing efficiency.

Figure 2

Dependence of signal-to-interference ratio  averaged by all positions of interference sector  on quantity of linear interpolation points  are represented on Figure 2 both with regularization and without of this one . Interpolation is applied to position of movable antenna element at change of . Having set permissible losses for signal-to-noise ratio, it is possible to define necessary number of interpolation points for optimization procedure carrying out. So at reduction of points number to  at  computing complexity decrease not less than in 5 times under the set conditions of modeling, and the general losses in comparison with maximum value of signal-to-interference ratio efficiency-gain at  make 1,7 dB in a static mode.

Owing to interpolation, computing efficiency strongly increases at use of two-dimensional antenna arrays, at higher number of interferences in all forward hemisphere, at various level of power.

Mechanical element moving possesses noticeable inertance which should be considered at the analysis of spatial optimization dynamic mode at not-stationary interferences. Speed of spatial structure variation depend on maximum possible change of element coordinate , expressed in wavelengths , for one time step of spatial structure optimization system, and spatial non-stationarity of interferences is set by interference angular sector moving  for the same time interval.

Figure 3

Research results are shown on Figure 3 in the form of dependence of signal-to-interference ratio  averaged by  for system with spatial structure optimization at dynamic operating mode. The analysis was carried out by modeling at various values of regularization parameter  at angular speed of interferences . It is the established fact that at values of velocity parameter ?? regularization at  provides the maximum benefit in interference immunity up to 6 dB in comparison with a case of spatial structure optimization at ?=0. Expansion of signal-to-interference ratio averaging borders and increase in interference movement velocity  expands parameter  area which gives additional signal-to-interference ratio gain.

2. Enhancement of Adaptation Speed In Signal Processing System With Optimization Of Spatial Structure

System Model and Signal Processing

Let us consider an -element planar antenna array with axial coordinates of elements . The array is divided on two sub-arrays of  and  elements respectively, . The first sub-array of  elements is intended for source direction finding and forms the main pattern. The second sub-array of  elements is intended for spatial interference compensation and contains elements which provide the adaptive adjustment of amplitude and phases of interferences. Coordinates of  elements can be variable for obtaining of the best interference immunity.

Interference environment is set by  point sources with power , allocated in the directions set by angles of azimuth  and by angles of elevation , . Vector of complex observable signal  represents a set of complex envelopes for signal  and interference  on outputs of antenna elements at the same point of time:

. (2.1)

Matrix of spatial correlation for interferences on outputs of antenna elements:

, (2.2)

where  - interference source position vector, which depends on antenna element coordinates, sign  denotes Hermitian conjugation,  - wavelength.

It is possible to represent signals on outputs of first and second sub-arrays as follows:

, , . (2.3)

In this case correlation matrix has a block structure:

,

and optimal weight processing vector  minimizes the power of uncompensated residuals of interferences at =const [7].

Optimization of spatial structure of the second sub-array is carried out by criterion (2.4) of maximum ratio of minimum  and maximum  eigenvalues of matrix , defining speed and stability of adaptation process:

(2.4)

The criterion of maximum eigenvalues ratio allows to raise efficiency of interference rejection by solving the following problems:

- enhancement of convergence speed for the adaptive weight adjustment using gradient algorithms,

- reduction of correlation matrix inversion error,

- increase of suppression ratio by more exact nulling on antenna pattern.

Figure 4. Spatial adaptive processing with spatial structure optimization

2.2 Numerical Analysis

Let us carry out the statistical modeling of preprocessing with optimization of spatial structure and processes in system with the adaptive spatial signal processing at various parameters of the antenna array (Fig. 4).

For calculation of optimal vector value , where  - dispersion of estimation error  of the desired signal, we use a steepest descent method [7]:

,

where  - convergence factor,  - interferences suppression error.

An example of convergence result for weight  adjustment process in case of presence and absence of preprocessing with optimization of space structure (2.4) is represented in Fig. 5. Modeling conditions: interference-to-noise power ratio =20, =0,001, =2, , interferences angles of arrival =25о, =50о, aperture size of array.

Figure 5. Adjustment of weight at adaptation with preprocessing

Fig.6 illustrates the same situation as the Fig.5 from the point of antenna pattern nulling for adaptation with the preprocessor and without it. In this case the number of adaptation steps =100 corresponds to time of the preprocessing, which increase speed of convergence. Thus adaptive antenna pattern with the preprocessing practically coincides with the optimal one.

Figure 6. Antenna pattern nulling and adaptation with preprocessing

Figure 7. Dependence of minimum eigenvalues ratio on aperture size

The adaptation speed gain is illustrated by dependences of minimum optimal eigenvalues to original eigenvalues ratio

on aperture size  of original uniformly spaced antenna array, Fig. 7. It is necessary to mark that maximum gain of adaptation speed is reached in the cases of small sizes of the antenna array aperture.

