Энергетические спектры сигналов

Проведение исследования понятия мощности и энергии в теории сигналов. Главная особенность изучения мгновенной производительности. Характеристика скалярного произведения сигналов. Интегрирование энергетического спектра по интервалам лепестков спектра.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид лекция
Язык русский
Дата добавления 15.11.2018
Размер файла 45,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ЭНЕРГЕТИЧЕСКИЕ СПЕКТРЫ СИГНАЛОВ

Джосайя Гиббс

Содержание

Введение

1. Мощность и энергия сигналов

2. Энергетические спектры сигналов

Литература

Введение

Понятия мощности и энергии в теории сигналов не относятся к характеристикам каких-либо физических величин сигналов, а являются их количественными характеристиками, отражающими определенные свойства сигналов и динамику изменения их значений во времени, в пространстве или по любым другим аргументам.

Для произвольного, в общем случае комплексного, сигнала мгновенная мощность по определению равна квадрату функции его модуля, для вещественных сигналов - квадрату функции амплитуд. Энергия сигнала, также по определению, равна интегралу от мощности по всему интервалу существования или задания сигнала.

Энергия сигналов может быть конечной или бесконечной. Конечную энергию имеют финитные сигналы и сигналы, затухающие по своим значениям в пределах конечной длительности, которые не содержат дельта-функций и особых точек (разрывов второго рода и ветвей, уходящих в бесконечность). В противном случае их энергия равна бесконечности. Бесконечна также энергия периодических сигналов.

1. Мощность и энергия сигналов

Частотное представление применяется не только для спектрального анализа сигналов, но и для упрощения вычислений энергии сигналов и их корреляционных характеристик.

Как уже рассматривалось ранее, для произвольного сигнала s(t) = a(t)+jb(t), где а(t) и b(t) - вещественные функции, мгновенная мощность сигнала (плотность распределения энергии) определяется выражением:

w(t) = s(t)s*(t) = a2(t)+b2(t) = |s(t)|2.

Энергия сигнала равна интегралу от мощности по всему интервалу существования сигнала. В пределе:

Еs =w(t)dt =|s(t)|2dt.

По существу, мгновенная мощность является плотностью мощности сигнала, так как измерения мощности возможны только через энергию, выделяемую на определенных интервалах ненулевой длины:

w(?) = (1/?t)|s(t)|2dt?

Сигнал s(t) изучается, как правило, на определенном интервале Т (для периодических сигналов - в пределах одного периода Т), при этом средняя мощность сигнала:

WT(?) = (1/T)w(t) dt = (1/T)|s(t)|2 dt.

Понятие средней мощности может быть распространено и на незатухающие сигналы, энергия которых бесконечно велика. В случае неограниченного интервала Т строго корректное определение средней мощности сигнала производится по формуле:

Ws = w(t) dt.

Энергия и норма сигналов связаны соотношениями:

Es = ||s(t)||2, ||s|| = .

2. Энергетические спектры сигналов

Скалярное произведение сигналов. Энергия суммы двух произвольных сигналов u(t) и v(t) определяется выражением

E = [u(t)+v(t)]2 dt = Eu + Ev + 2u(t)v(t) dt.

Как следует из этого выражения, энергии сигналов, в отличие от самих сигналов, в общем случае не обладают свойством аддитивности. Энергия суммарного сигнала u(t)+v(t), кроме суммы энергий составляющих сигналов, содержит в себе и так называемую энергию взаимодействия сигналов или взаимную энергию

Euv = 2u(t)v(t) dt.

Интеграл выражения (5.2.2) для двух вещественных сигналов является фундаментальной характеристикой, пропорциональной взаимной энергии сигналов. Его называют скалярным произведением сигналов

Пuv = u(t), v(t) =u(t)v(t) dt = ||u||||v|| cos ,

Линейное пространство сигналов с таким скалярным произведением называется гильбертовым пространством Н. С учетом того, что |cos ?? 1, в гильбертовом пространстве справедливо неравенство Коши-Буняковского

|Пuv| ||u||||v||.