Thus regularized algorithm of spatial structure optimization provides poor sensitivity signal-to-interference ratio to deviations from suppositions, and the introduced stabilizer limits the size of spatial structure. It is shown that optimal spatial structures, obtained as a result of regularization, possess stability both to deviations of antenna element initial positions and to change of signal and interference positions. These properties of optimal structures allow to solve a number of technical problems facing before developers of radiosystems. For example, for increase of computing efficiency there is possibility to use interpolation of optimal structures for the values calculated in advance and stored in database. Other advantage of regularized spatial structure optimization algorithms is continuous dependence of antenna element coordinates on parameters of interferences that allows to lower requirements to velocity of reorganization and, thus, to establish optimum coordinates of elements more precisely, to increase signal-to-interference ratio in comparison with absence of regularization.

Moreover, in this paper preprocessing in the form of spatial structure optimization in antenna array is proposed. Efficiency of the method of convergence improvement for adaptive adjustment process of weight vector is shown. Increase of efficiency of point-source interferences suppression by means of more exact and fast nulling on antenna pattern is also obtained. Maximum gain in adaptation speed is reached at the small sizes of the antenna array aperture and increased up to 32 times under predetermined conditions modeling.

References

1. Parshin Yu.N., Gusev S.I. Optimal receiving discrete messages by means of development systems with optimal spatial structure // Radio engineering and electronics, 2000, V. 45, №3, pp. 305-312.

2. Parshin Yu.N., Gusev S.I. Optimization of spatial structure in radiosysytem with nonlinear interference compensation // Radioengineering, TV and Communications. - Murom: VLGU, 1999, pp.112-116.

3. Parshin Yu.N., Gusev S.I. Influence of signal and interference positions on optimal spatial structure of antenna system // Bulletin of Ryazan state radio engineering academy, Ryazan: RGRTA, 1998, V.4, pp. 117-120.

4. Tikhonov A.N., Arsenin V. Ya. Methods of Solving Ill-posed Problems - M.: Nauka, 1986.

5. Parshin Yu. N., Lavrov A.M., Gusev S.I. Synthesis of robust spatial structures of radiosystems with use of regularization // Bulletin of Ryazan state radio engineering academy, Ryazan: RGRTA, 2000, V.6, pp. 11-14.

6. Parshin Yu. N., Gusev S.I. Synthesis of regularized algorithm for robust spatial structures of radiosystems // 3-rd International Conference «DSPA-2000», Moscow: MCNTI, 2000, V2, pp. - 26-29.

7. R.A. Monzingo, T.W. Miller. Introduction to Adaptive Arrays. Wiley, New York, 1976.

8. L. Hasdorf. Gradient Optimization and Nonlinear Control. Wiley, New York, 1976, Ch.3

9. Yu. N. Parshin, S.I. GusevDynamic Mode of Radiosystem with Spatial Structure Optimization in Presence of Interferences // 4-th MicroWave and Radar Week, MRW-2010, 18th International Conference on Microwave Radar and Wireless Communications, MIKON-2010, Vilnius, Lithuania, June 14-16, 2010, V. 1, GEOZONDAS Ltd, 2010, p.p. 133-136.

10. Strongin R.G. Numeric methods in multiextreme problems. - M.: Nauka, 1978.

11. Vasiliev F.P. Methods of extreme problems solving. - M.: Nauka, 1981.

12. Parshin Yu. Signal detection in the presence of space interferences with using space structure optimization and sequential samples // International radar symposium 2007 - IRS 2007, Cologne, Germany. Proceedings. - German institute of navigation, 2007. - pp. 451-454.

Размещено на Allbest.ru

...

Подобные документы

  • Initial data for the term paper performance. Order of carrying out calculations. Analyze uncompensated system. Synthesize the real PD-compensator ( ) which would guarantee desired phase margin at gain crossover frequency . Analyze compensated system.

    курсовая работа [658,7 K], добавлен 20.08.2012

  • История образования и раскол в Microsoft, обзор GNU/Linux-подобных систем Fedora, Slackware. Обзор BSD-подобных систем OpenBSD, Frenzy. Unix-подобные операционные системы Extended File System ext. XFS и Unix File System, ядро linux-kernelи Emacs.

    реферат [135,9 K], добавлен 07.12.2010

  • Аналіз процесу функціонування радіорелейних ліній (РРЛ) у складі мережі SDH. Розробка резервної РРЛ SDH на базі обладнання ALCOMA за допомогою відкритого програмного забезпечення "Radio Mobile". Розрахунок параметрів РРЛ. Техніко-економічне обґрунтування.

    дипломная работа [7,4 M], добавлен 06.11.2016

  • Капитальная сеть Ethernet, возможности различных схем реализации. Расчёт мощности источника бесперебойного питания. Схема соединительных линий узлов сети первого, второго этажа здания №1. Динамическая адресация, Dynamic Host Configuration Protocol-сервер.

    курсовая работа [2,5 M], добавлен 22.03.2015

  • Основні можливості пакету Image Processing. Дослідження методів перетворення цифрових зображень в середовищі Matlab. Відновлення розмитого зображення за допомогою команди deconvblind, його геометричні перетворення. Зашумлення зображення функцією motion.

    курсовая работа [2,4 M], добавлен 05.02.2015

  • Analyses o the current situation on the project and the development of their technical realization. Brief description of the existing zonal area network. Basic requirements for communication lines. Calculation of the required number of channels.

    дипломная работа [771,0 K], добавлен 20.09.2016

  • История использования подводных лодок ВМФ США. Описание боевых информационно-управляющих систем (БИУС) на их борту как комплекса электронно-вычислительной аппаратуры для управления и эффективного использования боевых и технических возможностей оружия.

    презентация [896,8 K], добавлен 23.12.2013

  • Построение технологии ОКС-7 "сигнализация-маршрутизация-сообщение". Стандарты систем общеканальной сигнализации: CCITT Signalling System No.6 и No.7. Взаимодействие цифровых сетей. Виды систем сигнализации: абонентская, внутристанционная и межстанционная.

    курсовая работа [228,0 K], добавлен 30.05.2014

  • Установка компонентов на печатные платы при помощи автоматов укладчиков или интегрированных монтажно-сборочных комплексов, их характеристики. Автомат с блоком монтажных головок. Роторно-башенная схема построения автоматов (Rotary Turret Placement System).

    реферат [161,7 K], добавлен 21.11.2008

  • Проектирование среднескоростного тракта передачи данных между двумя источниками и получателями. Сборка схемы с применением пакета "System View" для моделирования телекоммуникационных систем, кодирующего и декодирующего устройства циклического кода.

    курсовая работа [3,0 M], добавлен 04.03.2011

  • Device, constructive – technological features, circuit of insert. Conditions of insert of the transistor. Static parameters. Physical processes. Differential coefficient of transmission of a current. Condition a splitting contact. Condition of saturation.

    курсовая работа [129,2 K], добавлен 27.01.2003

  • Разработка городской офисной сети с полносвязной топологией. Применение протоколов маршрутизации ОSPF, Static. Выбор сетевых устройств для связи компьютеров между собой, их технические характеристики. Элементы системы безопасности. Кеширование информации.

    курсовая работа [230,5 K], добавлен 21.02.2016

  • The lines of communication and the basic properties of the fiber optic link. Comparison of characteristics and selection of the desired type of optical cable. The concept of building a modern transmission systems. The main function module SDH networks.

    дипломная работа [2,1 M], добавлен 16.08.2016

  • Создание цифровой модели рельефа топокарт, проектирование на ее основе 3D-модели и растрового изображения топокарты. Используемые средства и технологии, модуль ArcGIS Spatial Analyst. Последовательность и этапы создания геоинформационной модели.

    курсовая работа [4,1 M], добавлен 12.06.2013

  • Social structure as one of the main regulators of social dynamic. The structure of the social system: social communities, social institutions, social groups, social organizations. The structure of social space. The subsystem of society by T. Parsons.

    презентация [548,2 K], добавлен 06.02.2014

  • Static model analysis. Proof mass, suspension beams, static deflection. Residual stress and Poisson’s ratio. Spring constants. Strain under acceleration. Sensitivity, thermal noise. Resolution due to the ADC. Maximum acceleration. Dynamic model analysis.

    курсовая работа [1,2 M], добавлен 21.09.2010

  • The overall architecture of radio frequency identification systems. The working principle of RFID: the reader sends out radio waves of specific frequency energy to the electronic tags, tag receives the radio waves. Benefits of contactless identification.

    курсовая работа [179,1 K], добавлен 05.10.2014

  • Central Processing Unit. Controls timing of all computer operations. Types of adapter card. Provides quick access to data. Uses devices like printer. Random Access Memory. Directs and coordinates operations in computer. Control the speed of the operation.

    презентация [3,5 M], добавлен 04.05.2012

  • The availability of sufficient working capital enterprises optimal structure - a prerequisite for normal functioning in a market economy. Company's current assets is one of the main objects of Financial Management submitted in cash and monetary system.

    реферат [53,3 K], добавлен 07.05.2011

  • Overview of civil law system. History of appearance and development of the Roman-German legal family. General characteristics of civil law legal system. Sourses of the right. Distinctive features of the system. Soubgroups in the civil law system.

    курсовая работа [36,7 K], добавлен 10.08.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.