Для комплексного гильбертова пространства скалярное произведение также представляет собой вещественное число и вычисляется по формуле

Пuv =u(t)v*(t) dt u*(t)v(t) dt.

Из выражения (5.2.3) следует, что косинус угла между сигналами

cos = Пuv/(||u||||v||).

При полной тождественности сигналов (равенстве амплитуд и временных координат) имеем ? = 0, cos ? = 1, и скалярное произведение становится равным энергии сигналов:

Пuv = u(t)2 dt v(t)2 dt ||u||2 ||v||2 .

Дискретные сигналы обычно рассматриваются в пространстве Евклида (обозначение пространства - R2). Скалярное произведение двух сигналов в пространстве Евклида:

Пuv = (uk,vk) =ukvk,

где n - размерность пространства.

Взаимный энергетический спектр. Из очевидной однозначности энергии взаимодействия сигналов независимо от формы их математического представления (в динамической и частотной модели) следует выражение для скалярного произведения произвольных вещественных сигналов u(t) и v(t) через спектральные плотности сигналов U(?) и V(?) в комплексном гильбертовом пространстве:

Пuv = (1/2?)U(?)V*(?) d???(1/2?)U*(?)V(?) d?.

Функции

Wuv(?) = U(?)V*(?), Wvu(?) = U*(?)V(?), Wuv(?) = Wvu*(?),

для которых справедливо выражение (5.2.6), называется взаимными энергетическими спектрами вещественных сигналов, и являются функциями распределения плотности энергии взаимодействия сигналов (мощности взаимодействия) по частоте.

В общем случае, за исключением спектров четных функций, взаимные энергетические спектры также являются комплексными функциями:

U(?) = Au(?) + j Bu(?), V(?) = Av(?) + j Bv(?).

Wuv = AuAv+BuBv+j (BuAv - AuBv) = Re Wuv(w) + j Im Wuv(?).

С учетом четности реальной части и нечетности мнимой части энергетических спектров, интеграл мнимой части выражения (5.2.7') равен нулю, а, следовательно, скалярное произведение сигналов всегда является вещественным и неотрицательным, как и энергия сигналов:

Рис. 5.2.1. Форма и энергетические спектры сигналов.

На рис. 5.2.1 приведена форма двух одинаковых сдвинутых во времени и частично перекрывающихся лапласовских импульсов u(t) и v(t), а также суммарный импульс z(t)=u(t)+v(t). Плотности энергии сигналов W(f) приведены в относительных единицах плотности энергии суммарного сигнала Wz(f) на нулевой частоте. мощность энергия сигнал скалярный

Как видно из графиков, плотности энергии сигналов являются вещественными неотрицательными функциями и содержат только реальные части. В отличие от них, плотность взаимной энергии сигналов является комплексной функцией, при этом модуль плотности по своим значениям на шкале частот соизмерим со средними значениями плотности энергии сигналов на этих частотах и не зависит от их взаимного расположения на временной оси. Для сигналов, одинаковых по форме, модуль взаимной плотности равен значениям плотности энергии сигналов.

На рис. 5.2.2 приведены плотности взаимной энергии тех же сигналов при разной величине временного сдвига ?t между сигналами. Однако при постоянном значении модуля взаимной энергии сигналов действительная и мнимая функции спектра мощности существенно изменяются при изменении сдвига между сигналами. При незначительной величине временного перекрытия сигналов частота осцилляций реальной и мнимой части плотности взаимной энергии достаточно велика, а относительный коэффициент затухания колебаний (уменьшение амплитудных значений от периода к периоду) достаточно мал. Соответственно, при вычислении скалярного произведения по формуле (5.2.8) положительные амплитудные значения осцилляций Re(Wuv) практически полностью компенсируются отрицательными значениями и результирующий интеграл, а равно и энергия взаимодействия сигналов (удвоенное значение скалярного произведения), близка к нулевой (стремится к нулю по мере увеличения сдвига между сигналами).

Рис. 5.2.2. Взаимные энергетические спектры сигналов.

При увеличении степени взаимного перекрытия сигналов частота осцилляций плотности взаимной энергии уменьшается (?t = 50 mkc на рис. 5.2.2) и основным по энергии реальной части спектра становится центральный низкочастотный пик, площадь которого не компенсируется площадью последующей отрицательной полуволны осцилляции. Соответственно, возрастает и энергия взаимодействия сигналов. При полном перекрытии сигналов (при нулевом фазовом угле между сигналами) осцилляции исчезают, и энергия взаимодействия сигналов максимальна.

Энергетический спектр сигнала. Если функция s(t) имеет фурье-образ S(?), то плотность мощности сигнала (спектральная плотность энергии сигнала) определяется выражением:

w(t) = s(t)s*(t) = |s(t)|2 |S(?)|2 = S(?)S*(?) = W(?).

Спектр мощности W(?) - вещественная неотрицательная четная функция, которую обычно называют энергетическим спектром. Спектр мощности, как квадрат модуля спектральной плотности сигнала, не содержит фазовой информации о его частотных составляющих, а, следовательно, восстановление сигнала по спектру мощности невозможно. Это означает также, что сигналы с различными фазовыми характеристиками могут иметь одинаковые спектры мощности. В частности, сдвиг сигнала не отражается на его спектре мощности. Последнее позволяет получить выражение для энергетического спектра непосредственно из выражений (5.2.7). В пределе, для одинаковых сигналов u(t) и v(t) при сдвиге ?t 0, мнимая часть спектра Wuv(?) стремится к нулевым значениям, а реальная часть - к значениям модуля спектра. При полном временном совмещении сигналов имеем:

Wuv(?) = U(?)V*(?) = U(?)U*(?) = |U(?)|2 = Wu(?).

Соответственно, полная энергия сигнала:

Еu =u(t)2dt = (1/2?)Wu(t)dt = (1/2?)|U(?)|2 d?,

т.е. энергия сигнала равна интегралу квадрата модуля его частотного спектра - сумме энергии его частотных составляющих, и всегда является вещественной величиной.

Для произвольного сигнала s(t) равенство

|s(t)|2 dt =|S(f)|2 df

обычно называют равенством Парсеваля (в математике - теоремой Планшереля, в физике - формулой Релея). Равенство очевидно, так как координатное и частотное представления по существу только разные математические отображения одного и того же сигнала. Аналогично для энергии взаимодействия двух сигналов:

u(t) v*(t) dt =U(f) V*(f) df.

Из равенства Парсеваля следует инвариантность скалярного произведения сигналов и нормы относительно преобразования Фурье:

u(t), v(t) = U(f),V(f), ||s(t)||2 = ||S(f)||2.

В целом ряде чисто практических задач регистрации и передачи сигналов энергетический спектр сигнала имеет весьма существенное значение.

Периодические сигналы переводятся в спектральную область в виде рядов Фурье. Запишем периодический сигнал с периодом Т в виде ряда Фурье в комплексной форме:

s(t) =Sk exp(j2?kt/T),

и вычислим среднюю мощность сигнала за один период:

WT = (1/T)s2(t) dt = (1/T)Sk Smexp(j2??k+m)t/T) dt.

Интервал 0-Т содержит целое число периодов всех подынтегральных экспонент, и равен нулю, за исключением экспоненты при k = -m, для которой интеграл равен Т. Соответственно, средняя мощность периодического сигнала равна сумме квадратов модулей коэффициентов его ряда Фурье:

WT =|Sk|2.

Как правило, спектры сигналов с крутыми фронтами (например, кодовых сигналов при передаче цифровых данных) являются многолепестковыми с постепенным затуханием энергии в последовательных лепестках. Пример нормированного энергетического спектра прямоугольного импульса длительностью ?и приведен на рис. 5.2.3. Спектры выполнены в линейном (сплошная линия) и логарифмическом (пунктир) масштабе по оси значений. Для четкого разделения лепестков функции спектров приведены по безразмерной частотной переменной f?и.

Рис. 5.2.3. Энергетический спектр прямоугольного импульса.

Интегрированием энергетического спектра по интервалам лепестков спектра нетрудно вычислить, что в пределах первого лепестка сосредоточено 90.2% энергии всего сигнала, в пределах второго - 4.8%, в пределах третьего - 1.7%, и т.д. Если форма сигналов в пункте их приема (детектирования) существенного значения не имеет, а регистрация сигналов идет на уровне статистических шумов, равномерно распределенных по всему частотному диапазону, то такие сигналы целесообразно пропускать через фильтр нижних частот с выделением только первого энергетического лепестка сигнала. Естественно, что при этом фронты регистрируемого сигнала будут сглажены. Но при расширении полосы пропускания фильтра на два или три лепестка энергия принимаемого сигнала будет увеличена соответственно на 4.8 или 6.5%, в то время как энергия шумов в 2 или 3 раза.

Литература

1. Баскаков С.И. Радиотехнические цепи и сигналы Учебник для вузов. - М. Высшая школа, 1988.

2. Васильев Д.В. Радиотехнические цепи и сигналы: Учебное пособие для вузов. - М.: Радио и связь, 1982. - 528 с.

3. Макс Ж. Методы и техника обработки сигналов при физических измерениях. - М.: Мир, 1983.

Размещено на Allbest.ru

...

Подобные документы

  • Характеристика видов и цифровых методов измерений. Анализ спектра сигналов с использованием оконных функций. Выбор оконных функций при цифровой обработке сигналов. Исследование спектра сигналов различной формы с помощью цифрового анализатора LESO4.

    дипломная работа [2,5 M], добавлен 03.05.2018

  • Спектры сигналов, модулируемых по амплитуде и фазе. Сопоставление их между собой, исходя из зависимости удельной скорости передачи. Искажение формы сигнала при ограничении спектра. Главные особенности и назначение аналоговой и дискретной информации.

    контрольная работа [154,4 K], добавлен 01.11.2011

  • Расчет спектра, полной и неполной энергии сигналов. Определение параметров АЦП и разработка математической модели цифрового сигнала. Согласование источника информации с каналом связи. Определение вероятности ошибки в канале с аддитивным белым шумом.

    курсовая работа [1,2 M], добавлен 07.02.2013

  • Общие сведения о модуляции. Расчёт автокорреляционной функции кодового сигнала и его энергетического спектра. Принципы преобразования сигналов в цифровую форму. Согласование источника информации с каналом связи. Расчёт спектральных характеристик сигналов.

    курсовая работа [2,0 M], добавлен 07.02.2013

  • Сигналы и их характеристики. Линейная дискретная обработка, ее сущность. Построение графиков для периодических сигналов. Расчет энергии и средней мощности сигналов. Определение корреляционных функций сигналов и построение соответствующих диаграмм.

    курсовая работа [731,0 K], добавлен 16.01.2015

  • Теорема дискретизации или Котельникова. Соотношение между непрерывными сигналами и значениями этих сигналов лишь в отдельные моменты времени – отсчетами. Получение спектра дискрeтизованной функции. Дискретизация реальных сигналов (речь, музыка).

    реферат [353,2 K], добавлен 10.02.2009

  • Расчет спектральной плотности непериодических сигналов. Спектральный анализ непериодических сигналов. Определение ширины спектра по заданному уровню энергии. Расчет автокорреляционной функции сигнала и корреляционных функций импульсных видеосигналов.

    контрольная работа [96,4 K], добавлен 29.06.2010

  • Использование спектра в представлении звуков, радио и телевещании, в физике света, в обработке любых сигналов независимо от физической природы их возникновения. Спектральный анализ, основанный на классических рядах Фурье. Примеры периодических сигналов.

    курсовая работа [385,8 K], добавлен 10.01.2017

  • Сигнал - материальный носитель информации и физический процесс в природе. Уровень, значение и время как основные параметры сигналов. Связь между сигналом и их спектром посредством преобразования Фурье. Радиочастотные и цифровые анализаторы сигналов.

    реферат [118,9 K], добавлен 24.04.2011

  • Расчет спектра сигнала через ряд Фурье. Диапазон частот, в пределах которого заключена часть энергии колебания. Восстановленный сигнал из гармоник. Алгоритм восстановления и дискретные значения времени. Изучение спектрального представления сигналов.

    лабораторная работа [356,3 K], добавлен 18.05.2019

  • Обработка простейших сигналов. Прямоугольная когерентная пачка, состоящая из трапецеидальных (длительность вершины равна одной третьей длительности основания) радиоимпульсов. Расчет спектра амплитуд и энергетического спектра, импульсной характеристики.

    курсовая работа [724,9 K], добавлен 17.07.2010

  • Расчёт ширины спектра, интервалов дискретизации и разрядности кода. Автокорреляционная функция кодового сигнала и его энергетического спектра. Спектральные характеристики, мощность модулированного сигнала. Вероятность ошибки при воздействии "белого шума".

    курсовая работа [1,0 M], добавлен 07.02.2013

  • Временные функции сигналов, расчёт спектра. Определение интервала дискретизации и разрядности кода. Расчет мощности модулированного сигнала. Согласование источника информации с каналом связи. Расчет вероятности ошибки в канале с аддитивным белым шумом.

    курсовая работа [1020,8 K], добавлен 07.02.2013

  • Структура канала связи. Расчет спектральных характеристик модулированного сигнала, ширины спектра, интервала дискретизации сигнала и разрядности кода, функции автокорреляции, энергетического спектра, вероятности ошибки в канале с аддитивным белым шумом.

    курсовая работа [1,7 M], добавлен 07.02.2013

  • Спектральный анализ аналоговых непериодического и периодического сигналов. Анализ аналоговой линейной электрической цепи во временной и частотной области. Расчет и построение спектра коэффициентов комплексного ряда Фурье. Расчет шины спектра сигнала.

    курсовая работа [582,6 K], добавлен 02.09.2013

  • Специфика сигналов с частотной модуляцией. Спектры сигналов различных индексов модуляции. Факторы передачи сигналов с паразитной амплитудной модуляцией. Особенности приемников частотно-модулированного сигнала. Классификация ограничителей, их действие.

    презентация [306,0 K], добавлен 12.12.2011

  • Определение практической ширины спектра сигнала. Согласование источника информации с каналом связи. Определение интервала дискретизации сигнала. Расчет вероятности ошибки при воздействии "белого шума". Расчет энергетического спектра кодового сигнала.

    курсовая работа [991,1 K], добавлен 07.02.2013

  • Расчет спектра сигнала и его полной энергии. Определение практической ширины спектра, интервала дискретизации и разрядности кода. Расчет автокорреляционной функции кодового сигнала. Общие сведения о модуляции. Расчет спектральных характеристик и ошибок.

    курсовая работа [428,2 K], добавлен 07.02.2013

  • Изображение структурной схемы смешанной системы связи, проектирование сигналов в различных её сечениях. Расчет спектра плотности мощности сообщения, энергетической ширины спектра и интервала корреляции. Схема приемника сигнала дискретной модуляции.

    курсовая работа [706,4 K], добавлен 09.03.2013

  • Математические модели сообщений, сигналов и помех. Основные методы формирования и преобразования сигналов в радиотехнических системах. Частотные и временные характеристики типовых линейных звеньев. Основные законы преобразования спектра сигнала.

    курсовая работа [1,8 M], добавлен 09.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.